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Abstract – A variety of social, biological and communication networks can be modelled using
graph theoretical tools. Similar graphical tools can be used to model the topology by which
disease, errors, and/or other undesired phenomenon etc. is spread and propagated through such
networks. Certain network operations are proposed in this work that can be used to slow the
spread of diseases in complex network topologies. The approach considered in this work differs
from existing techniques in that it is based on optimally removing (or immunizing) individual
links in the network as opposed to individual nodes. A systematic algorithm is outlined to achieve
this edgewise immunization via a relaxed convex optimization protocol.
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Introduction. – A variety of complex interactions
between individual entities can be accurately modelled
on top of a network consisting of nodes that represent
the entities and links which represent the interactions
between entities [1,2]. Social and biological interactions
between living entities can be modelled as links between
nodes in a graph [3–5]. Communication networks have
long been modelled using graph theoretic models in
both the social/biological and electrical engineering
domains [3,5]. Other, complex infrastructure, networks
such as the power, water and cyber networks are also
modelled using graphs [2].
Apart from modelling the specific interactions between

individual entities, e.g. the communication between
computers on a cyber network, the same graph theoretic
tools can be used to model the topology by which
disease, errors, and/or other undesired phenomenon etc.
is spread and propagated through such networks [5,6].
For example, a graph used to model the cyber network
can also highlight the paths along which certain computer
viruses can spread. The actual spread of the disease1

between entities (and thus on the network proper) is

(a)E-mail: adrian.bishop@anu.edu.au
(b)E-mail: imansh@kth.se.
1The idea of a disease is quite general and this work is applicable

to the spread of worms/viruses in networked computer systems, the
spread of cascading failures in networked electrical systems (such as

typically modelled probabilistically using a Markov chain
or dynamical mean-field equations.
The dynamics of the disease propagation, e.g. steady-

state characteristics etc., have been explicitly related to
certain graph theoretical properties of the network itself,
e.g. the eigenvalues of the adjacency matrix. A wide
range of results have been expressed in the literature,
e.g., see [7–12], where different random and deterministic
graph topologies, e.g. small-world, Erdös-Rényi, geometric
etc., and different propagation characteristics, e.g. con-
cerning specific viruses or infection/susceptibility models
etc., have been considered. We refer to the references for
details.
Given the natural connection between the dynamics of

the disease propagation and the topology of the underlying
network it follows that one may seek to apply certain
topological operations to the network with the aim of
slowing/reducing the spread of disease or increasing the
eradication of the disease from the network. This is exactly
the topic of this work where we consider certain network
edge-based operations that can be used to slow the spread
of diseases in complex network topologies. Conversely,
such operations increase the rate in which a disease may
die out in similarly complex networked environments.

the smart grid) or the spread of epidemics in biological networks.
We will use the word disease as a catch all term.
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Other work that examines methods to reduce the effect
of a disease in a network is explored in [13–21] where
it is typical to immunize certain individual nodes, e.g.
the nodes with the highest degree or a certain fraction
of the nodes etc. We refer to these references also for
comparisons with the effect of random node immunization.
From the networks perspective, immunizing individual
nodes is equivalent to removing each edge incident on that
node (at least from the point of view concerning the spread
of disease). This is true regardless of how the individual
nodes are chosen.
The approach considered in this work differs from these

preceding immunization strategies in a fundamental way.
The strategy considered in this work is based on optimally
removing (or immunizing) individual links in the network.
Thus, individual nodes are not necessarily immunized in
the traditional sense but rather we actively control the
interactions and the disease’s path of movement. At a
basic level, we consider the immunization of individual
links as opposed to the immunization of individual nodes.
Our goal is to introduce edge-based operations that can be
used to slow the spread of, or eliminate entirely, diseases
in complex network topologies. We provide a systematic
algorithm to achieve this immunization via a relaxed
convex optimization protocol.
To motivate the idea of edgewise immunization consider

a social network of organisms susceptible to a disease that
is spread via links represented using a graph theoretical
model. Suppose also that the links represent the social
interactions between organisms and it is this social inter-
action that facilitates the ability of a disease to spread.
Then, our claim is that if we simply restrict specific social
interactions between strategic pairs of organisms, then
we could achieve a kind of edgewise immunization of the
network; e.g. we could slow the spread of the disease
significantly or conversely increase the rate in which the
disease becomes extinct. This scheme does not require
one to completely isolate individual organisms from their
neighbours in the network. Indeed, one can then contrast
the difference between the total quarantine of individual
organisms in the network (i.e. node-based immunization)
with strategic pairwise interaction restriction (i.e. edge-
wise immunization).
Another example of where one may wish to consider so-

called edgewise immunization is during the network design
stage for critical networked infrastructure; e.g. power
control or transportation control networks etc. Often,
these networks are fixed, involved distributed processing,
and are required to be connected. Moreover, we would
increasingly like such a network to be resilient to the
so-called zero-day attacks and vulnerabilities. A zero-day
attack refers to a virus or fault that attacks, often mali-
ciously, a network (most typically a computer network or
more recently an industrial control and process network)
but which is otherwise unknown to the system security
analysts and designers etc. By designing the network
topology using the tools developed in this work one can

achieve a sort of edgewise immune network topology
that may yield a greater network resilience to the so-called
zero-day attacks while also aiding in the recovery from
such attacks; e.g. by ensuring any zero-day disease enter-
ing the network will propagate slower and/or die out faster
once a counter-action is established.
The key question considered is then: What edges in

the network should be removed in order to best facilitate
the extinction of the disease from the network? This idea
outlines a novel direction for immunization in complex
networks and it is envisioned that such a scheme can find
application in a variety of settings including the power,
water and cyber networks.

A model for the spread of disease in complex
network. – We suppose there are n nodes whose connec-
tions are represented by a network (or graph) and are
completely characterized by the entries aij of an associated
adjacency matrix A. The network is formally described by
the graph G = {V, E}, where V is the set of nodes and the
set E is the set of connections (or edges). The neighbours
of node i are denoted by Ni = {j ∈ V|(i, j)∈ E}.
Let the time t∈N. The infected nodes attempt (either

maliciously or by circumstance) to infect their susceptible
neighbours with probability β. An infected node has a
probability of µ of recovering from the infection and
returning to a susceptible state. Let pi(t) denote the
probability that node i is infected at time t and let
p(t) = [p1(t) . . . pn(t)]

�. One can then derive an equation
of the form

p(t+1) = f(p(t), β, µ), (1)

where f(p(t), β, µ) is a function detailing the evolu-
tion of the disease through the network. For example,
f(p(t), β, µ) should account for the possibility that, e.g.,
node i is susceptible and infected by a neighbour, that
node i is infected and does not recover at time t and that
an infected node recovers and is subsequently re-infected
by a neighbour within the same discrete time window.
Note, we point to [7–12] for details concerning various

systems of the form (1) used to model the spread of disease
in a network.
The work in [7–12] is noteworthy since it relates the

behaviour of systems of the form (1) to the network
topology defined by, e.g., A. That is, these references
relate the behaviour of the disease in the network, e.g. its
propagation rate or steady-state behaviour, to the network
topology.
The following is an important result in networked

disease propagation and has been mentioned by a number
of authors studying different, but closely related, systems
of the form (1).

Theorem 1 ([8,11]). If β
µ
< 1
|λmax(A)| then p(t)→ 0 as

t→∞ with an exponential rate.
This result has continuous time analogous and a number

of comments on an inequality of the form β
µ
< 1
|λmax(A)|
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have been stated in various settings; e.g. see [7–12] and
the references therein. For brevity, we highlight [8,11]
which contain mathematically rigorous results concerning
the evolution of a system of the form (1). In [8] the
authors examine the rate at which a disease dies out
and is eliminated from the network. The authors show
that if β

µ
< 1
|λmax(A)| does not hold then the disease may

persist in the network for a very long time. In [11] the
authors provide a detailed analysis for a similar problem
by considering a mean-field approximation of an exact
2n state Markov process that captures all the possible
combinations of the network state. Among other results,
the authors find that β

µ
< 1
|λmax(A)| ensures the disease is

removed from the network. This formulation highlights
that, because 2n will be quite large in many cases, the
features of an infinite-state Markov process rapidly come
into play. This also leads the authors to conclude that if
β
µ
< 1
|λmax(A)| does not hold then the disease may persist

in the network for a very long time.
The practical consequence of this theorem, as it pertains

to this work, is that one can deduce the existence of
some critical probability βc ≈ µ/|λmax(A)| below which
the disease dies out quickly and above which the disease
may, and quite often does, persist in the network for a
long time.

A strategy for selective immunization. – The
main contribution of this letter is the introduction of a
mechanism by which one can systematically adjust the
network topology in order to increase the speed in which
the disease is removed from the network. In the previous
section it was noted that a smaller maximum eigenvalue
for the adjacency matrix of the underlying network graph
reduces the critical infection probability and increases the
rate at which the disease dies out. Heuristically, this is not
surprising. In this section we propose a systematic method
to change the structure of the network through removing
links (or edges in the graph) to minimize this eigenvalue.

The basic solution. In this subsection we consider the
problem of determining which edges to remove from the
network in order to reduce the spectrum of the adjacency
matrix. We constrain the number of edges that can be
removed to me.
First note that the adjacency matrix of a graph G, A

can be written as

A=

|E|∑
i=1

Ai,

where Ai is a matrix with all zero entries except for the
ij-th and ji-th entries which are equal to 1. The problem
of minimizing λmax can the formulated as

argmins λmax

(
|E|∑
i=1

siAi

)
,

subject to 1�s= |E|−me,
si ∈ {0, 1}, i= 1, · · · , |E|,

(2)

where λmax(·) is the largest eigenvalue of its
argument.
Because the constraint si ∈ {0, 1} is Boolean, (2) is

not easily solvable using standard convex optimization
techniques. However, one can relax this problem and
obtain a convex optimization problem that can be solved
using standard tools2. We have the following relaxed
version of (2):

argmins λmax

(
|E|∑
i=1

siAi

)
,

subject to 1�s= |E|−me
si ∈ [0, 1], i= 1, · · · , |E|

(3)

Now observe that the cost function in (3) is a convex
function in s∈ [0, 1]|E| and the constraint is linear. To see
this note firstly that

∑|E|
i=1 siAi is symmetric and, when

viewed as a function of s∈ [0, 1]|E|, has a convex domain.
Moreover,

λmax


 |E|∑
i=1

siAi


=

sup
x∈R|V|

{
x�
(
p∑
i=1

siAi

)
x : ‖x‖= 1

}
: [0, 1]|V|×|V|→R

shows that λmax(
∑|E|
i=1 siAi) can be viewed as a point-

wise supremum over an infinite set of linear functionals

of
∑|E|
i=1 siAi indexed by x∈R|V|. Now it follows, e.g.

from [22], that the pointwise supremum over a set of
convex functionals preserves convexity. Thus, (3) is a
convex problem as claimed.
The main difficulty with (3) is that it is non-

differentiable in the si. However, one can form a
semi-definite programming (SDP) problem

argmins∈[0,1]|E|,t∈R t,

subject to tI−
(
|E|∑
i=1

siAi

)
� 0,

1�s= |E|−me,

(4)

where we have used the property that λmax(
∑|E|
i=1 siAi)�

t if and only if
∑|E|
i=1 siAi � tI. The above minimization

problem can thus be solved easily using standard SDP

2The original, exact, optimization problem is a combinatorial
problem. The complexity of solving the original problem is on the

order of
( |E|
me

)
times the complexity of calculating the maximum

eigenvalue of an n by n matrix. Except for the most trivial cases,
the exact problem cannot be solved in any reasonable time frame.
However, there are efficient tractable algorithm to solve the relaxed
problem. Of course, one would expect that the solution to the
relaxed problem is generally not the same as the solution to the
exact problem. The deviation of the relaxed solution from the exact
solution and its relationship to the relative computational complex-
ity is beyond the scope of this article and is a topic for future work.
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tools; we refer to [22] for details on SDP and its application
to optimization of certain matrix properties including
eigenvalues.
Assume now that s∗ is the solution to this problem; it

is not necessarily a solution to the original problem, since
s∗i can take a non-integer value in [0,1]. However, one can
say that the value of the objective function for s∗ is an
upper bound for the value of the objective function at a
solution of the original problem because the feasible set for
the relaxed problem contains the solution to the original
problem. Call this upper bound us. To generate a possibly
suboptimal solution to the non-relaxed problem we can
proceed as follows. Let

s∗i1 � s
∗
i1
� . . .� s∗i|E| (5)

denote the elements of s∗ rearranged in descending order.
Now compose the |E|-vector ŝ with entries ŝi ∈ {0, 1}
such that ŝik = 1 for k ∈ {1, · · · , |E|−me} and ŝik = 0 for
k ∈ {|E|−me+1, · · · , |E|}. The entries of ŝ with indices
corresponding to the |E|−me largest elements of s∗ are
assigned to be unity and the rest to be zero. The associated
objective value with ŝ given by �s is a lower bound for the
optimal objective function. We define a gap between the
upper bound and the lower bound as δs = us− �s.
One can then use δs to estimate the quality of the

solution ŝ in solving the original problem (2). If δs is
not negligible then a local optimization method can be
used if desired to seek a better solution. We then remove,
or immunize, those me edges associated with the me
smallest si.
The algorithm proposed is a systematic method to mini-

mize the maximum eigenvalue of the adjacency matrix by
strategically removing links using a relaxed convex opti-
mization protocol. The idea is that by minimizing the
maximum eigenvalue of the adjacency matrix we simul-
taneously increase the critical probability βc ≈ µ/|λ1|. A
disease is likely to die out faster when the infection proba-
bility between pairs of nodes β is below βc and thus maxi-
mizing βc is desirable.

A generalized solution. Suppose that some desired
critical value is given β∗c . We constrain the number of edges
that can be removed to me. Moreover, suppose some set
Ec ⊆E of edges is given and each edge in Ec is an edge that
must remain in the network G following the edge-removal
procedure. Then |E|− |Ec|>me is a necessary condition
for feasibility. Finally, suppose one may wish the resulting
network to be connected; we define a switch C = 1 if the
network must remain connected with C = 0, otherwise.
Note if A(s) =

∑|E|
i=1 siAi with si ∈ {0, 1} as before then

the Laplacian matrix is L(s) =D(s)−A(s), where D(s)
is a weighted graph degree matrix dependent on s. The
eigenvalues of L(s) are arranged as 0 = λ0 � λ1 � . . .� λ|V|
where the smallest eigenvalue is always equal to zero and
the second smallest eigenvalue λ1(s)> 0 if and only if the
network is connected; e.g. see [23] for further details. Note
λ1(s) is a concave function in s, e.g. see [24].

Consider now the following optimization problem:

argmin λmax

(
|E|∑
i=1

siAi

)
,

subject to 1�s= |E|−me,

λmax

(
|E|∑
i=1

siAi

)
>β∗c ,

λ1(s)> 0, if C = 1,
sj ∈ {0, 1}, j = 1, · · · , |E|− |Ec|,
sj = 1, j > |E|− |Ec|,

(6)

where the optimization problem is over the sj ∈ {0, 1} with
j indexing those edges in E \ Ec only. The weight sk = 1
is essentially removed from the problem for those edges
indexed by k in Ec.
If a solution to this problem exists, then it can be

approximated via the same kind of relaxation, convex
SDP formulation and subsequent edge removal procedure
described above. In general, a solution, if it exists, removes
those edges in E \ Ec such that βc ≈ µ/|λ1| is driven above
a certain desired critical value β∗c while the network is
forced to be connected. For example, suppose that both
β and µ are known in advance, then we may want β∗c =
µ/β→ βc >β.
Some of the constraints may be removed dependent

on the scenario; e.g. one may not care which edges are
removed so that Ec = ∅. Note this problem may have no
solution in general; e.g. one can easily imagine if β∗c is
large enough, Ec ≈E but with |Ec|< |E| and one wishes
the network to be connected then a solution is unlikely to
exist.

Simulation results and comparison. – In this
section we test the performance of the method introduced
in this paper for minimizing the maximum eigenvalue of
the adjacency matrix via removing edges for three different
classes of networks, scale-free, Erdös-Rényi, and geometric
networks.
In the first scenario, we consider an Erdös-Rényi graph

with 500 nodes and a connection probability of 0.01. We
seek the variation of βc = 1/λmax(A) when between 10
and 90 percent of the edges are removed based on the
systematic method proposed in this work compared with a
random removal procedure where edges are removed based
on a uniform distribution. The result is depicted in fig. 1.
Clearly, randomly removing edges results in a smaller
increase of βc (smaller decrease of λmax(A)) compared to
the systematic edge removal procedure proposed in this
work.
In the next example we consider a network described

by a random geometric graph. Here, a random geometric
graph is constructed by randomly and uniformly distri-
buting 100 nodes within a 20 by 20 unit square. Then
two nodes are connected if the distance between them is

18005-p4



Link operations for slowing the spread of disease in complex networks

10 20 30 40 50 60 70 80 90
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of Edges Removed

β c

Erdos Renyi Network with N=500 and Probability 0.01

 

 
Edges Removed Using Convex Optimization Protocol
Edges Removed Randomly
Original Graph

Fig. 1: (Colour online) Increasing the critical probability βc in
a random Erdös-Rényi network.
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Fig. 2: (Colour online) Increasing the critical probability βc in
a random geometric graph network.

less than or equal to 4 units. This type of graph is often
used as a simplified version of a practical wireless network
connectivity model. The variation of βc found by removing
edges randomly is compared to the edge-removal method
proposed in this work. The result is shown in fig. 2.
Finally, we consider a scale-free network with N = 500

nodes. Again, we seek the variation of βc = 1/λmax(A)
and want to compare a scheme where edges are randomly
removed according to a uniform distribution with the
systematic scheme proposed in this work. The compar-
ison is depicted in fig. 3. The absolute minimum value
for λmax(A) is 1 whenever there is at least 1 edge in the
graph; i.e. λmax(A)< 1 implies the graph is edgeless and
indeed in an edgeless graph λmax(A) = 0. After remov-
ing approximately 70% of the edges using the proposed
systematic edge-removal scheme we have achieved the
absolute minimum value for λmax(A) and therefore maxi-
mized βc to 1. Removing additional edges has no addi-
tional benefit in this case. This is not true when the edges
are removed randomly and one needs to remove signifi-
cantly larger number of edges. Therefore, as seen in the

10 20 30 40 50 60 70 80 90
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0.5

0.6

0.7

0.8

0.9

1
Scalefree Network with N=500

Percentage of Edges Removed

β c

 

 

Edges Removed Using
 Convex Optimization Protocol
Edges Removed Randomly
Original Network

Fig. 3: (Colour online) Increasing the critical probability βc in
a scale-free network.

figure, the proposed method to remove edges outperforms
the a random edge removal scheme significantly.
The idea in each example is to increase the critical

probability βc. A disease is more likely to die out quickly
when the infection probability between pairs of nodes β
is below βc. Thus, manipulating the network such that βc
is larger means a greater range of infection probabilities
β ∈ [0, βc) will not reduce the ability of the network to
autonomously wipe out the disease in a timely fashion.

Concluding remarks. – In this work we considered
certain network operations that can be used to slow the
spread of diseases in complex network topologies. The
approach considered in this work differs from existing tech-
niques in the sense that we optimally remove individual
links. Thus, individual nodes are not necessarily immu-
nized in the classical sense but rather we actively control
the interactions and the disease’s path of movement. We
provided a systematic algorithm to achieve this edgewise
immunization via a relaxed convex optimization protocol.
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