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Abstract – We discuss non-equilibrium extensions of the Casimir force (due to electromagnetic
fluctuations), where the objects as well as the environment are held at different temperatures.
While the formalism we develop is quite general, we focus on a sphere in front of a plate, as
well as two spheres, when the radius is small compared to separation and thermal wavelengths.
In this limit the forces can be expressed analytically in terms of the lowest-order multipoles,
and corroborated with results obtained by diluting parallel plates of vanishing thickness. Non-
equilibrium forces are generally stronger than their equilibrium counterpart, and may oscillate
with separation (at a scale set by material resonances). For both geometries we obtain stable
points of zero net force, while two spheres may have equal forces in magnitude and direction
resulting in a self-propelling state.

open  access Copyright c© EPLA, 2011

The original quantum Casimir effect [1] is due to
zero point fluctuations of the electromagnetic (EM)
field in the vacuum between perfectly reflecting objects.
Subsequently Lifshitz [2] treated the more realistic case
of dielectric media at finite temperature by considering
fluctuating currents inside the objects, including both
zero point and thermal fluctuations. In general, the
former dominate the force at small separations, while at
separations large compared to the thermal wavelength
λT , thermal effects prevail [2,3]. In situations out of
equilibrium, the current fluctuations in each body have to
be treated separately at the corresponding temperature,
e.g., using fluctuational electrodynamics introduced by
Rytov over 60 years ago [4]. Recently, out-of-equilibrium
Casimir forces have been computed in a number of cases
including parallel plates [5], modulated plates [6], as well
as a plate and an atom in different setups [7–9]. There
also exists a large literature on forces between atoms
or molecules in non-equilibrium [10–13]. Formalisms for
treating multiple objects at different temperatures have
been recently presented [14,15]. In particular, for compact
objects, radiation from the environment contributes to
the force and has to be incorporated.
Here, we treat (analytically as well as numerically)

the cases of two spheres and a sphere in front of a

(a)E-mail: kruegerm@mit.edu

plate. Keeping the description as simple and concise as
possible, we focus on the regime where the spheres are
small compared to the separation (non-equilibrium effects
are in most cases negligible at small separations), as
well as thermal wavelengths. These restrictions allow the
use of a one-reflection approximation, as well as limiting
to the spheres’ (frequency-dependent) dipole response,
respectively. We find a variety of interesting effects: The
forces can be repulsive, oscillate or admit stable (zero
force) points. At large separations, non-equilibrium forces
decay as 1/d2 for two spheres and become independent of
distance for sphere and plate. We also find points in which
a pair of spheres experiences forces of equal magnitude in
the same direction. In the absence of other forces, this
leads to a cooperative motion of two identical spheres
at constant separation, i.e. a self-propelled state. There
are similarities to studies of atoms in non-equilibrium
situations which we shall briefly comment upon.
As presented in ref. [15], our formalism treats N objects

(labeled as j = 1, . . . , N) in vacuum, held at constant
temperatures {Tj}, and embedded in an environment at
temperature Tenv. The conceptual starting point is the
EM field radiated by isolated objects, each at its respective
temperature, which is then scattered by all objects while
the environment is treated as an additional embedding
“object.” Physical quantities are then computed from
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the correlation function Cneq of the electric field E
at frequency ω and points r and r′ (both outside all
objects) [15],

Cneq(Tenv, {Tj})≡ 〈E(ω; r)⊗E∗(ω; r′)〉=

Ceq(Tenv)+
∑
j

[Cscj (Tj)−Cscj (Tenv)]. (1)

Equation (1) highlights the contribution of the differ-
ent temperatures to the non-equilibrium correlation:
Ceq(Tenv) is the equilibrium correlation, i.e., with all
temperatures held at Tenv (and including zero point
fluctuations). It leads to the equilibrium Casimir force
at temperature Tenv and is regarded as known. The
difference of Cneq(Tenv, {Tj}) from Ceq(Tenv) is due to
the deviations of the object temperatures Tj from Tenv.
Although dealing with N +1 sources, we have thus only
to evaluate the N terms {Cscj (T )}, the field correlations
sourced by object j and scattered by all objects. In
ref. [15], we showed that Cscj (T ) can be derived by first
considering the radiation of the object in isolation,

Cj(Tj)≡ aTj (ω)Gj Im εjG∗j , (2)

where aT (ω)≡ ω
4
�(4π)2

c4
(exp[�ω/kBT ]− 1)−1, and Gj is

the Green’s function of the object. The QED origin
of the force is manifested by the speed of light c and
Planck’s constant �. Cj(Tj) is found by integration over
the environment sources [15,16], subsequent scatterings
lead to

Cscj (Tj) = Oj Cj(Tj)O
†
j , with (3)

Oj = (1−G0Tj̄)
1

1−G0TjG0Tj̄
.

The multiple scattering operator Oj is expressed in terms
of the composite T -operator Tj̄ describing scattering by
the other objects (not j), as well as the free Green’s
function G0. For two objects, T1̄ =T2 is the operator of
the second object. The force F acting on one of the objects
(say object k) in this non-equilibrium situation is given
by the integration of the Maxwell stress tensor σ over a
surface Sk enclosing only this object, projected onto the
surface outward normal nk,

Fk =Re

∮
Sk

σ ·nk dA. (4)

The stress tensor is related to the field correlations, since

σab(r) =

∫
dω

16π3

〈
EaE

∗
b +BaB

∗
b −
1

2

(
|E|2+ |B|2

)
δab

〉
,

where a, b= 1, 2, 3. Note that the sum of forces on all
objects does not necessarily vanish, (i.e., there can be a
net force on the system), and we must consider the force
acting on each object separately. From eq. (1), Fk has the
following contributions:

Fk(Tenv, {Tj}) =Fk,eq(Tenv)+
∑
j

[
Fkj (Tj)−Fkj (Tenv)

]
.

(5)

Here, Fk,eq(Tenv) is the force in equilibrium, and F
k
j (Tj)

is the force acting on object k due to the sources in object
j at temperature Tj (obtained from the stress tensor in
eq. (4) for the field Cscj (Tj)) (see footnote

1).
Let us first consider two spheres of radii Rj (j = 1, 2)

with complex dielectric and magnetic permeabilities εj
and µj , at center-to-center distance d and temperatures
Tj , embedded in an environment at temperature Tenv.
We derive the total force F2 acting on sphere 2; F1 is
then found by interchanging indices 1 and 2. In eq. (5),
F2 has three contributions: The equilibrium force for
the two spheres evaluated at the temperature of the
environment, a contribution due to the deviation of T1
from Tenv (F

2
1) and a contribution due to the deviation

of T2 from Tenv (F
2
2). The force F

2
1 follows from the heat

radiation of sphere 1, which can be written in terms of its
T -operator [15,17]. For the case d�Rj considered here,
a one-reflection approximation for the operator in eq. (3),
O1 � (1−G0T2), is asymptotically exact. It amounts to
a one-time scattering of the field radiated by sphere 1 at
sphere 2, and subsequently performing the integration in
eq. (4) over a surface enclosing sphere 2. This integration
in terms of spherical waves has been discussed, e.g. in
ref. [18]. The force F22 is calculated similarly, only here
we consider the heat radiation of sphere 2, which is once
scattered by sphere 1, and the surface of integration closed
around sphere 2. Consistent with symmetries, the force
F2 in eq. (5) is parallel to the axis connecting the spheres;
we shall denote this component by F 2 and adopt the
notation where a positive sign corresponds to attraction.
The resulting force [19], contains the T -operators as well
as translation matrices for spherical waves, organized in a
series of multipoles of orders l. To terminate the series at
the dipole order (l= 1), for the equilibrium force between
spheres [20,21], it is sufficient to require d�Rj , while in
the non-equilibrium case, we have to additionally require
λT �Rj (λT = �c

kBT
≈ 7.6µm at room temperature).

This ensures R∗j =Rjω/c� 1 for all relevant frequencies,
and we restrict to terms linear in the two T -operators
T Pj ≡T Pj,l=1(ω) for polarization P =N,M and l= 1. Then
F 21 (T ) is

lim
{d,λT }�Rj

F 21 =−
�

cπ

∫ ∞
0

ω dω

e
�ω
kBT − 1

∑
P,P ′
Re [T P1 ]

[
9c2

ω2d2

×Re [T P ′2 ] + Im [T P
′

2 ]

(
9c3

ω3d3
+
18c5

ω5d5
+
81c7

ω7d7
δPP ′

)]
. (6)

In eq. (6) (and eqs. (7), (16) and (19) below) we omit
terms quadratic in T Pj for brevity, a simplification which
is justified for the cases considered below2.

1We note that ref. [14] performs a different decomposition,
involving the equilibrium force at the temperatures of the objects
rather than at Tenv as in eq. (5).
2It requires {|Im [T Pj ]|, |Re [T Pj ]|}� |T Pj |2 in the relevant

frequency range. E.g. the emissivity of a sphere contains −Re [T Pj ]−
|T Pj |2 and vanishes for |ε| →∞ or Im [ε]→ 0 where Re [T Pj ]→
−|T Pj |2, captured only by inclusion of the quadratic terms[19].
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For large separations, F 21 decays as d
−2 and is repulsive.

This originates from momentum transfer to the second
sphere via absorption or scattering of photons. The other
terms in eq. (6), with higher powers in 1/d, are (in most
cases) attractive. Similarly, the self -force F 22 (T ), reads

lim
{d,λT }�Rj

F 22 =
�

cπ

∫ ∞
0

dω
ω

e
�ω
kBT − 1

∑
P

Re [T P2 ]

×Re
{[
(T P1 −T P̄1 )

(
9c2

ω2d2
+ i
27c3

ω3d3

)
− (T P1 −

T P̄1
2
)
72c4

ω4d4

−(T P1 −
T P̄1
8
)i
144c5

ω5d5
+ T P1

(
162c6

ω6d6
+ i
81c7

ω7d7

)]
e2i

ω
c d

}
,

(7)

originating from radiation of sphere 2. Here P̄ =M if
P =N and vice versa. In contrast to F 21 , this term can
oscillate as function of d at a scale set by material
resonances. These oscillations originate from interference
of two coherent traveling waves from sphere 2: i) a wave
going to sphere 1, being reflected back past sphere 2, and
ii) a wave emitted in the reverse direction. Depending on
ωd/c, one has constructive or destructive interference. As
these waves interfere in the exterior region, we expect
the oscillations to become weaker as R2 becomes large
compared to the penetration (skin) depths. For a sharp
resonance of ε2(ω) at ω0 in eq. (7), the oscillations as
function of distance have wavelength πc/ω0.
For small insulating spheres of radius Rj (with µj = 1),

we employ the following expansions of the T -operator:

T Nj = i
2ω3

3c3
αj(ω)+O

(
R∗j
5
)
, T Mj =O

(
R∗j
5
)
, (8)

in terms of the complex frequency-dependent dipole polar-
izability,

αj(ω)≡
εj(ω)− 1
εj(ω)+ 2

R3j . (9)

Higher multipoles T Pj,l for l� 2 are of order R∗5j , and
eqs. (6) and (7) can be simplified by use of eq. (8).
The range of applicability of this approximation depends
on material properties. An expansion of T Pj in both
R∗j and

√
εR∗j shows that the condition |

√
ε|Rj� λT

(in the relevant frequency range) is sufficient for many
materials, including the ones studied below. For |εj | � 1
(conductors), the expansion is generally not applicable
(e.g. TMj is then of order R∗3j [21]). With eqs. (8) and
(9), one sees that F 2j is only non-zero if Im εj 
= 0 (or for
magnetic materials Imµj 
= 0), as only lossy spheres emit
heat. This holds for any Rj .
The leading low-temperature behavior of the force for

insulators can be derived by requiring λT � λ0, where
λ0 is the wavelength of the lowest resonance of the
material. The dielectric functions and polarizabilities are

then expanded as [22]

εj(ω) = ε0,j + i
λin,jω

c
+O(ω2), (10)

αj(ω) = α0,j + iαi0,j
λin,jω

c
+O(ω2), (11)

with ε0,j , λin,j , α0,j and αi0,j = 3R
3
j/(ε0,j +2)

2 real. For
λT � λ0, the interaction term is then given in closed form,

lim
{d,λT }�Rj

F 21 =
�c

3d2
λin,1αi0,1

λ7T

[
−32π7λin,2αi0,2

5λT

+α0,2

(
32π5λT
21d

+
8π3λ3T
5d3

+
18πλ5T
d5

)]
. (12)

The self-force F 22 does not oscillate to lowest order in
temperature and takes a lengthy form [19]. In the limit
where d is the largest scale, we have

lim
d�λT�{Rj ,λ0}

F 22 =
60�c

πd9
λin,2αi0,2α0,1. (13)

While in this range of d the force F 22 is independent of
temperature, it vanishes as T → 0 since with λT the largest
scale (λT �{d,Rj , λ0}), one has

lim
d�Rj

F 22 =
6π�c

d7λ2T
λin,2αi0,2α0,1, (14)

which is identical to F 21 in this limit, with indices 1 and 2
interchanged.
We evaluate the total force in dipole approximation

numerically for R1 =R2 = 1µm using eq. (5) and the
equilibrium Casimir Polder force (eq. (94) in ref. [23])
which in the relevant limits reads

lim
λT�d�Rj

F 2,eq =
161

4π

�c

d8
α0,1α0,2, (15a)

lim
d�{Rj ,λT }

F 2,eq =
18�c

d7λT
α0,1α0,2. (15b)

Figure 1 shows the forces on SiO2-spheres (we used
optical data with ε0 ≈ 3.7) in a cold (0K) environment.
We evaluated eqs. (6) and (7) together with (8), (9).
Within these simplifications, the forces are proportional to
R31R

3
2 (R= 1µm is roughly the upper bound of validity of

this approximation for SiO2 at room temperature, where
for the total heat emitted by an isolated sphere, the
asymptote ∝R3 differs by 12% from the exact result [15]).
The force starts to deviate strongly from its equilibrium
value around d≈ λT /2. Sphere 2 is repelled at large d if
T1 = 300K due to the radiation pressure. If additionally
T2 = 300K, the oscillating force F

2
2 is visible and it

dominates the total force for large d if T1 = 0K; the net
force now has many zero crossings, where every second
one is a stable equilibrium point. As discussed above, we
expect the wavelength of the oscillations to be roughly
4.75µm due to the resonance of SiO2 at wavelength
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10-3

10-2

10-1

1

4 5 6 7 8 9 10 15 20

F
 [1

0-1
8  N

]

d [µm]

∝ d-2

T1=0 K,T2=0 K

T1=300 K, T2=300 K

T1=0 K, T2=300 K

T1=300 K, T2=0 K

Fig. 1: (Colour on-line) Total force on sphere 2 in a system of
two SiO2 spheres at separation d in a cold (0K) environment.
Dashed lines indicate repulsion. The crossing of solid red and
dashed green curves represent a point where the forces are
equal in magnitude and direction, see main text. Points of
change from repulsive to attractive with increasing d are stable
equilibria.

9.5µm. Additional modulations are due to interferences
with a second resonance of SiO2 at 22µm. The figure
also provides complete information about the force on
sphere 1: e.g., in case T1 = 0 and T2 = 300K, the red
curve shows the force acting on sphere 2, while the green
curve shows the force on sphere 1. At the crossing of the
solid red and dashed green curves the two spheres feel
equal forces in the same direction. This corresponds to
what we define as a self-propelled pair (SPP), where the
spheres experience equal acceleration in the same direction
and hence remain at a fixed separation. Note, however,
that this is an unstable arrangement in which any small
perturbation leads to the spheres moving apart.
Figure 2 shows the situation for a warm (300K) environ-

ment. Here, the force has repulsive parts only if T1 = 300K
and T2 = 0K where it shows multiple stable equilibrium
points. For all other cases, the force is purely attractive,
decaying as 1/d2 if T1 = 0. For T1 = 0 and T2 = 300K, one
has stable and unstable SPPs, e.g., where the black dotted
curve crosses the dashed green curve in fig. 2, i.e., for
R2 =R12

1/3 assuming solid spheres with mass ∼R3j .
The 1/d2 contribution to F 21 in eq. (6) (with eq. (8))

is proportional to the product of the imaginary parts of
the polarizabilities. These are peaked at the resonances of
the material and this term can be suppressed by reducing
the overlap of resonances. Figure 3 shows the forces where
the dielectric function of sphere 2 is replaced by ε̃2(ω) =
εSiO2(1.17ω), which, in principle, can be achieved by using
different isotopes. Now, the forces are asymmetric even for
T1 = T2, and due to the suppression of F

2
1 , we have stable

as well as unstable SPPs for, e.g., T1 = T2 = 300K, and
Tenv = 0K, in contrast to fig. 1.
For a sphere (R, εs, µs, Ts) in front of a plate (εp, µp, Tp)

at center-to-surface separation d, eq. (5) gives distinct non-
equilibrium forces acting on the plate, or on the sphere.
While both can be derived with equal effort, we restrict
to the force acting on the sphere, F s =−Fs ·np (with

10-3

10-2

10-1

1

4 5 6 7 8 9 10 15 20

F
 [1

0-1
8  N

]

d [µm]

∝ d-2

T1=300 K,T2=300 K

T1=0 K, T2=0 K

T1=0 K, T2=300 K

T1=300 K, T2=0 K

Fig. 2: (Colour on-line) Total force on sphere 2 in a system
of two SiO2 spheres at separation d in a warm (300K)
environment. Dashed lines indicate repulsion. The thin dotted
line is the red line divided by 2, see main text.

10-4

10-3

10-2

10-1

1

4 5 6 7 8 9 10 15

F
 [1

0-1
8  N

]

d [µm]

USPP SSPP

F2(T1=300 K, T2=300 K, Tenv=0 K)
F1(T1=300 K, T2=300 K, Tenv=0 K)

Fig. 3: (Colour on-line) Total forces on SiO2 spheres with
shifted optic resonances. Dashed lines indicate repulsion.
Unstable (U) and stable (S) SPP and zero force points are
visible.

outward normal np of the plate), separated into F
s
p and

F ss . Scattering from the plate is governed by the Fresnel
reflection coefficients rP for P =M , N , given by

rM (k⊥, ω) =
µ(ω)

√
ω2

c2
− k2⊥−

√
ε(ω)µ(ω)ω

2

c2
− k2⊥

µ(ω)
√
ω2

c2
− k2⊥+

√
ε(ω)µ(ω)ω

2

c2
− k2⊥

,

with rN obtained from rM by interchanging µ and ε. In
the one-reflection approximation, the force F sp is derived
by a one-time scattering of the radiation of the plate at
the sphere. The subsequent integration in eq. (4) is done
in plane-waves basis, over two planes, enclosing the sphere
and separating it from the plate. For the contribution
F ss , the sphere radiation is scattered at the plate with
identical surface of integration. As before, this procedure
(valid for d�R) [19] involves all multipoles of the sphere.
Only for R� λT , we can further restrict the T operators
to l= 1. The interaction term F sp (T ) has two distinct
contributions, F sp = F

s
p,pr +F

s
p,ev, from propagating and

21002-p4
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10-1

1

5 6 7 8 9 10 20

F
 [1

0-1
8  N

]

d [µm]

Ts=0 K , Tp=0 K
Ts=300 K , Tp=300 K

Ts=300 K , Tp=0 K
Ts=0 K , Tp=300 K

Fig. 4: (Colour on-line) Total force on a SiO2 sphere of
R= 1µm in front of a SiO2 plate in a cold environment.
Dashed lines indicate repulsion. Every second zero of the red
curve is a stable equilibrium point.

evanescent waves emitted by the plate,

lim
{d,λT }�R

F sp =
3�

2cπ

∫ ∞
0

dω
ω

e
�ω
kBT − 1

(fpr + fev) , (16)

where the functions

fpr =
( c
ω

)2 ∫ ω/c
0

k⊥dk⊥
∑
P,P ′
(1− |rP |2)Re [T P ′ ],

fev = 2
( c
ω

)2 ∫ ∞
ω/c

k⊥dk⊥e−2d
√
k2⊥−ω2/c2 (17)

×
∑
P

Im

[
rP
(
2
k2⊥c

2

ω2
− 1
)
+ rP̄

]
Im [T P ], (18)

explicitly contain the radiation of the plate [4]. The force
F sp,pr is d-independent as it arises from absorption or
scattering of far-field photons by the sphere, while the near
field contribution F sp,ev depends on d. The self-term F

s
s (T )

lim
{d,λT }�R

F ss =
−3�c
π

∑
P

∫ ∞
0

dω
Re [T P ]
ω(e

�ω
kBT − 1)

∫ ∞
0

k⊥dk⊥

×Re
{
e2id
√
ω2/c2−k2⊥

[
rP
(
2
k2⊥c

2

ω2
− 1
)
+ rP̄

]}
, (19)

contains both evanescent and propagating contributions
but no separation-independent term. Instead, F ss behaves
similarly as F 22 in eq. (7), oscillating as a function of d,
falling off at large separations as 1/d.
For a dielectric sphere and plate, we next employ

eqs. (10) and (11), to obtain the leading behavior at low
temperatures (λT �{λ0, R}, but not necessarily d). The
d-independent part now becomes,

lim
d�R
F sp,pr =−

8π5

63

�c

λ6T
fpr(ω= 0)λin,sαi0. (20)

F sp,ev can be analyzed in the following two limits, corre-
sponding to expansions of the function fev(ω, d),

lim
d�λT�{R,λ0}

F sp,ev =
π

6

�c

λ2T d
3
Re

[
1+ ε0,p√
ε0,p− 1

]
α0. (21)
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5 6 7 8 9 10 20

F
 [1
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Ts=300 K , Tp=300 K
Ts=0 K , Tp=0 K

Ts=300 K , Tp=0 K
Ts=0 K , Tp=300 K

Fig. 5: (Colour on-line) Total force on a SiO2-sphere of
R= 1µm in front of a SiO2 plate in a warm (300K) environ-
ment. Dashed lines represent repulsion.

In the opposite limit, with λT �{d,Rj , λ0}, we have

lim
d�R
F sp,ev =

π

2

�cλin,p

λ2T d
4

1

(1+ ε0,p)2
α0. (22)

Equation (21) is similar to eq. (12) in ref. [8]. As was
the case for F 22 , in the leading order in temperature the
self-part F ss does not oscillate. For d� λT �{R, λ0}, we
have F ss ∝ 1/d6, the counterpart of eq. (13), with a lengthy
prefactor. For λT �{d,Rj , λ0} we have

lim
d�R
F ss =

π

4

�c

λ2T d
4

ε0,p− 1
ε0,p+1

λin,sαi0, (23)

which is identical to eq. (22) when interchanging real and
imaginary parts for rP and α. The equilibrium force can
be found in ref. [24]. For d�R one has

lim
λT�d�R

F s,eq =
3

2π

�c

d5
ε0,p− 1
ε0,p+1

α0Φ(ε0,p), (24a)

lim
d�{R,λT }

F s,eq =
3�c

4d4λT

ε0,p− 1
ε0,p+1

α0, (24b)

where Φ(ε0,p) is, e.g., given in ref. [24]. Figure 4 shows
numerical results for the force on a sphere in front
a plate (both made of SiO2) for R= 1µm in a cold
(0K) environment. Again, we use the simplification of
eq. (8) and the resulting force is proportional to R3 (also
here, R= 1µm is roughly the upper bound of validity of
this simplification). If the plate is warm, the distance-
independent repulsion is visible. If only Ts is different from
Tenv, the force F

s
s dominates at large d, leading to multiple

stable points.
Figure 5 shows the curves for a warm (300K) environ-

ment. Here, the d-independent force (for Tp = 0) is attrac-
tive. Again, if only Ts is different from Tenv, we observe
many changes of the sign of the force. Exploring the effects
of shifting resonances, we found that in contrast to the
case of two spheres, here shifting suppresses the self-term
more strongly than the interaction term. For the special
case of a (resonance-shifted) SiC sphere3 in front of a SiO2
3We found that the described effect appears most pronounced by

adjusting the resonance of SiC (see ref. [25] for ε(ω)) by insertion of
a factor of 0.75 in frequency.
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M. Krüger et al.

10-4

10-3

10-2

10-1

1

10 20 30 40 50

F
 [1

0-1
8  N

]

d [µm]

Ts=150 K , Tp=150 K
Ts=0 K , Tp=0 K

Ts=150 K , Tp=0 K

Fig. 6: (Colour on-line) Total force on a SiC sphere in front a
SiO2 plate in an environment at 150K. Dashed lines indicate
repulsion. The second zero is a stable equilibrium point.
Equations (16) and (19), together with eq. (8), are strictly valid
for SiC spheres with R� 0.3µm, but for comparison with the
previous graphs we show the force computed for R= 1µm.

plate, see fig. 6, the temperature of the sphere is almost
irrelevant for the force. This is beneficial to experimen-
tal setups, as it is presumably harder to maintain Ts at a
constant value, compared to keeping Tp and Tenv constant.
Additionally, in fig. 6, the special choice of parameters
leads to a stable equilibrium point, which, again, is almost
independent of Ts.
The presented formulae for the forces, i.e., eqs. (6),

(7), (16) and (19) after substitution of TNj = i
2ω3

3c3 αj(ω)

and TMj = i
2ω3

3c3 βj(ω) with βj(ω) = ((µj(ω)− 1)/(µj(ω)+
2))R3j the magnetic dipole polarizability, can be derived
independently by diluting two plates of vanishing thick-
ness, confirming the correctness of our formalism for
compact objects. This calculation will be presented else-
where.
Our results constitute a macroscopic generalization of

non-equilibrium interactions between thermal gases of
atoms and interactions between atoms in excited states4.
However, we emphasize that the forces on two macroscopic
objects are not equal and opposite, an effect which cannot
be found from the interaction potential as used in studies
of two atoms [10–13]. We hope that our results may
eventually shed new light on the debated non-equilibrium
interactions of atoms.
While, for simplicity, we discussed the forces for small

radii and moderate temperatures, our formalism is more
generally applicable for any values of R, d and T . Future
work will consider the cases of larger spheres where
non-equilibrium effects may be stronger.

4There are intriguing similarities to previous work on atoms: our
interaction force in eq. (16) shares certain terms with the studies in
refs. [7,8]. The force in ref. [9] shows similar behavior as our self-
force in eq. (19). Additionally, the last three terms of our eq. (6)
have common structure as eq. (2.17) in ref. [11].
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