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Abstract — We study the storage of multiple phase-coded patterns as stable dynamical attractors
in recurrent neural networks with sparse connectivity. To determine the synaptic strength of
existent connections and store the phase-coded patterns, we introduce a learning rule inspired
to the spike-timing—dependent plasticity (STDP). We find that, after learning, the spontaneous
dynamics of the network replays one of the stored dynamical patterns, depending on the network
initialization. We study the network capacity as a function of topology, and find that a small-
world-like topology may be optimal, as a compromise between the high wiring cost of long-range

connections and the capacity increase.

Copyright © EPLA, 2011

memorize and recall multiple items
fundamental to normal cognition.
Recent researches suggest that brain operates as a
complex nonlinear dynamic system, and synchronous
and phase-locked oscillations may play a crucial role in
information processing, perception, memory, and sensory
computation [1-5]. There is increasing experimental
evidence that information encoding may depend on the
temporal dynamics between neurons, namely, the specific
phase alignment of spikes relative to rhythmic activity
across the neuronal population (as reflected in the local
field potential) [5-12]. Indeed phase-coding, that exploits
the precise temporal relations between the spikes of
neurons, may be an effective general strategy to encode
information in the cortex [13-20].

The importance of precise timing of the neuron activity
is also suggested by the rule that controls the potentiation
or depression of synaptic strengths, namely the spike-
timing—dependent plasticity (STDP) [21,22], based on the
precise order and time interval between the pre- and post-
synaptic spikes, on a window of tens of milliseconds. This
kind of plasticity, with acute sensitivity to temporal order,
has been demonstrated in various neural circuits over a

The capacity to
of information is

(3)E-mail: antonio.decandia@na.infn.it

wide spectrum of species, from insects to Xenopus laevis
frog, rodents and humans [23,24].

The STDP is strongly asymmetric in the order of arrival
of pre- and post-synaptic spikes, usually determining a
potentiation in the case of causal order (pre-before-post),
and depression in the reverse order. This temporal asym-
metry results in asymmetric connections between neurons,
that is a crucial ingredient to give rise to dynamical
patterns, as opposed to static patterns characteristic of
symmetric connections as in the Hopfield model.

Another crucial feature of the network is its connectiv-
ity and topology. Whereas all-to-all, or random, wiring
is usually assumed in many models, this is possible
in a tissue culture involving dozens of neurons, but it
becomes less and less feasible when millions of neurons
are involved, owing to space and energy supply limitations.
The topology of the brain connectivity has been designed
by evolutionary goals as a compromise between the abil-
ity to achieve complex dynamical functions and physical
constraints and costs minimizations [25,26].

In the last decade, there has been a growing interest
in the study of the topological structure of the brain
network. There is increasing evidence that the connections
of neurons in many areas of the nervous system have
complex topology, such as a small-world topology [27],
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highly connected hubs and modularity [28]. Up to now,
the only nervous system to have been comprehensively
mapped at a cellular level is the one of Caenorhabditis
elegans, and it has been found that is has indeed a small-
world structure [27,29]. The same property was found
for functional and anatomical connectivity, in different
animals and areas of the brain [28,30,31].

In this paper, we focus on the functioning of the network
as a dynamical associative memory, that is on the ability
of the network to memorize and recall multiple dynamical
patterns, where each pattern is characterized not by a set
of binary states of the neurons, as in the Hopfield model,
but rather by a different set of time shifts (phases) between
the periodic activities of the neurons. We study how the
capacity of the network depends on the number of neurons,
on the number of connections, and on the topology of the
network, that is on the distribution of the connections
between neighboring or distant neurons.

We consider a network composed by N neurons, with
N(N —1) possible (directed) connections J;;. The activity
of the neuron is represented by a time-dependent variable
o;(t), with o;(t) = —1 (silent neuron) or o;(t) =1 (firing
neuron). Note that, in a coarse-grained view, the variable
0;(t) may as well represent a group of neighboring neurons
with a highly correlated activity.

Not all the connections are present in the network. We
put neurons randomly in a three-dimensional box with
periodic boundary conditions, with density equal to one.
For each neuron, we consider the sphere centered on it,
with a radius R such that the sphere contains the z nearest
neurons. Then we connect each neuron to (1 — )z neurons
chosen randomly within the sphere of the neighbors, and
~vz neurons chosen randomly in the whole system. In this
way, we realize a network with a given mean connectivity
z, and a given fraction v of long-range wvs. short-range
connections.

During the learning phase, we force the network
to reproduce a number P of spatio-temporal periodic
patterns, given by a specified function

oi(t) = f(w"t— &), (1)

where p=1...P is the index of the pattern, w* the
angular velocity, ¢! the phases of the neurons, that encode
the relative times at which neurons start to fire in the
pattern p, and the function f(¢) is periodic of period 2.
We consider the function

1
f(¢)={

if 0<¢ mod 27 <,

(2)

-1 if m<¢ mod 27 < 2,

with equal times of silent and firing state. The connection
Ji; represents the strength of the synapse going from
neuron j to neuron i, or in the coarse-grained view the sum
of strengths of synapses going from the group of neurons
j to the group of neurons i. While in the Hopfield model
the pattern to be stored o' is static, and the learning
rule is the outer product J;; o< ol O‘;—L , here the pattern
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Fig. 1: (Colour on-line) The learning window A(7) used
in the learning rule to model STDP, introduced and moti-
vated by [32], A(T)=ape” /T —ape "/Tr if >0, A(T) =
ape"/T0 —ape™/ P if T<0, with a,=v[1/T,+n/Tp]" ",
ap=vn/Tp+1/Tp]™", T,=10.2ms, Tp=28.6ms, n=4,
v =42.

to be stored o (t) is time dependent, and we formulate
the change in the connections J;; in analogy with the
STDP, as

tmax tmax
8Jij = / dt/ dt’ o; () At —t)o;(t),  (3)
0 0

where A(7) is the learning function, and [0, tmax] is the
learning time interval in which the network is forced to
reproduce the pattern p. We use for the function A(7) the
one introduced and motivated by [32], with the parameters
that fit the experimental data of [22] (see fig. 1). In terms
of Fourier components, this is written as

JJZ = tmax Z |fn|2"4(nw“)ein(¢¢i¢;‘)v

n=—oo

(4)

with fn =& [27d¢ f($)e™?, and A(w)= [dt A(t)e™".
Due to the temporal asymmetry of A(7), the Fourier
component fl(nw“) has an imaginary part, and there-
fore 0Jf;#06J5;. When we store multiple patterns
pw=1,2,..., P, the learned weights are the sum of the
contributions from individual patterns. For the sake
of simplicity, we consider the same learning time tyax
and input frequency w* for all the encoded patterns.
Moreover, for each pattern p, we extract the phases ¢!’
randomly and uniformly from the interval [0, 27).

After the learning phase, we initialize the network
with a given initial condition 0;(0), and perform a zero-
temperature spontaneous dynamics,

o;(t+7) =sign Z Jijoj(t)
i

()

with 7 the unit step of time. Due to the shape of the
response function sign(z), if all the connections J;; are
multiplied by the same positive constant, the dynamics
is unchanged. Therefore, the learning time ¢, and the
amplitude of the learning function A(7) are immaterial.
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phase ¢,

Fig. 2: a) Plot of the self-sustained dynamics of the fully
connected network with NV =500 and P =5. The dynamics of
the network, after a transient, is periodic of period T =8t.
Different colors represent the value of |4¢;/T| mod 4, where
t; is the time at which the neuron ¢ starts to fire (black if
the neuron is firing at t=0). In this case the times t; are
highly correlated with the phases ¢}, which means that the
pattern p =1 is well retrieved, and the overlap mq(t) is large.
b) The same network with P =50. In this case the pattern is
not retrieved, and the overlap is of order /1/N.

In order to measure the similarity between the network
activity during retrieval mode, and the stored phase-coded
pattern u, we define the overlap

1 Y -
mi(t) =5 D i(t)e . (6)

When the retrieval is perfect, o;(t) = f(0t — ¢f'), with an
output angular velocity @ that is in general different from
the input w*. In this case m*(t) = f1e“*, where | f;| ~ 0.64
for the function (2). When the retrieval is not perfect,
the modulus |m*(t)| after a transient goes to a constant
value lower than the maximal one. Finally, if the network
is not able to reproduce the pattern, the overlap becomes
after a transient of order 1/v/N. The modulus of m#(t) is
therefore an order parameter which measures how much
the network dynamics matches the stored phase-coded
pattern p. Note that the output frequency @/27 depends
on the input frequency w* /2w, and on the degree of
asymmetry of the learning function A(7). If & is different
from w*, and |m*(t)| is high, it means that the phase-
coded stored pattern p is replayed at a frequency different
from the one used to store it, i.e. at a different time scale,
but with the same phase relationship. In fig. 2(a) we show
the dynamics of a network of N = 500 neurons, with all the
N(N —1) connections activated, and with P =5 patterns
encoded at input frequency w* /27 = 10Hz. The network
is initialized with a high overlap with the pattern pu=1,
setting
if 0< ol <,

L
UZ(O =
—1, if 7 < ¢} < 2.
Each segment represents a time interval in which the

neuron ¢ is firing, that is o;(¢)=1, with the neurons
ordered on the vertical axis by the value of the phase

(7)
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Fig. 3: a) Storage capacity of the network, as a function of
the fraction of connections z/N and the number of patterns
per neuron P/N, in the region of low connectivity, with N =
40000 neurons. Solid (empty) circles represent points where
the network is (is not) able to retrieve patterns. The network
with N =4000 gives the same result (within errors). In this
region of low z/N the capacity is proportional to the number
of connections. b) Storage capacity in the entire range of z/N,
with N =4000 neurons. For clarity only a spline separating
the encodable and the non-encodable region is shown. Inset:
comparison between the N = 4000 and the N = 40000 cases for
two values of z/N. The dashed line in all figures corresponds
to P =0.24z.

of the first pattern ¢!. In this case the pattern p=1
has been retrieved, and the overlap m!(t) has modulus
|m(t)| ~ 0.63 at long times. In fig. 2(b) we show the same
network with P =50 patterns encoded. In this case the
pattern is not retrieved, and the overlap has modulus
|m!(t)| ~0.07.

We define the capacity Ppax of the network as the
maximum number of patterns encodable in the network,
and retrievable with an overlap greater than 0.2. We have
first studied the capacity of the network as a function of
the number of connections, in the case of a fraction y=1
of long-range connections. As the probability to create
a long-range connection is independent of the distance
of the neurons, in this case the network is completely
random. We therefore consider a network of N neurons,
and create a connection from each neuron to a number
z of randomly chosen neurons, with 0 <z < N. We then
verify if the network is able to encode P (random) pattern,
and retrieve one of them subsequently. We initialize the
network with an high overlap with one of the patterns,
as in eq. (7), and simulate the dynamics in eq. (5) up
to a time t=2x10% in Monte Carlo steps, verifying
if the overlap with the chosen pattern remains higher
than 0.2. The experiment is repeated with three different
sets of P patterns. In fig. 3(a) the result is shown for
N =40000. Solid (empty) circles represent points where
the network was (was not) able to retrieve a pattern at
least two times out of three. In practice, for all points
considered, the network either was always able to retrieve
the pattern (three times out of three), or never (zero
times out of three). Furthermore, retrieved patterns had
always an overlap greater than 0.36, while not retrieved
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Fig. 4: (Colour on-line) a) Storage capacity as a function of
the fraction of long-range connections =, for a fixed number
of connections per node (dashed line) or for a fixed total cost
of the connections (solid line). b) Relative clustering coefficient
and path length as a function of ~.

ones had an overlap lower than 0.08. Results for N = 4000
were practically the same, with a small number of points
near the separation between encodable and non-encodable
region showing some fluctuations (retrieving the pattern
one or two times out of three). Note that, in the range
of values of z/N considered in fig. 3(a), the maximum
capacity Ppax i well described by a linear function of the
connectivity, Ppax = 0.24z.

In fig. 3(b), we show the results for the entire range
of z/N, from zero to one. When z/N is of the order of
unity, the number of connections is of order N2, so the
simulation is too expensive for N =40000. We therefore
study sistematically only the network with N = 4000, but
compare it with the case N =40000 for two values of z/N,
finding a good agreement. For clarity we do not show
the points simulated, but only a spline separating the
encodable and the non-encodable region. The dashed line
shows the limit of the capacity for low connectivity z/N,
Poax =0.24z. Tt can be seen that, when the connectivity
grows, there is a saturation effect, so that for z ~ N one
finds Ppax/N ~0.032, and therefore Py, ~ 0.032z.

To study the effects of short- and long-range connec-
tivity, we have then analyzed the capacity of the network
in the case of a fraction ~ of long-range connections, and
(1—+) of short-range connections. The result is shown
in fig. 4(a) (dashed line), for N =40000 and z=180
(z/N =0.0045). Note that in this case the sphere contain-
ing the short-range neurons has a radius R~ 3.5, while
the side of the cubic box is L ~34. The storage capac-
ity, that is the maximum encodable number of pattern
such that the retrieval gives an overlap greater than 0.2,
goes from Py ~0.11z for v =0 (only local connections)
t0 Ppax ~0.24z for y=1 (random network). This shows
that the number of connections is not the only parameter
that determines the capacity of the network. Long-range
(random) connections are more effective than short-range
ones in encoding patterns.

The topology of the biological networks has been
shaped by the evolution, as a compromise between the

effectiveness in realizing complex tasks, and cost mini-
mizations. While long-range connections are more effective
than short-range ones, they are of course more costly. The
trade-off between these two requirements will produce a
network with a finite fraction of long-range connections.
We therefore introduce a parameter f, that represents
the cost of a long-range connection with respect to a
short-range one, and we consider a network with (1 —~)z
local connections, with neurons chosen randomly within
those at distance lower than R, and ~z/f long-range
connections, with neurons chosen randomly in the whole
system. Varying -, in this case it is not the connectivity
that is constant, but the total cost of the connections. The
storage capacity as a function of « is shown in fig. 4(a)
(solid line), for the case f=3. The maximum capacity
of the network is realized with v~ 0.5, that corresponds
to about 25% of long-range connections over the total of
the connections. To characterize the network, we have
also calculated for the different values of « the clustering
coefficient C', defined as the probability that two neurons,
that are connected to a third neuron, are themselves
connected, and the mean path length X, defined as the
minimum number of connections needed to go from a
node to another node, averaged over all pairs of nodes.
In fig. 4(b), we show the relative clustering coeflicient
(C — 01)/(00 — Cl), and path length ()\ — )\1)/()\() — )\1),
where the quantities with subscripts 0 and 1 refer to
the cases y=0 and =1, respectively. Note that the
clustering coefficient decreases much more slowly than
the path length, giving rise to a large region where the
clustering coefficient is not much lower than that for
local connections only, while the path length is almost as
low as in the random network. The network therefore, in
the region of intermediate v that corresponds to optimal
capacity, is of a small-world type [27].

In this paper we studied the storage and recall of
patterns in which information is encoded in the phase-
based timing of firing relative to the cycle. We proposed
a STDP-based learning rule, and we analyzed its ability
to memorize multiple phase-coded patterns, such that the
spontaneous dynamics of the network selectively gives
sustained activity which matches one of the stored phase-
coded patterns, depending on the initialization of the
network. Our work generalizes the Hopfield model, to
dynamical periodic states, characterized by the relative
phases of the neurons.

We have studied the storage capacity for different
degrees of sparseness and topologies of the connections.
Changing the proportion + between short-range and
long-range connections, we go from a three-dimensional
network with only nearest-neighbors connections (y=0)
to a random network (y=1). Small but finite values of
v give a “small-world” topology, similar to that found in
many areas of nervous system.

We find that in the case of only short-range connections
the capacity is lowest, while in the case of only long-range
connections, that corresponds to a completely random
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network, the capacity is highest. Moreover, a small but
finite fraction of long-range connection is enough to
enhance the capacity highly, with respect to the short-
range case. Therefore if the cost of the connections is taken
into account, with long-range connections more costly
than short-range ones, then the optimal capacity will be
given by a small fraction of long-range connections, that
corresponds to a small-world topology.

This is in agreement with the observation that small-
world attributes, with high clustering coefficient and short
path length, were found across multiple spatial scales of
cortical organization [31,33]. This property, first found
in C. elegans, is highly conserved over different types of
measurement, and across different species, including cat,
monkey and humans, for both functional and anatomical
networks [28].
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