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Abstract – Up to now there has been no reliable method to calculate the Casimir force when
surface roughness becomes comparable with the separation between bodies. Statistical analysis
of rough Au films demonstrates rare peaks with heights considerably larger than the root-
mean-square (rms) roughness. These peaks define the minimal distance between rough surfaces
and can be described with extreme value statistics. We show that the contributions of high
peaks to the force can be calculated independently of each other, while the contribution of
normal roughness can be evaluated perturbatively beyond the proximity force approximation. The
developed method allows a reliable force estimation for short separations. Our model explains the
strong hitherto unexplained deviation from the normal Casimir scaling observed experimentally
at short separations.

Copyright c© EPLA, 2011

Introduction. – The Casimir force [1] attracts increas-
ing attention nowadays since modern technology allows
dimension control at distances � 100 nm where this force
becomes operative (see [2,3] for a review). Indeed, modern
micro/nano-electromechanical (MEM/NEM) engineering
is now being conducted at the micrometer to nanometer
scale and has attracted interest in the Casimir force [4].
MEM devices such as vibration sensors and switches are
now routinely made with parts a few micrometers in size,
and have the right size for the Casimir force to play a
role. This is because MEM systems have surface areas
large enough but gaps small enough, for the force to draw
components together and possibly lock them permanently
—an effect known as stiction. Such permanent adhesion
(in addition to capillary adhesion due to the water layer) is
a common cause of malfunctioning of MEM devices [5–7].
In this range of separations the force appears mainly

due to quantum fluctuations of the electromagnetic field
(zero-point field) in the interacting bodies, while at larger
distances classical (thermal) fluctuations become increas-
ingly important [8,9]. The famous Casimir formula FC =
(π2/240)(�c/d4) gives the force (per unit area) at temper-
ature T = 0 between two ideally reflecting semi-spaces

separated by the distance d. The force measured in recent
experiments (see [3] for a review) can deviate signifi-
cantly from the ideal case because the temperature is
finite, the bodies are not ideal reflectors, and the distance
between them is not well defined. Considerable efforts were
made to improve the Casimir formula. Indeed, the more
detailed description is based on the Lifshitz formula, which
accounts for actual optical properties of interacting bodies
and non-zero temperature. The optical data were included
in the calculational procedure [10,11]. Although the ther-
mal correction to the Casimir force is rather controver-
sial [12,13], it is not important for the short distances
discussed in this paper.
An important correction to the Casimir force that is

not accounted for by the Lifshitz formula is the roughness
correction. The surfaces of real bodies are rough, which
makes the distance between them not well defined. The
first attempts to account for roughness [14] were based on
the proximity force approximation (PFA). In this approx-
imation the real surfaces are replaced by flat patches and
the force was calculated as the sum of forces between
opposite patches, treating such pairs as parallel plates. For
the dispersive forces the PFA was applied for the first time
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by Derjaguin [15,16]. The approximation is justified when
the separation d is much smaller than the local curvature
radius and size of patches. It is well suited for smooth
large bodies, but works worse for roughness corrections.
It was noted [17] that in order to apply the PFA to rough
bodies the roughness correlation length ξ (typical features
size on the surface) must be larger than the separation,
ξ� d. Then the result found in [14] will be true for small
root-mean-square (rms) roughness, w� d. However, in
most of the experimental situations the condition ξ� d
is broken and more elaborate theory has to be used to
calculate the roughness correction. This theory was devel-
oped in refs. [18,19]. It treats the roughness contribution
through second-order perturbation theory in w/d. The
theory showed a larger correction than that predicted
within the PFA. In fact, the correction is very important
at short separations and has to be carefully included
for interpretation of the force experiments exploring
short-distance ranges.
The Casimir forces between a gold-covered sphere and

plates of different roughness were measured for sepa-
rations from 20 to 200 nm [20]. The films with larger
rms roughness at short separations demonstrate signif-
icant (more than 100%) deviations from the theoret-
ical expectations based on the perturbative roughness
correction. Empirically it was established that the mini-
mal distance between two rough bodies (distance upon
contact) is d0 ≈ 3.7(w+wsph), where wsph is the sphere’s
rms roughness. Because d0 is the minimum separation
distance, the perturbative correction must be smaller than
K(w+wsph)

2/d20 = 0.07K, whereK ∼ 10 is a large numer-
ical factor (due to sharp behavior of the force with the
distance). It was concluded [20] that at short separations
the perturbation theory fails. These experimental results
still did not get a theoretical explanation. Moreover, we
are facing a problem: there is no reliable method to esti-
mate the roughness correction when d becomes compara-
ble with the rms roughness w. In this paper we propose a
method to address this problem by combining the PFA
and perturbation theory approaches. Although we will
prove the applicability of this method specifically for gold
films, we believe that similar approaches can be developed
for other materials, after detailed analysis of the rough-
ness statistics obtained, e.g. in terms of scanning probe
microscopy techniques.

Statistics of rough surfaces. – The distance upon
contact d0 was discussed in detail for gold films [21]. The
films deposited with different thicknesses have different
rms roughnesses due to kinetic roughening processes. For
all these films atomic force microscope (AFM) images were
recorded for large areas (of up to 40× 40µm2) with lateral
resolutions ranging from 4 to 10 nm. This information
allows a detailed analysis of the roughness statistics. The
probability to find a height of a local feature smaller than
some value z can be presented in a general form

P (z) = 1− e−φ(z), (1)
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Fig. 1: (Color online) The “phase” as a function of z for
a 1600 nm gold film. The open circles are the actual data
extracted from the AFM image using eq. (2). At large positive
and large negative heights log10 φ(z) is well fitted by linear
functions of z as is shown by the straight lines. The curved
line is a polynomial fit at intermediate z. The inset shows the
probability density function f(z). It demonstrates significant
deviation from a normal distribution.

where for convenience we introduced the “phase” φ(z) as a
non-negative and non-decreasing function of z. The phase
describes the roughness distribution in a convenient way,
which makes it possible to calculate the contributions from
peaks and troughs as will be shown later. It was already
noted [21] that the cumulative distribution P (z) for gold
films cannot be described satisfactorily by any known
distribution at all z but asymptotically at large z it can be
fitted with generalized extreme value distributions [22].
We performed a special analysis of the AFM surface

data presented in ref. [21] to reveal the best asymptotic
distribution at large |z|. In this limit the phase φ(z) is
much more convenient for analysis than P (z). This is
because P (z) approaches very fast 0 or 1 in the limit
|z| →∞. Indeed, we can present the phase as

φ(z) =− ln [1−P (z)] , (2)

where P (z) is extracted directly from the images. The
function φ(z) for an 1600 nm thick gold film is shown in
fig. 1. The inset shows the probability density function
f(z) = dP/dz = (1−P )dφ/dz. Similar behavior is realized
for all investigated gold films. It is clear that for large
positive z the logarithm of the phase can be fitted with a
linear function

lnφ(z) =A+Bz, z→∞ (3)

and similarly for large negative z. With this φ the probabil-
ity to find a feature larger than z behaves asymptotically
as a double exponential

1−P (z)∼ exp
[
− exp

(
z−µ
β

)]
, (4)
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where β and µ are the scale and location parameters,
respectively. This behavior is a characteristic feature of
the Gumbel distribution [23], which is an example of
extreme value statistics. In this paper only gold films were
analyzed and therefore we cannot draw conclusions on
the roughness statistics of other materials. However, the
extreme character of the statistics allows us to hope that
this behavior is more general.

Roughness correction to the Casimir force. – We
can imagine a rough surface as a large number of asperities
with height ∼w and lateral size ξ, and occasional high
peaks and deep troughs. These peaks (or troughs) are
high in the sense that their height is considerably larger
than w, say > 3w. The situation can be visualized as a
lawn covered with grass and occasional high trees standing
here and there. In this paper we propose a method to
calculate the roughness correction to the Casimir force
on the basis of this separation. Namely, the asperities
with the height ∼w can be taken into account using
perturbation theory, without the use of the proximity
force approximation. On the other hand, for high peaks
the local distance between interacting bodies becomes
considerably smaller and one cannot use perturbation
theory anymore. Because high peaks are rare the average
distance l between them is large. If this distance is so large
that l� d, then we can calculate the contribution of these
peaks independently of each other, as it is assumed in
the PFA. However, this contribution has to be calculated
beyond perturbation theory. It has to be stressed that the
interaction of a separate peak with a flat surface can be
taken into account precisely using developed numerical or
analytical methods [3].
The number of asperities N with height d1 > 3w and

lateral size ξ on the area L2 is given by the equation [21]

N =
L2

ξ2
e−φ(d1). (5)

The average distance between these peaks is

l=
L√
N
= ξeφ(d1)/2. (6)

In order to fulfill the condition of PFA applicability l� d,
we can choose the parameter d1 from the interval 3w<
d1 <d0, where d0 is the maximal peak on the area L

2.
The best choice for d1 will be discussed later. Similarly,
one can introduce the average distance l′ between deep
troughs,

l′ =
L√
N ′
=

ξ√
φ(−d′1)

, (7)

where d′1 has to be chosen from the interval 3w< d′1 <d′0
to fulfill the condition l′� d and d′0 is the deepest trough
on the area L2.
Here we consider the general case where we are inter-

ested in the Casimir force between two plates with rough
surfaces. As was explained in ref. [21] this is equivalent

to the interaction of a smooth plate with a rough one,
which has the combined roughness topography h(x, y) =
h1(x, y)+h2(x, y), where h1,2(x, y) are the topographies
of the interacting plates 1 or 2. Therefore all the equa-
tions so far have to be applied to the combined roughness
profile h(x, y).
Let us assume for a moment that the PFA can be

applied to any roughness topography. Then the force
between the plates can be calculated using the standard
definition of the averaged function

F(d) =
∫ d0
d1

. . .+

∫ −d′1
−d′0

. . .+

∫ d1
−d′1
dzf(z)F (d− z), (8)

where f(z) is the probability density function, and
we separated high peaks (first integral), deep troughs
(second integral), and the normal roughness contri-
bution (third integral). For the moment we do not
specify the force between the interacting patches
F (d) separated by the distance d. The last term
can be calculated using the perturbation expansion
F (d− z) = F (d)−F ′(d)z+F ′′(d)z2/2!+ . . . and we find
for this term

∫ d1
−d′1
. . .= F (d)

∫ d1
−d′1
dzf(z)+

F ′′(d)
2!

∫ d1
−d′1
dzf(z)z2. (9)

The first and second integral on the right are 1 and w2,
respectively, if one extends the integration limits to the
entire real axis. When the applicability of the PFA breaks
down the second term in (9) (with infinite limits) can be
generalized as follows [17]:

FPT (d) = F
′′(d)
2!

∫
d2k

(2π)2
ρ(kd)σ(k). (10)

Here σ(k) is the Fourier spectrum of the roughness
correlation function. The function ρ(kd) measures the
deviation from the PFA. When the PFA is applicable this
function is ρ(kd) = 1 and we reproduce eq. (9). Outside
of the PFA applicability we can use for ρ(kd) expressions
found in [18,19].
The term FPT (d) is the roughness contribution to the

force treated as a perturbation theory correction. As we
already know, the contribution of high peaks (or deep
troughs) may not be accounted for by the perturbation
theory. However, in this case we can account for the
peaks (troughs) independently and the contribution can
be presented as the first (second) term in (8). Taking into
account the change of the integration limits we find the
contributions due to high peaks, FPFA(d) , and due to
deep troughs, F ′PFA(d):
FPFA(d) =∫ d0
d1

dzf(z)

[
F (d− z)−F (d)+F ′(d)z− F

′′(d)
2!
z2
]
,

(11)
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F ′PFA(d) =∫ −d′1
−d′0

dzf(z)

[
F (d− z)−F (d)+F ′(d)z− F

′′(d)
2!
z2
]
.

(12)

The final expression for the force that includes the total
roughness contribution can be presented as

F(d) = F (d)+FPT (d)+FPFA(d)+F ′PFA(d). (13)

Here F (d) is the force between flat surfaces and the other
three terms are the different roughness corrections.
The same force F (d) is used to calculate FPFA(d) and

F ′PFA(d), which implies that high peaks are described as
pillars with flat faces. However, this approximation is not
necessary. If the peaks can be considered as independent,
then the interaction of each peak with the flat surface
can be described precisely (numerically) or approximately
with an appropriate force F̃ (d) in eqs. (11) and (12),
taking into account the actual geometry of the peak. For
example, high peaks can be considered as pillars with
spherical caps of radius ξ/2. As we will see below for the
description of the experiment [20] it is sufficient to use the
simplest model for the peaks (flat faces).
At this point an important question is: with what

precision can we calculate the roughness corrections?
The term −F ′′′(d)z3/3!, which is neglected in the Taylor
expansion of F (d− z), allows an estimation of the error in
FPT . In the distance range that we are interested in here,
20<d< 100 nm, the force F (d) behaves with the distance
as F (d) =A/dα, where A is a constant and α≈ 3.5 [24].
Then the error is estimated as

∆FPT = γ α(α+1)(α+2)
3!

(w
d

)3
F (d), (14)

where γ is the skewness of the distribution f(z). The
data shown in fig. 1 give the largest γ = 1.285 among the
investigated films and we estimate the error as ∆FPT ≈
18.55(w/d)3F (d). The latter means that the perturbation
theory correction has meaning at least for d/4>w. The
minimal distance between rough surfaces d0 depends on
the area of nominal contact L2, but even for L as small
as 1µm2 the condition d0/w > 4 is usually fulfilled [21].
Therefore, we can now draw the important conclusion that
the perturbation theory correction (10) has meaning up to
the point of contact between interacting rough surfaces.
The precision with which we calculate the contribution

of the high peaks is defined by the condition of applicabil-
ity of the PFA to these peaks. This condition is l(d1)� d
and we have for the error

∆FPFA = (d/l)FPFA. (15)

As we already mentioned we have to choose d1 such
that the condition l(d1)� d is true and, therefore, the
correction (11) makes sense. Similarly, we can define the
error ∆F ′PFA for the contribution of deep troughs (12).

The relative error in (11) increases with the distance,
but we have to keep in mind that FPFA decreases very
fast with d and the absolute error stays small. The
parameters d1 and d

′
1 can be chosen rather arbitrarily

if the conditions l(d1)� d and l(d′1)� d are fulfilled.
A practical recipe could be d1 =max{3w, (d0+w)/2} and
d′1 =max{3w, (d′0+w)/2}. It has to be noted that the
contribution of deep troughs is always small, but we keep
it for the sake of generality.

Results. – The roughness corrections (10)–(12) were
deduced for the force between two rough parallel plates.
In most of the experimental configurations the sphere-
plate geometry is used. We can find the result for this
configuration if the sphere’s radius is large, R� d. This
condition is typically true when the roughness effect is
appreciable and we can apply the PFA to the total force
F(d). The same equations (10)–(13) can be applied but
now we have to understand F (d) as the force between a
smooth sphere and a smooth plate, approximated by

F (d) = 2πRE(d) R� d, (16)

where E(d) is the Casimir-Lifshitz energy per unit area for
the parallel plate configuration [9]. We neglect the thermal
effect (T = 0) at short separations [12]. However, we use
measured optical properties of gold films [11] to account
for the actual material properties.
We evaluated the force and all the roughness corrections

to compare it with the experimental data [20]. The Lifshitz
force F (d) was calculated for the sphere radius R= 50µm
using the optical data for sample 3 in [11]. The roughness
effect was estimated for 800, 1200, and 1600 nm Au films
and a Au-covered sphere. Here we present the results
for the 1600 nm film. The roughness characteristics for
combined sphere-plate AFM images were presented in
ref. [21]. For the 1600 nm film they are: rms roughness
w= 10.1 nm, the correlation length ξ = 42nm, and the
distance upon contact d0 = 50.8± 1.3 nm. The last value
was determined by electrostatic calibration [20]. It is
preferable to use this value, because d0 determined from
the roughness topography has a larger uncertainty [21].
We used d1 = (w+ d0)/2 = 30.5 nm. According to eq. (6)
it corresponds to the average distance between high peaks,
l≈ 380 nm. Note that the effective area of interaction is L2,
with L= 2100 nm [21]. For deep troughs the calculation
details are less important. For the given L we found d′0 =
24.6 nm. Since d′0 < 3w the troughs are not deep enough
and can be taken into account perturbatively. Therefore,
in this specific case there is no need to introduce F ′PFA.
The results are presented in fig. 2. One can see that

the solid (blue) line, which shows the result of our
approach, is in agreement with the experimental data
within the experimental errors. This is in contrast with
the perturbation theory approach that failed to explain the
data [20]. This is demonstrated in the inset, which shows
different components of this force. At short distances the
contribution of high peaks (2, red line, in the inset of fig. 2)
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Fig. 2: (Color online) The force between a Au-covered sphere
(R= 50µm) and a plate (1600 nm thick Au). The open (green)
circles are the experimental data from ref. [20]. The vertical
and horizontal bars show the experimental errors for a few
points. The solid (blue) line is the result of our model. Naive
application of the PFA to the force between rough bodies based
on eqs. (8) and (16) is shown by the dashed (red) curve. The
inset shows different contributions to the force. 1 (black) is
the force F (d) between smooth surfaces calculated according
to the Lifshitz formula. 2 (red) is the contribution of the high
peaks according to eq. (11). 3 (blue) is the perturbation theory
correction according to eq. (10). The sum of all three curves
gives the solid line in the main panel.

is so large that it dominates the whole force. In this case a
few peaks become very close to the opposite body so that
the force diverges at d→ d0. There can be very few high
peaks but their contribution cannot be neglected. On the
other hand the contribution of high peaks disappears very
fast when the distance becomes larger.
We used two different models to calculate the contri-

bution of high peaks in eq. (11). In the first model the
peak was considered as a pillar with a flat face. In the
second model the peak had a spherical cap of radius ξ/2.
The interaction of the cap with a plate was taken into
account according to ref. [25], where the proximity force
approximation is not used. We found a negligible differ-
ence between the two models of peaks. The reason is the
following: when the distance d− d0 ∼ ξ, then the contri-
bution of the peaks is very small due to their small area
of interaction. When d approaches d0 or d− d0� ξ, the
contribution of high peaks becomes significant, but the
shape of the peaks is not important anymore, because
the PFA is valid in this limit.
Naive application of the proximity force approximation

according to eqs. (8) and (16) gives the dashed line
(red) in fig. 2. It is interesting to note that this line is
also in agreement with the experimental data. At the
shortest separations both curves coincide, because the
dominating high peaks can be treated with the PFA. At

larger distances the perturbative contribution becomes
important and the PFA result lies below the solid line
as it should be [17]. However, the difference between these
two curves is within the experimental errors. Perturbation
theory accounts for the non-additivity of the Casimir force,
whereas the PFA assumes it is additive. So this difference
provides an indication of the effect of the non-additivity in
the roughness correction. It can be concluded that within
the experimental error the experiment in ref. [20] was not
sensitive to this non-additivity.

Conclusions. – In conclusion, we developed a reliable
method to include the effect of roughness of interacting
bodies in the Casimir force at short distances when pertur-
bation theory fails. It was established that roughness of
gold films can be described asymptotically (for high peaks
or deep troughs) by extreme value statistics. In this case
the rough surface can be presented as a large number of
asperities with heights of the order of the rms roughness
and a few occasional peaks, which are much higher than
the rms roughness. The distance between high peaks is
large so that one can calculate their contribution for each
peak separately (using the PFA). The smaller asperities
can be calculated using perturbation theory beyond the
PFA. The contribution of high peaks is extremely impor-
tant for short separations, where it dominates not only
the perturbative roughness correction but also the force
as a whole. Therefore, our result is interesting not only
for the Casimir force but also for the problem of adhesion
between surfaces in general [26], including wet environ-
ments [27–29].
We repeat that the method presented here solves the

significant discrepancy between measurements of the
Casimir force at short separations, and the results of
perturbation theory [20].
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