Brought to you by:

Pressure-induced structural transition of OsN2 and effect of metallic bonding on its hardness

, , , , and

Published 8 September 2011 Europhysics Letters Association
, , Citation Zhen-Hua Wang et al 2011 EPL 95 66005 DOI 10.1209/0295-5075/95/66005

0295-5075/95/6/66005

Abstract

Using first-principles calculations, the elastic constant, structural phase transition and effect of metallic bonding on the hardness of OsN2 under high pressure are investigated by means of the pseudopotential plane-waves method. Five candidate structures are chosen to investigate for OsN2, namely, the pyrite, CoSb2-type, marcasite, simple hexagonal and tetragonal structures. A comparison among the formation energies of OsN2 explains the synthesis of OsN2 marcasite under high pressure. On the basis of the third-order Birch-Murnaghan equation of states, the transition pressure Pt (Pt=223 GPa) between the marcasite and simple tetragonal phase is determinated. Elastic constants, shear modulus, Young's modulus, Poisson's ratio and Debye temperature are derived. The calculated values are, generally speaking, in good agreement with experiments and other theoretical calculations. Our calculation indicates that the N-N bond length is one determinative factor for the ultrahigh bulk moduli of the heavy-transition-metal dinitrides. Moreover, based on Mulliken overlap population analysis in first-principles technique, a semiempirical method to evaluate the hardness of multicomponent crystals with partial metallic bonding is presented. The effect of metallic bonding on the hardness of OsN2 is investigated and the hardness shows a gradual decrease rather than increase under compression, which is different from diamond. This is a quantitative investigation on the structural properties of OsN2, and it still awaits experimental confirmation.

Export citation and abstract BibTeX RIS

Please wait… references are loading.
10.1209/0295-5075/95/66005