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Abstract – A real-space Renormalization Group approach is presented for a non-mean-field spin-
glass. This approach has been conceived in the effort to develop an alternative method to the
Renormalization Group approaches based on the replica method. Indeed, non-perturbative effects
in the latter are quite generally out of control, in such a way that such approaches are non-
predictive. On the contrary, we show that the real-space method presented here yields a precise
prediction of the critical behavior and exponents of the model.

Copyright c© EPLA, 2011

Introduction. – Spin-glasses, structural glasses, and
the physical description of their critical properties have
interested statistical physicists for several decades. The
mean-field theory of these models [1,2] provides a phys-
ically and mathematically rich picture of their physics
and of their critical behavior. Notwithstanding the great
success of such mean-field theories, real spin-glasses are
non-mean-field systems, because they have short-range
interactions. It follows that these systems cannot be
described by mean-field models. Indeed, the generaliza-
tion of the above mean-field theories to the non-mean-
field case is an extremely difficult task that has still not
been achieved, so that the development of a predictive and
consistent theory of glassy phenomena for real systems is
still one of the most hotly debated and challenging prob-
lems in this domain [3].
This task is difficult to achieve because the perturbative

field-theoretical techniques [4,5] yielding the Ising model
critical exponents with striking agreement with experi-
mental data do not apply to locally interacting glassy
systems. Indeed, a considerable difficulty in the set-up of
a loop-expansion for a spin-glass with local interactions is
that the mean-field saddle-point has a very complicated
structure [1,6], and non-perturbative effects are not under
control, in such a way that the properties of the large-scale
behavior of these systems are still far from being clarified.
The physical properties of the paramagnetic-

ferromagnetic transition emerge clearly in ferromag-
netic systems in the original work of Wilson [4], where

(a)E-mail: michele.castellana@u-psud.ft

one can write a simple Renormalization Group (RG)
transformation describing a flow under length-scale
re-parametrizations. These RG equations are exact in
non-mean-field models with power-law ferromagnetic
interactions built on hierarchical lattices like Dyson
Hierarchical Model (DHM) [7]. Indeed, in these models
one can write an exact RG transformation for the prob-
ability distribution of the magnetization of the system,
in such a way that all the relevant physical information
on criticality and all the fundamental RG concepts
are encoded into this equation, whose solution can be
explicitly built up with the ε-expansion technique [8,9].
Accordingly, to investigate the RG properties of non-
mean-field spin-glasses it is natural to consider spin-glass
models built on hierarchical lattices. This study has been
done heretofore only for some particular models. On the
one hand, models with local interactions on hierarchical
lattices built on diamond plaquettes [10] have been
widely studied in their spin-glass version, and have been
shown to lead to weakly frustrated systems even in their
mean-field limit [11], and so are not a good representative
of a realistic strongly frustrated spin-glass. On the other
hand, a RG analysis of a different kind of random models
on Dyson hierarchical lattice, and of their physical and
non-physical infrared (IR) fixed points, has been done
heretofore [12]. Unfortunately, also in these models spins
belonging to the same hierarchical block interact with
each other with the same [12] random coupling J , in such
a way that frustration turns out to be relatively weak and
they are not a good representative of a realistic strongly
frustrated system.
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The study of such non-mean-field strongly frustrated
spin-glasses is difficult also because it is hard to identify
the correct order parameter and write the resulting RG
equations for a function or functional of it without relying
on the replica method, which is generally able to make
predictions for the critical exponents only in the mean-
field case [6].
In this letter we present a real-space RG method for a

non-mean-field strongly frustrated spin-glass on a hierar-
chical lattice, the Hierarchical Edwards-Anderson model
(HEA) [13], that does not rely on the replica method.
Even if this method does not identify the order parame-
ter of the system, it is interesting from the methodolog-
ical point of view, because it yields a way to implement
Kadanoff’s [14] block-spin decimation rule in a strongly
frustrated system, and to write the resulting RG equa-
tions. In this way, precise predictions on the critical expo-
nents are obtained.
The HEA is defined as a system of 2k+1 spins
S1, . . . , S2k+1 , Si =±1, with an energy function defined
recursively by coupling two systems, say system 1 and
system 2, of 2k spins

Hk+1 [S1, . . . , S2k+1 ] =H
1
k [S1, . . . , S2k ]

+H2k [S2k+1, . . . , S2k+1 ]− 2−σ(k+1)
2k∑
i=1

2k+1∑
j=2k+1

JijSiSj ,

(1)

where Jij are random couplings distributed according
to a Gaussian law with zero mean and unit variance,
and H0[S] = 0. σ is a parameter tuning the decay of
the interaction strength between spins with distance. It
turns out that for σ < 1/2 the thermodynamic limit is
ill-defined, because the interaction energy grows with k
faster than the volume 2k, while for σ > 1 the interaction
energy goes to zero for large k, and no finite-temperature
phase transition occurs. Accordingly, in the following we
will take 1/2<σ < 1. In this interval, the model is a non-
mean-field one, and the mean-field limit is recovered for
σ→ 1/2 [13].
The critical properties of the HEA have been studied

heretofore within the replica formalism [15], showing that
the system has a classical behavior in the region 1/2<
σ� 2/3, where the mean-field approximation is correct,
while non-mean-field effects are important for 2/3<σ < 1.
This analysis makes a prediction for the critical exponents
only in the classical region 1/2<σ� 2/3, because in the
non-classical region 2/3<σ < 1 the first few orders of
the σ− 2/3≡ ε-expansion have a non-convergent behavior,
and higher orders are not known.
Before exposing the real-space approach for the HEA,

let us illustrate it in the case where the couplings Jij in
eq. (1) are ferromagnetic, i.e. for the well-known DHM [7],
in order to test the consistency of our method.

The real-space approach for Dyson Hierarchical
Model. – DHM is defined [7] as a system of 2k+1 spins

S1, . . . , S2k+1 , Si =±1, with an energy function defined
recursively by coupling two systems, say system 1 and
system 2, of 2k spins

HFk+1 [S1, . . . , S2k+1 ] =H
F
k [S1, . . . , S2k ]

+HFk [S2k+1, . . . , S2k+1 ]−J22(1−σF )(k+1)

 1
2k+1

2k+1∑
i=1

Si



2

,

(2)

where HF0 [S] = 0, the suffix F stands for “ferromagnetic”,
and one can show that 1/2<σF < 1, with the same
argument as that used to derive the constraints on σ for
the HEA.
The real-space RG method is built up by iterating

exactly k0 times the recursion equation (2). In this way,
a DHM with 2k0 spins S1, . . . , S2k0 and Hamiltonian
HFk0 [S1, . . . , S2k0 ] is obtained. We now want to build up

a 2k0+1-spin DHM starting from such a 2k0-spin DHM,
which can be done as follows. We consider a 2k0−1-spin
DHM, where J is replaced by another coupling J ′. Such a
2k0−1-spin DHM is defined by iterating k0− 1 times eq. (2)
with J→ J ′, and its Hamiltonian is H ′F

k0−1[S
′
1, · · ·, S′2k0−1 ].

Given J , the coupling J ′ is chosen in such a way that
the 2k0−1-spin DHM represents as well as possible the
2k0-spin DHM, as qualitatively depicted in fig. 1. This
approximation is practically implemented by considering
a physical observable OFk0(βJ) of the 2

k0 -spin DHM, and

an observable OFk0−1(βJ
′) of the 2k0−1-spin DHM, where β

is the inverse temperature. The normalized magnetization
on the left half of the 2k0 -spin DHM is

mL ≡
(
1

2k0−1

2k0−1∑
i=1

Si

){
E�S

[(
1

2k0−1

2k0−1∑
i=1

Si

)2]}− 12
,

and an analog expression holds for the right-half magne-
tization mR, where E�S stands for the thermal average at
fixed β, performed with weight exp(−βHFk0). The normal-
ized magnetization on the left half of the 2k0−1-spin DHM
is

m′L ≡
(
1

2k0−2

2k0−2∑
i=1

S′i

){
E �S′

[(
1

2k0−2

2k0−2∑
i=1

S′i

)2]}− 12
,

and an analog expression holds for the right-half magneti-
zation m′R, where E �S′ stands for the thermal average with
weight exp(−βH ′Fk0−1). Mimicking Kadanoff’s block-spin
rule, for the 2k0−1-spin DHM to be a good approximation
of the 2k0-spin DHM, we map the block of the spins in the
left half of the 2k0-spin DHM into the block of the spins in
the left half of the 2k0−1-spin DHM, and do the same for
the right half. In order to do so, we choose the observables
to be OFk0(βJ)≡E�S [mLmR], OFk0−1(βJ ′)≡E�S′ [m′Lm′R],
and impose the equation

OFk0(βJ) =O
F
k0−1(βJ

′). (3)

For any fixed J , eq. (3) determines J ′ as a function of J , as
the value of the coupling of the 2k0−1-spin DHM such that
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≈

S1S1 S2 S3 S4 S1 S2

Fig. 1: Approximation of the real-space approach for k0 = 2.
In the implementation of the real-space approach for DHM,
a 22-spin DHM is approximated by a 2-spin DHM. In the
implementation of the real-space approach for the HEA,
a 22-spin HEA is approximated by a 2-spin HEA.

this yields the best possible approximation of the 2k0 -spin
DHM.
Let us take two copies of the 2k0−1-spin DHM. We

make these two copies interact according to eq. (2), and
form a 2k0-spin DHM. Since each of the DHMs that we
make interact represents a 2k0-spin DHM, the 2k0 -spin
DHM result of this composition effectively represents a
2k0+1-spin DHM. Once again, this DHM is then approxi-
mated as a 2k0−1-spin DHM with coupling, say, J ′′, and so
on. Setting J0 ≡ J, J1 ≡ J ′, J2 ≡ J ′′, . . ., eq. (3) establishes
a relation between Jk and Jk+1, physically representing
the RG flow of the coupling Jk under reparametrization
of the unit length 2k→ 2k+1.
The RG eq. (3) is not exact, because it relies on the

fact that a 2k0-spin DHM is approximated by a 2k0−1-spin
DHM. Nevertheless, such an approximation must become
asymptotically exact in the large k0-limit, where both 2

k0

and 2k0−1 tend to infinity. Quite large values of k0 can
be reached by exploiting the hierarchical structure of the
system [7], in such a way that the observables OFk0 , O

F
k0−1

can be calculated with a computational cost proportional
to 2k0 . It is possible to show that for any k0 the real-space
method reproduces the constraints 1/2<σF < 1. Indeed,
for σF > 1 eq. (3) gives J

′ <J , ∀J, β, so that the coupling
Jk goes to 0 for large k, and no phase transition occurs.
On the contrary, for σF < 1/2 one has J

′ >J , ∀J, β, and
the model is thermodynamically unstable.
The critical exponent νF related to the divergence of

the correlation length [5] is easily obtained by linearising
the transformation βJ→ βJ ′ in the neighborhood of the
critical fixed point βJ = βJ ′ ≡Kc [4], 21/νF = dβJ

′
dβJ |βJ=Kc .

In fig. 2 we depict 21/νF computed with this method,
together with 21/νF computed by Bleher [9,16] with an
independent approach, as a function of 1/2� σF � 1.
The latter calculation makes an exact prediction for
21/νF in the region 1/2<σF � 3/4 where the mean-field
approximation is exact, while it estimates 21/νF in the
non-mean-field region 3/4<σF � 1 by means of a series
of successive approximations. In the bottom inset of fig. 2
we show how ΛF RS for finite k0 has been extrapolated to
the k0→∞-limit: for every σF the sequence ΛF RS vs. k0
is fitted with a function of the form a− b · γk0 , and a is
the resulting extrapolated value. The parameter γ < 1 is
an indicator of the speed of convergence with respect to
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Fig. 2: (Color online) 21/νF as a function of σF for 1/2�
σF � 1. The black dashed line represents the upper critical
dimension σF = 3/4 discussed in [8]. The points are given by
21/νF computed with the real-space method for 5� k0 � 12,
and the gray points are 21/νF extrapolated to k0→∞ by fitting
ΛF RS vs. k0 with a function of the form f(k0)≡ a− b · γk0 . The
orange dashed curve and the green triangular points are 21/νF

obtained in [16]. Top inset: γ vs. σF . Bottom inset: ΛF RS vs.
k0 for σF = 0.92, its fitting function f(k0) and the extrapolated
value a.

k0: the larger γ the slower the convergence. In the main
plot of fig. 2 the extrapolated value is depicted, and this
is in good agreement with the value given in [9,16]. The
region where the disagreement between the two methods is
largest is σF ≈ 3/4, where 21/νF must be non-analytic [8].
This non-analiticity cannot show up for finite k0. However,
in the top inset of fig. 2 we show that the parameter γ
has a maximum at σF ≈ 3/4. This fact shows that the
convergence slows down in the neighborhood of σF = 3/4,
i.e. that the real-space method signals the appearance of
a non-analiticity of νF at σF = 3/4, which results from the
switchover from a mean-field to a non-mean-field regime.
It is now natural to generalise this real-space approach

to the HEA model, to compare its predictions with those
obtained with the replica method.

The real-space approach for the Hierarchical
Edwards-Anderson model. – Let us now illustrate how
to apply the real-space method to the HEA, by considering
first the simplest case k0 = 2. The reader should follow our
derivation in close analogy with that exposed above for
DHM. A HEA with 22 spins S1, · · ·, S4 and Hamiltonian
H2[S1, . . . , S4] is built up exactly by means of the recursion
equation (1). We set Jij ≡ 2−σJij , where by definition the
couplings {Jij}ij are independent identically distributed
random variables, and the probability distribution of each
of them will be denoted by p(J ). Thus, we consider
a 2-spin HEA, whose Hamiltonian reads H ′1[S′1, S′2] =
−J ′12S′1S′2. For each realization of the couplings {Jij}ij ,
we choose J ′12 as a function of {Jij}ij in such a way that
the 2-spin HEA yields the best possible approximation of
the 22-spin HEA, as qualitatively depicted in fig. 1.
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In order to do so, let us consider a physical observable
O2({βJij}ij) of the 22-spin HEA, depending on the 6
couplings {Jij}ij and β, and an observable O1(βJ ′12)
of the 2-spin HEA. Inspired by the fact that the order
parameter in the mean-field case is the overlap [1], here
we build up O2 and O1 as the thermal average of products
of spin overlaps. To build up O2 and O1, consider two real
replicas �S1, �S2 of the spins of the 22-spin model, and two

real replicas �S′
1
, �S′
2
of the spins of the 2-spin model. The

normalized overlap between �S1 and �S2 on the left leaf of
the 22-spin HEA is

QL ≡ S
1
1S
2
1 +S

1
2S
2
2

2

{
E�S1,�S2

[(
S11S

2
1 +S

1
2S
2
2

2

)2]}− 12
,

and an analog expression holds for the right-leaf over-
lap QR, where E�S stands for the thermal average at
fixed disorder {Jij}ij and β. The normalized overlap
between �S′

1
and �S′

2
on the left leaf of the 2-spin HEA

is Q′L = S
′1
1 S

′2
1 , and an analog expression holds for the

right-leaf overlap Q′R. Following Kadanoff’s decimation
rule, we map the 22-spin HEA into the 2-spin HEA by
imposing that the spins S1, S2 correspond to the spin
S′1, and that the spins S3, S4 correspond to the spin
S′2. This mapping results in a correspondence between
QL and Q

′
L, and between QR and Q

′
R. By choosing the

observables as O2({βJij})≡E�S1,�S2 [QLQR], O1(βJ ′12)≡
E�S′1,�S′2 [Q

′
LQ
′
R], Kadanoff’s decimation rule can be prac-

tically implemented by imposing the equality

O2({βJij}) =O1(βJ ′12), (4)

where E �S′ stands for the thermal average at fixed disorderJ ′12 and β. For any realization of the couplings {Jij}ij ,
eq. (4) determines J ′12 as a function of {Jij}ij in such a
way that the 2-spin HEA yields the best possible approx-
imation of the 22-spin HEA. Accordingly, the distribution
p(J ) induces a distribution of J ′12, that we will denote
by p′(J ′12). The mapping between p(J ) and p′(J ′) can be
shown to be given by

p′(J ′) =
∫ [∏

i<j

p(Jij)dJij
]1
2

×
[
δ

(
J ′− 1

β
arctanh

(√
O2({βJij})

))

+δ

(
J ′+ 1

β
arctanh

(√
O2({βJij})

))]
. (5)

According to the iterative construction of eq. (1), a
new HEA is then constructed by taking two realizations
of the 2-spin HEA. Each realization is given by throw-
ing the coupling J ′ according to its probability distrib-
ution p′(J ′). We make these two copies interact to form
a 22-spin HEA. Since each of the HEAs that we put into
interaction represents a 22-spin HEA, the 22-spin HEA
result of this composition effectively represents a 23-spin

HEA. At the next step of the iteration, this 22-spin HEA
is again approximated as a 2-spin HEA with coupling, say,
J ′′12, and the probability distribution p′′(J ′′12) of J ′′12 is
computed from p′(J ′), and so on. This step is repeated
k-times, and a system representing a 22+k-spin HEA is
obtained.
Setting p0(J )≡ p(J ), p1(J )≡ p′(J ), p2(J )≡

p′′(J ), . . ., eq. (5) establishes a relation between pk(J )
and pk+1(J ), physically representing the RG flow of
the probability distribution of the coupling pk(J ) under
reparametrization of the unit length 2k→ 2k+1.
Equation (5) has been solved by means of the population

dynamics algorithm. In population dynamics, one repre-
sents the function p(J ) as a population of P � 1 numbers
{Ji}i=1,...,P , where each Ji has been drawn with proba-
bility p(Ji). The mapping p(J )→ p′(J ′) given by eq. (5)
results into a mapping between {Ji}i and the population
{J ′i }i representing p′(J ′).
The structure of the fixed points of eq. (5) has been

thus investigated numerically, showing that there exists
a finite value of β = βc such that for β < βc pk(J )
shrinks to a δ(J ) as k is increased, while for β > βc
pk(J ) broadens, i.e. its variance is an ever-increasing
function of k. The physical interpretation of these two
temperature regimes is that for β < βc pk(J ) flows to
the attractive high-temperature fixed point with J = 0
where spins are decorrelated, while for β > βc it flows to
the attractive low-temperature fixed point with J =∞
where spins are strongly correlated. This fact implies
that as the temperature is lowered below Tc = 1/βc a
phase transition occurs, resulting in the appearance of
a collective and strongly interacting behavior of spins
in the low-temperature phase. The existence of such a
finite-temperature phase transition for a diluted version of
HEA model has already been established heretofore in MC
simulations by means of finite-size scaling techniques [13].
The population dynamics approach reproduces the fact

that for σ < 1/2 the thermodynamic limit is ill-defined,
as we discussed above. Indeed, the numerics show that
for σ→ 1/2 βc→ 0, in such a way that the variance of
pk(J ), and so that of H2, is an ever-increasing function
of k, and the thermodynamic limit k→∞ is ill-defined.
Unfortunately, the second constraint σ < 1 is not repro-
duced. This is presumably due to the fact that eq. (5)
implements only the lowest-order approximation of the
real-space method, k0 = 2, and that the method is exact
only for large k0. This hypothesis is supported by the esti-
mate of the critical exponents that we will discuss in the
following, suggesting that the closer σ to one, the larger
the values of k0 needed to have a good estimate of the
exact result. Accordingly, for σ→ 1 a significantly better
description would be obtained if larger values of k0 were
accessible, and the σ < 1-limit would be recovered.
The numerical implementation of eq. (5) also reveals the

existence of a repulsive critical fixed point with a finite
width, that we will denote by p∗(J ), and that is reached
by iterating eq. (5) with β = βc. The critical exponent
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ν governing the power-law divergence of the correlation
length at β = βc is determined [4] from the spectrum
of the matrix linearising the transformation (5) in the
neighborhood of p∗(J ).
Before discussing the numerical results for p∗(J ) and
ν, let us discuss better implementations with k0 > 2
of this method. The only new element with respect
to the k0 = 2-case is the following. For k0 > 2, a 2

k0 -
spin HEA is approximated as a 2k0−1-spin HEA. The
latter has 2k0−1(2k0−1− 1)/2≡M ′ > 1 couplings {J ′ij}ij .
It turns out that even if the couplings {Jij}ij of the
2k0-spin HEA are independent, {J ′ij}ij are not, and are
distributed according to a joint distribution that we
denote by p′C({J ′ij}ij). In other words, correlations are
introduced when iterating the RG transformation. In the
present treatment these correlations have been neglected
by assuming that each of the {J ′ij}ij behaves as an
independent random variable distributed according to a
distribution obtained as the average of M ′ distributions,
each obtained by marginalising p′C({J ′ij}ij) with respect
to M ′− 1 couplings J ′ij .
The real-space approach has been thus implemented

for k0 = 2, 3, 4. Larger values of k0 were not accessible,

because the computational cost scales as 22
k0
. All the

qualitative features emerging for k0 = 2 and discussed
above are preserved for k0 = 3, 4. In fig. 3 we depict p∗(J )
as a function of J for several values of σ in the k0 = 3, 4
approximations. Two interesting features emerge from
fig. 3. Firstly, the discrepancy between p∗(J ) in the k0 = 3-
approximation and p∗(J ) in the k0 = 4-approximation is
relatively small, signaling that k0 = 4 is hopefully large
enough for the real-space approach to give a reasonably
good estimate of the critical fixed point, at least for the
values of σ considered in fig. 3. Secondly, a plausible
scenario resulting from the inset of fig. 3 is that, for
large k0, p∗(0) = 0 for σ < 2/3, while p∗(0)> 0 for σ > 2/3.
Interestingly, the analysis of the HEA based on the replica
approach [13,15] predicts a sharp change of behavior from
a mean-field regime for 1/2<σ� 2/3 to a non-mean-field
regime for 2/3<σ < 1. In the real-space approach Jij is
nothing but the effective coupling between spins Si and
Sj of a 2

k0 -spin HEA. At the critical point, Si is obtained
as the coarse-graining of a group of 2l, l� 1 spins, which
have been progressively decimated and reduced to a single,
effective degree of freedom Si, and the same property holds
for Sj . For σ < 2/3 the model is effectively mean-field, and
should thus behave as a fully connected one. Accordingly,
the 2l spins represented by Si must interact with all the
other spins, and so with the 2l spins represented by Sj .
Thus, the effective coupling between Si and Sj cannot
vanish, i.e. p∗(0) = 0. In the non-mean-field case σ > 2/3
the system is not fully connected, because the effective
interaction range is finite. Accordingly, there is a finite
probability that the 2l spins represented by Si do not
interact with the 2l spins represented by Sj . Thus, the
effective coupling between Si and Sj can vanish, i.e.
p∗(0)> 0. According to this argument, this change of
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Fig. 3: (Color online) Fixed point p∗(J ) as a function of
J for k0 = 3 and σ= 0.621, 0.678, 0.737 (in black, violet and
brown, respectively), and for k0 = 4 and σ= 0.621, 0.678, 0.737
(in red, blue and green, respectively). For these values of σ, the
discrepancy between p∗(J ) in the k0 = 3-approximation and
p∗(J ) in the k0 = 4-approximation is relatively small, signaling
that k0 = 4 is presumably large enough for the method to give
a reasonably good estimate of the critical fixed point. Inset:
p∗(0) vs. σ for k0 = 3, 4. A plausible picture resulting from the
data is that, for large k0, p∗(0) = 0 for σ < 2/3 and p∗(0)> 0
for σ > 2/3. This picture has a clear physical interpretation
given in the text, and suggests a change of behavior at σ= 2/3,
reminiscent of the switchover from a mean-field regime for
σ < 2/3 to a non-mean-field regime for σ > 2/3 predicted by
the replica approach.

behavior of p∗(0) at σ= 2/3 can be seen as the switchover
from a mean-field behavior to a non-mean-field one, and
is predicted independently and confirmed by the replica
analysis of the HEA.
Let us now consider the predictions on the critical expo-

nent ν. In fig. 4 we depict 21/ν obtained with the k0=2,
3, 4-approximation and 21/ν obtained with the replica
approach [15] as a function of σ, both in the mean-field
region σ� 2/3 and in the non-mean-field region σ > 2/3,
where the first two orders of the ε-expansion are depicted.
The agreement between 21/ν computed with the real-space
approach for k0 = 2 and 2

1/ν computed with the replica
approach is not satisfying. Nevertheless, for k0 = 3, 4 the
agreement in the mean-field region 1/2<σ� 2/3 is very
good, and serves as an important test of the real-space
method. A quantitative comparison between 21/ν of the
real-space approach and that of the replica approach in
the non-mean-field region cannot be done, because in the
latter the ε-expansion is out of control, i.e. the first two
orders of the expansion have a non-convergent behav-
ior, and higher orders are not known. Accordingly, the
ε-expansion curve depicted in fig. 4 must not be consid-
ered as an estimate of 21/ν . A prediction for ν in the
non-classical region σ > 2/3 for a diluted version [13] of
the HEA is given by Monte Carlo (MC) simulations [17].
According to [17], for σ > 2/3 21/ν is a decreasing function
of σ in the neighborhood of σ= 2/3, which is in disagree-
ment with the results of the real-space approach, fig. 4.
This discrepancy will be discussed in the following.

47014-p5



M. Castellana

/
ν

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

5 0 5 0.5 .60. 0.65 0.7 0.75

21

σ

21/ν , k0 = 2
21/ν , k0 = 3
21/ν , k0 = 4

21/ν , mean field, with replicas
21/ν − expansion with replicas
Upper critical dimension σ = 2/3

Fig. 4: (Color online) 21/ν as a function of σ. The red,
brown and blue points are 21/ν computed with the real-space
approach for k0 = 2, 3, 4, respectively. The black dashed curve
and the green dashed curve are 21/ν obtained with the replica
approach [15], and the orange dashed line is the relative upper
critical dimension σ= 2/3 [13]: the black dashed curve is the
mean-field value of 21/ν for σ� 2/3, while the green dashed
curve is the two-loops result obtained with the ε-expansion.

Discussion and conclusions. – In this letter we
developed a real-space RG approach for a non-mean-
field spin-glass, the Hierarchical Edwards-Anderson model
(HEA). This approach is innovative with respect to the
RG approaches to disordered, strongly frustrated systems
developed heretofore that generally rely on the replica
method [6]. Indeed, the present approach does not make
use of the replica method, which is generally predictive
only in the mean-field case, and cannot handle pertur-
batively fluctuations around the mean-field saddle-point,
because these turn out to be out of control [6]. Through
a systematic approximation scheme, the present approach
implements Kadanoff’s block-spin decimation rule [14] on
spins. The implementation of such a decimation rule to a
disordered, strongly frustrated system has not been devel-
oped heretofore because of the intrinsic difficulties intro-
duced by frustration, and allows for an effective reduction
of the degrees of freedom of the system. Kadanoff’s block-
spin rule is practically implemented by approximating a
2k0-spin HEA as a 2k0−1-spin HEA. Such an approxi-
mation is practically performed by imposing that some
observables of the 2k0 -spin HEA are equal to some corre-
sponding observables of the 2k0−1-spin HEA. For large k0,
the method is asymptotically exact, and so are its predic-
tions on the critical features of the system. The method
has been tested in the simplest case of Dyson Hierarchi-
cal Model [7], which is the ferromagnetic version of the
HEA, and the resulting predictions for the critical expo-
nents are in good agreement with the results obtained
heretofore [16].
The method has been then applied to the HEA, and

identifies the existence of a phase transition in the system,
yielding a prediction on the critical exponent ν related
to the power-law divergence of the correlation length at
the critical point. Above the upper critical dimension

(σ < 2/3), the results for ν are in very good quantitative
agreement with those given by the replica method [15]
even for small k0 = 3, 4. Below the upper critical dimen-
sion (σ > 2/3), the ε-expansion for the critical exponents
performed within the replica method is not predictive,
because the first few orders have a non-convergent behav-
ior, and higher orders are not known. Hence, a quantita-
tive comparison between the real-space approach and the
replica approach is not possible. On the contrary, Monte
Carlo (MC) simulations [17] for a diluted version of the
HEA yield a prediction for the critical exponents in this
region. These are in disagreement with those of the real-
space approach. This discrepancy could be due both to
the smallness of k0 in the real-space approach, or to the
non-universality of the exponent ν when switching from
the HEA defined here to its diluted version, or to the
fact that correlations between the spin couplings have
been neglected in the real-space approach. Accordingly,
the quantitative estimate of ν below the upper critical
dimension is a still untamed issue, which could be suitable
for future investigations and developments of the present
real-space method.
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