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Abstract – We show how the phenomenon of factorization in a quantum many-body system is of
collective nature. To this aim we study the quantum discord Q in the one-dimensional XY model
in a transverse field. We analyze the behavior of Q at both the critical point and at the non-critical
factorizing field. The factorization is found to be governed by an exponential scaling law for Q.
We also address the thermal effects fanning out from the anomalies occurring at zero temperature.
Close to the quantum phase transition, Q exhibits a finite-temperature crossover with universal
scaling behavior, while the factorization phenomenon results in a non-trivial pattern of correlations
present at low temperature.

Copyright c© EPLA, 2011

Introduction. – The concepts of symmetry and corre-
lations pervade all the modern many-body physics [1]. A
system consisting in a very large number of particles can
be found in different phases and the Landau-Ginzburg
paradigm of symmetry breaking characterizes the various
phases in terms of different symmetries. Different quan-
tum phases are separated by Quantum Phase Transitions
(QPTs), which are driven by tuning an external control
parameter h across a critical value hc [2].
Nevertheless, in the past twenty years it has been under-

stood that symmetry cannot explain quite all the phases
of matter [3]. Indeed, different patterns of correlations can
define different quantum phases featuring unconventional
transitions [4]. Examples in many-body physics come from
studies on high-Tc superconductors, as well as intermetal-
lic compounds (heavy fermions) and fractional quantum
Hall liquids [3,5,6].
Here we analyze quantum correlations in a many-

body system addressing the quantum discord, beyond the
generic notion of “correlations in a quantum system” [7,8].
Quantum correlations are not all captured by entangle-
ment, because a non-vanishing quantum discord results for
certain separable (mixed) states [7]. This study addresses
some new features of the quantum phases involved in the
phenomenon of symmetry breaking. Besides the critical

(a)E-mail: lamico@dmfci.unict.it

behavior of the quantum discord at the quantum phase
transition, the discord displays dramatic changes also at a
non-critical value of the control parameter hf �= hc, where
quantum correlations vanish, thus producing a factorized
classical state [9,10]. Such factorization can even occur
within the symmetry-broken phase, and it consists in the
sudden reshuffling of quantum correlations, leading to a
transition in the entanglement pattern [11,12]. We show
that this correlation transition at hf is governed by a new
class of scaling laws, thus signaling a collective nature of
the phenomenon, even if it is not associated to any symme-
try breaking. We speculate that the factorization can be
associated to exotic quantum phase transitions that are
not described by symmetry breaking but by a reorganiza-
tion of entanglement patterns without symmetry breaking,
like in topological quantum phase transitions [13].
We complete our study by detecting how the quantum

critical and the factorization point affect the quantum
discord at low-temperature, thus opening the way towards
actual observations [14].

Quantum discord in the XY model. – The total
amount of correlations in a bipartite (mixed) quantum
state ρ̂AB is given by the mutual information IAB ≡
S(ρ̂A)+S(ρ̂B)−S(ρ̂AB), where S(ρ̂) =−Tr[ρ̂ log2 ρ̂] is
the von Neumann entropy. On the other hand, classical
correlations can be defined in terms of the quantum

27002-p1



B. Tomasello et al.

conditional entropy: S(ρ̂AB |{B̂k}) =
∑
k pkS(ρ̂

(k)
AB), where

ρ̂
(k)
AB =

1
pk
(Î ⊗ B̂k) ρ̂AB (Î ⊗ B̂k) is the state of the compos-

ite system AB, conditioned to the outcome B̂k (being a
set of projectors representing a complete measurement
of the subsystem B) of the measurement, with prob-
ability pk =Tr[(Î ⊗ B̂k) ρ̂AB (Î ⊗ B̂k)]. The amount of
classical correlations C is obtained by finding the set of
measurement on B that disturbs the least the part A,
i.e., by maximizing C =max{B̂k}

[
S(ρ̂A)−S(ρ̂AB |{B̂k})

]
(here we restrict to projective measurements) [7,8]. The
quantum discord is given by: Q= I −C. In a pure state,
Q reduces to entanglement. A mixed state though, may
contain quantum correlations that are not accounted in
the lack of separability (see ref. [7] for examples).
The model we study is the spin-1/2 chain with XY

exchange couplings in a transverse field h:

Ĥ=−
∑
j

(
1+ γ

2
σ̂xj σ̂

x
j+1+

1− γ
2

σ̂yj σ̂
y
j+1+hσ̂

z
j

)
, (1)

where σ̂αj (α= x, y, x) are the Pauli matrices on site j, γ ∈
(0, 1] denotes the xy anisotropy, while h is the transverse
magnetic field strength. The Hamiltonian Ĥ is diagonal-
ized by means of a Jordan-Wigner transformation followed
by a Bogoliubov rotation in momentum space [15]. In the
range of γ we consider hereafter, the system displays a
continuous QPT at hc = 1 of the Ising universality class
with critical indices ν = z = 1, β = 1/8. Because of super-
selection rules, the region |h|<hc is magnetically ordered
and the global Z2 symmetry is broken in the thermo-
dynamic limit with non-vanishing order parameter gx =
〈σ̂x〉; elsewhere the system is a paramagnet. Although the
ground state of Ĥ is generally entangled, for specific values
of γ and h it is completely separable [12]. Besides the
trivial cases h= 0 and h→∞, where |ψgs〉 is fully polar-
ized, there is a non-trivial line of factorization h2f + γ

2 = 1
where, for 〈σx〉 �= 0, |ψgs〉=

∏
j |ψj〉 [15], within the find-

ings of [9,10]. This line corresponds to an accidental
degeneracy of the Hamiltonian [16,17], while the entangle-
ment pattern swaps from parallel to anti-parallel, with a
logarithmically divergent range of bipartite entanglement
(“entanglement transition” [11,18]).
In order to compute the classical correlations Cr and

the quantum discord Qr of two spins A and B at distance
r, one needs to access the single-spin and the two-spin
reduced density matrices ρ̂A and ρ̂AB(r) (see, e.g., ref. [19]
for an explicit expression of the generic two-spin matrix
in a system with global phase flip symmetry). Hereafter
we focus on the symmetry-broken ground state and on
the thermal states of eq. (1). For Z2-symmetric states,
the non-vanishing entries of ρ̂A and ρ̂AB(r) can be eval-
uated analytically in terms of gz = 〈σ̂z〉 and gαα(r) =
〈σ̂αj σ̂αj+r〉 [15]. In that case we use a fully analytic treat-
ment for the quantum discord, obtaining the thermal
ground state as the zero temperature limit of such class
of states [20]. For symmetry-broken states, gxz(r) and gx
also need to be accessed. Since the expression of gxz(r) is
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Fig. 1: (Colour on-line) Quantum discord Qr(h) between two
spins at distance r in the XY model at γ = 0.7 (main plot and
left inset) and γ = 1 (right inset), as a function of the field
h. Continuous lines are for the thermal ground state, while
symbols denote the symmetry-broken state obtained by adding
a small symmetry-breaking longitudinal field hx = 10

−6 and
it was computed with DMRG in a chain of L= 400 spins;
simulations were performed by keeping m= 500 states and
evaluating correlators at the center of the open-bounded chain.
For γ = 0.7 and at hf � 0.714, in the symmetric state all the
curves for different values of r intersect, while after breaking
the symmetry Qr is rigorously zero. At the critical point Qr
is non-analytic, thus signaling the QPT. In the paramagnetic
phase, there is no symmetry breaking to affect Qr.

cumbersome [21], in the latter case we resort to the numer-
ical Density Matrix Renormalization Group (DMRG) for
finite systems with open boundaries [22].

Ground state. – As displayed in fig. 1, the difference
between the quantum discord Qr for the thermal ground
state and for the symmetry-broken state is always finite
in the ordered phase (the mutual information I does have
the same behavior). Moreover, quantum correlations are
typically much smaller deep in the ordered ferromagnetic
phase h< hc, rather than in the paramagnetic one h> hc.
Nonetheless, as we shall see, they play a fundamental
role to drive the order-disorder transition at the QPT,
where Qr exhibits a maximum, as well as the correlation
transition at hf , where Qr is rigorously zero.
Let us first focus on the quantum critical point, where

the QPT is marked by a divergent derivative of the
quantum discord (see also [20,23,24]). Such divergence is
present at every γ, for the symmetry-broken state; on the
other hand, for the thermal ground state, it is not present
at γ = 1. A thorough finite-size scaling analysis is shown
in fig. 2 proving that z = ν = 1. For the thermal ground
state (in the thermodynamic limit), we found that ∂hQr
diverge logarithmically as ∂hQr ∼ ln|h−hc|, within the
Ising universality class.
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Fig. 2: (Colour on-line) Finite-size scaling of ∂hQ1 for the
symmetry-broken state in proximity of the critical point hc.
Displayed data are for γ = 0.7. The first derivative of the quan-
tum discord is a function of L−ν(h−hm) only, and satisfies the
scaling ansatz ∂hQ1 ∼Lω ×F [L−ν(h−hm)], where hm is the
renormalized critical point at finite size L and ω= 0.472. We
found a universal behavior hc−hm ∼L−1.28±0.03 with respect
to γ. Inset: raw data of ∂hQ1 as a function of the transverse
field.

At the factorizing field hf , all the correlation measures
are zero in the state with broken symmetry (see symbols
in fig. 1); in particular, we numerically found a depen-
dence Qr ∼ (h−hf )2×

(
1−γ
1+γ

)r
close to it. Such behavior

is consistent with the expression of correlation functions
close to the factorizing line obtained in ref. [25], and here
appears to incorporate the effect arising from the non-
vanishing spontaneous magnetization. The factorization
phenomenon can be traced also for the thermal ground
state [26]: it is the unique value of the field where the
same quantum correlations are present at any length scale
(left inset of fig. 1). We found a rather peculiar depen-
dence of Qr on the system size, converging to the asymp-

totic value Q
(L→∞)
r with an exponential scaling behavior

(see fig. 3). The picture elucidated here suggests the exis-
tence of a non-trivial mechanism leading to the factor-
ization of the ground state. In [11,18], it was shown that
hf marks the transition between two different patterns
of entanglement. The factorization is thus a new kind
of zero-temperature transition of collective nature, not
accompanied by a change of symmetry, and with a scal-
ing law that is new in the panorama of the cooper-
ative phenomena in quantum many-body systems. We
emphasize, though, that this transition does not corre-
spond —in this model— to a QPT. The factorization
occurs without any non-analyticity in the ground-state
wave function |gs(h)〉 as a function of h, as it is shown by
the ground-state fidelity F(h)≡ |〈gs(h)|gs(h+ δh〉|. This
quantity (which can detect both symmetry-breaking and
non–symmetry-breaking QPTs [13,27]), is a smooth func-
tion at hf . So there is no QPT here. Nevertheless, the

1e-18 1e-16 1e-14 1e-12 1e-10

e-L * |h - h
f
|
2

10
-10

10
-8

10
-6

10
-4

10
-2

δ[
 Q

1 -
 Q

1| h f ]

0.69 0.7 0.71 0.72h
10

-10

10
-8

10
-6

10
-4

10
-2

Q
1

L = 12
L = 14
L = 16
L = 18
L = 20
L = 22
L = 24

(L)

(L
)

h
f

Fig. 3: (Colour on-line) Scaling of Q1 close to the factoriz-
ing field, for γ = 0.7: we found an exponential convergence to
the thermodynamic limit, with a universal behavior according
to e−αL(h−h(L)f ), α≈ 1 (h(L)f denotes the effective factoriz-

ing field at size L, while δ(Q1)≡Q(L)1 −Q(L→∞)1 ). Due to the
extremely fast convergence to the asymptotic value, already at
L∼ 20 differences with the thermodynamic limit are compara-
ble with DMRG accuracy. Inset: raw data of Q1 as a function of
h. The cyan line is for L= 30 so that, up to numerical precision,
the system behaves at the thermodynamic limit.

phenomenon of factorization can accompany a topological
QPT [13]. We speculate that the scaling laws associated
to topological QPTs are those associated to factorization
or other phenomena of entanglement reorganization. At
the level of spectral properties of the system, we inter-
pret this result as an effect of certain competition between
states belonging to different parity sectors for finite L [17];
as these states intersect, the ground-state energy density
is diverging for all finite L (such divergence, though,
vanishes in the thermodynamic limit).

Finite temperature. – In order to check how the
observed phenomena are resilient with respect to thermal
fluctuations, we analyze the quantum correlations at finite
temperature. The low-temperature behavior is influenced
by the proximity to critical and factorizing fields. Close
to hc, the physics is dictated by the interplay between
thermal and quantum fluctuations of the order parameter.
A V-shaped diagram in the h-T plane emerges, character-
ized by the cross-over temperature Tcross = |h−hc|z fixing
the energy scale [2]. T 
 Tcross identifies two semiclas-
sical regimes. In the quantum critical region T � Tcross,
quantum and thermal effects cannot be resolved; here the
critical properties dominate the physics of the system,
even at finite temperature. Close to hf and at small T ,
the bipartite entanglement remains vanishing in a finite
non-linear cone in the h-T plane [12,18]. Thermal states,
though, are not separable, and entanglement is present in a
multipartite form [28]. In this regime the bipartite entan-
glement results to be non-monotonous, and a re-entrant
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Fig. 4: (Colour on-line) Finite-temperature scaling of the
quantum discord for the thermal state close to the critical
point. The logarithmic scaling is verified: along the critical line
we found ∂hQ1|hc ∼ xln(T )+ k, with x= 0.065 for γ = 0.7. The
scaling function F shows a data collapse close to the critical
point. Inset: same analysis for the Ising case (γ = 1); we found
an analogous scaling behavior with x=−0.0059.

swap between parallel and antiparallel entanglement is
observed [18].
At any temperature T > 0, the state is Z2-symmetric.

By inspection of fig. 1, and since Qr is a continuous
function of T for finite temperatures, we conclude that
Qr is discontinuous as the temperature is switched on, in
all the phase h< hc. Such discontinuity is also observed
in the entanglement, even if in that case it is much less
pronounced and occurs only for h< hf [19]. We now
analyze how criticality and factorization modify the fabric
of purely quantum correlations in the h-T plane.
The first aspect we consider is the thermal scaling close

to the QPT. The scaling ansatz ∂hQr = T
x F (T/Tcross),

where Tcross ≡ |h−hc|νz [2], is verified in fig. 4 for r= 1.
Remarkably, the discord scales also in the Ising case γ = 1,
despite ∂hQ is not diverging at T = 0 [20]. We then discuss
the interplay between classical and quantum correlations.
In fig. 5(a) we show ∂T [Q1/C1] in the h-T plane, namely
the sensitivity of the relative strength between quantum
and classical correlations to thermal fluctuations. We
found a V-shaped diagram, where the ratio is constant
along the critical line h= 1 in the quantum critical region
T � |h− 1|, while it explores the largest changes along the
crossover region. We remark the asymmetry of fig. 5(a)
between ∆< 0 and ∆> 0, taking into account that the
mechanism leading to the two corresponding semiclassical
regimes traces back to quantum (∆> 0) or thermal (∆<
0) fluctuations [2].
We now move to hf , where, for the thermal ground

state, factorization is marked by the fixed point in Qr (see
left inset of fig. 1). This originates a non-trivial pattern of
correlations:Qr(T )�Qr′(T ) for any r, r′. We quantify this
behavior by analyzing the average displacement between

Fig. 5: (Colour on-line) a) Density plot in the h-T plane of
∂T [Q1/C1] close to hc; along the critical line the ratio Q1/C1
is constant with respect to the temperature. The solid straight
line (T = |h−hc|) marks the boundary of the quantum critical
region. b) Average quantum discord displacement: ∆Qr =
2
∑m
i,j=1 |Qri(T )−Qrj (T )|/m(m− 1) for m= 5 fanning out

from the factorizing point hf ∼ 0.714, where all correlations
coincide at any length scale r, as evidenced in fig. 1, left inset.
Dashed line is for guiding eyes. Here γ = 0.7.

different Qr fanning out from the fixed point in the
thermal ground state at h= hf (see ∆Qr in fig. 5(b)).

Outlook and perspectives. – We studied purely
quantum correlations quantified by the quantum discord
Qr in the quantum phases involved in a symmetry-
breaking QPT. Even if Qr results relatively small in
the symmetry-broken state as compared to the thermal
ground state, it underlies key features in driving both
the order-disorder transition across the QPT at hc, and
the correlation transition across the factorizing field hf .
The critical point is characterized by a non-analyticity
of Qr found in the Ising universality class. Close to hf ,
Qr displays uniquely non-trivial properties: in the ther-
mal ground state quantum correlations are identical at all
scales; for the symmetry-broken state we identified a novel
exponential scaling, specific for the factorization phenom-
enon emerging as a new kind of collective phenomenon
occurring in the ground state of the system. We remark
that this can occur without changing the symmetry of the
system, as a signature of the fact that quantum phases and
entanglement are more subtle than what the symmetry-
breaking paradigm says. Although in model eq. (1) the
factorization happens deep in the symmetry-broken phase,
its behavior is also particularly relevant in the context of
QPTs involving topologically ordered phases [29], which
are believed to occur because of a change of the global
pattern of entanglement [13] instead of symmetry.
At finite temperatures a discontinuity of Qr with T is

evidenced in the whole ordered phase h< hc. We expect
such discontinuity to be present also for models with
finite Tc. We proved that Qr displays universal features,
and it exhibits a crossover behavior; in particular the
quantum critical region is identified by the condition
Q(T )/C(T ) =Q(0)/C(0) along the critical line. We have
found that a non-trivial pattern of quantum correlations
fans out from the factorization of the ground state (where
∆Qr = 0), opening the way to experimental detection of
the phenomenon.
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useful discussions. The DMRG code released within the
PwP project (www.dmrg.it) has been used. Research at
Perimeter Institute for Theoretical Physics is supported
in part by the Government of Canada through NSERC
and by the Province of Ontario through MRI. DR
acknowledges support from EU through the project
SOLID.

REFERENCES

[1] Anderson P. W., Science, 177 (1972) 393; Complex
Systems, Science, 284, issue No. 5411 (1999).

[2] Sachdev S., Quantum phase transitions (Cambridge
University Press, Cambridge) 2001.

[3] Wen X.-G., Quantum Field Theory of Many-Body
Systems (Oxford University Press, USA) 2004.

[4] Chen X. et al., Phys. Rev. B, 82 (2010) 155138.
[5] Lee P. A. et al., Rev. Mod. Phys., 78 (2006) 17.
[6] Coleman P. and Schofield A. J., Nature, 433 (2005)
226.

[7] Zurek W. H., Ann. Phys. (Berlin), 9 (2000) 855;
Ollivier H. and Zurek W. H., Phys. Rev. Lett., 88
(2002) 017901.

[8] Henderson L. and Vedral V., J. Phys. A: Math. Gen.,
34 (2001) 6899; Vedral V., Phys. Rev. Lett., 90 (2003)
050401; Datta A. et al., Phys. Rev. Lett., 100 (2008)
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