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Abstract – Plane-wave solutions of Schrödinger-like equations obtained from the metric
perturbations in 5D braneworld scenarios can present resonant modes. The search for those
structures is important because they can provide us with massive modes with not suppressed
couplings with the membrane. We propose in this paper the study of graviton Kaluza-Klein
spectrum in a special kind of membrane that possesses internal structure. The interest in the
study of these deformed defects is due to the fact that they have a richer internal structure that
has implications in the matter energy density along the extra dimensions and this produces a
space-time background whose curvature has a splitting, if compared to the usual kink-like models.
Such models arise from (4, 1)-branes constructed with one scalar field coupled with gravity where
we find two-kink solutions from deformations of a φ4 potential. The main objective of this work
is to observe the effects of deformation process in the resonant modes as well as in the coupling
between the graviton massive modes and the brane.

open  access Copyright c© EPLA, 2011

Introduction. – The study of topological defects
in braneworld scenarios has increased recently due to
its advantages over the Randall-Sundrum model [1,2]
in warped geometries. In extra dimension scenarios we
can represent the observable universe as a hypersurface
embedded in a multidimensional space. Having appeared
as a proposal to the solution of the gauge hierarchy
problem, in such models particles of the Standard Model
must be confined in the four-dimensional brane.
In the seminal works of Bazeia and collaborators [3–6],

a class of defect structures was obtained by a φ4 poten-
tial. Such structures were called 2-kink defects since they
seem to be composed of two standard kinks, symmetri-
cally separated by a distance which is proportional to the
deformation parameter p. When applied to warped geome-
tries with one extra dimension, such topological deformed
defects are used to mimic braneworlds where the observ-
able universe is located. The scalar field is the stuff the
brane is made of. In deformed thick brane models, as
we have used in this work, the region between the two
interfaces (φ=±1) of the defect are richer than the usual
kink solution. It is important to note that despite the

(a)E-mail: carlos@fisica.ufc.br

emergence of a new structure between the two minima
of the potential at φ=±1 and that this new structure
seems to be two separate kinks, we are still working with
a single deformed structure. The same feature was used
in braneworld models to describe the splitting of a thick
domain wall [7]. To braneworld models the appearance of
a new region inside the bounce solution due to the defor-
mation procedure will result in the appearance of a gap
in the matter energy density in the center of the brane,
suggesting the appearance of internal structure [8,9]. In
models with five-dimensional gravity coupled to scalars,
we can obtain bounce solutions with smooth metric warp
functions [7,10–14]. Such thick brane solutions are more
natural because they are dynamically generated by a φ4

potential.
The scenario that we use here was initially described

in [9,15] where a class of topological defect solutions was
constructed starting from a specific deformation of the φ4

potential. These new solutions may be used to mimic new
brane worlds containing internal structures. Such internal
structures have implications in the density of matter
energy along the extra dimensions [8] and this produces a
space-time background whose curvature has a splitting.
Some characteristics of such model were considered in
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phase transitions in warped geometries [7]. A series of
discussions about splitting branes and its applications to
condensed matter are found in [16].
We consider the study of massive modes and resonances

of graviton in branes generated by deformed defects. The
center of the defect, where the observable universe is
localized, is considered in y= 0, where y represents the
extra dimension. The same feature was considered in our
previous works in order to analyze resonances for gauge
fields [17], Kalb-Ramond field [18], and fermions fields [19]
in different geometries. Specifically in ref. [19] some of the
authors of the present work were the first to consider
fermionic resonances in branes with internal structure.
We can also cite the works [20,21] that consider the
study of resonances of fermionic fields. These reviews are
very interesting since they present branes with splitting
which is observed by the division in the minimum of
the Schrödinger potential, where a series of resonance
structures is found. Similar characteristics are encountered
in the present work.
As noticed for some values of mass, the plane wave

solutions of Schrödinger-like equations obtained in the
transverse-traceless (TT) sector of metric perturbations
can present very high amplitudes inside the brane. We
can interpret these as resonant modes and the existence
of these structures can give us a KK spectrum with non-
suppressed coupling with the matter inside the membrane.
Graviton resonances were previously considered in RS
background [22], being related with the existence of
scales on which the gravitational laws appear to be four-
dimensional. In this scenario the width of the graviton
resonance gives the lifetime. More recently, several papers
have detected resonant modes in the study of localization
of gauge field [17], Kalb-Ramond field [18] and fermionic
fields [19,20] in branes with internal structure.
The main objective of this work is to study the behavior

of gravity in a membrane generated by a deformation
procedure. The so-called two-kink solutions, that are the
stuff the branes are made of, can be obtained after
a deformation procedure of a potential from a scalar
field [15]. Using the resonance-detecting method described
in [17–20,23], we analyze the massive modes arising from
the dimensional reduction functions. As we will see, the
internal structures given by the deformations on the brane
will have implications to the coupling of massive modes to
the brane. Such influences will affect the found resonance
structures.
This paper is organized as follows: in the second section

we describe theD= 5 space-time background and describe
the deformed membrane setup. In the third section we
study wave solutions of Schrödinger-like equations given
by metric perturbations. The following section is devoted
to our conclusions and perspectives.

Brane setup. – We start with the action describing
one scalar field minimally coupled with gravity in five

dimensions,

S =

∫
d5x
√−G

[
2M3R− 1

2
(∂φ)2−V (φ)

]
, (1)

where φ is the scalar field, which is the stuff of which
the membrane is made, M is the Planck mass, in D= 5
dimensions and R is the scalar curvature.
For some classes of the potential V (φ), it is possible to

obtain kink solutions for the field φ depending only on the
extra dimension.
As an ansatz for the metric we consider an extension for

the Randall-Sundrum metric, where the bulk spacetime is
asymptotically AdS5, with a Minkowski brane,

ds2 = e2A(y)ηµν dx
µ dxν +dy2. (2)

The scalar field and the warp factor depend only on
the extra dimension y. The tensor ηµν is the Minkowski
metric and the indices µ and ν vary from 0 to 3. For this
background we find the following equations of motion:

φ′′+4A′φ′ =
dV

dφ
, (3)

1

2
(φ′)2−V (φ) = 24M3(A′)2. (4)

and

1

2
(φ′)2+V (φ) =−12M3A′′− 24M3(A′)2. (5)

Here the prime means the derivative with respect to the
extra dimension.
In the presence of gravity, defining the potential as

Vp(φ) =
1

2

(
dW

dφ

)2
− 8M

3

3
W 2, (6)

it is possible to find first-order equations

φ′ =
∂W

∂φ
, (7)

W =−3A′(y), (8)

whose solutions are also solutions for the equations
of motion. Here W (φ) is the superpotential. This
formalism was initially introduced in the study of
non-supersymmetric domain walls in various dimen-
sions [10,24]. For bounce-like solutions, the field φ tends
to different values when y→±∞. Such solutions can be
attained by a double-well potential. In this way, guided
by refs. [9,15,25,26], we have chosen the superpotential,

Wp(φ) =
p

2p− 1φ
2p−1
p − p

2p+1
φ
2p+1
p , (9)

where the parameter p is an odd integer. The chosen
form for Wp was constructed after deforming the λφ

4

model. This choice allows us to obtain well-defined models
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Fig. 1: Plots of the solution of the curvature invariant R(y) for p= 1 on the left. On the right for p= 3 (dotted line), p= 5
(dashed line) and p= 7 (solid line).

when p= 1, 3, 5, . . . , where for p= 1 we get the stan-
dard φ4 potential. For p= 3, 5, 7, . . . , the potential Vp
presents a minimum at φ= 0 and two more minima at ±1.
Equation (7) can be easily solved giving the so-called two-
kink solutions

φp(y) = tanh
p

(
y

p

)
. (10)

We can find explicitly the solution for Ap(y) as [9]

Ap(y) = −1
3

p

2p+1
tanh2p

(
y

p

)
− 2
3

(
p2

2p− 1 −
p2

2p+1

)

{
ln

[
cosh

(
y

p

)]
−
p−1∑
n=1

1

2n
tanh2n

(
y

p

)}
. (11)

The parameter p is an odd integer. The chosen form
for Wp allows us to obtain well-defined models when p=
1, 3, 5, . . . , where for p= 1 we get the standard φ4 poten-
tial. Note that the exponential warp factor constructed
with this function is localized around the membrane
and for large y it approximates the Randall-Sundrum
solution [2].
In addition we present the shape of the scalar curvature,

which due to the metric shape does not blow up to infinity,
which is another advantage of this model. We can also
observe the splitting on the scalar curvature generated by
the deformations. For instance, the Ricci scalar is

R=−[8A′′p +20(A′p)2]. (12)

Figure 1 shows the Ricci scalar for p= 1, 3, 5, 7. Note that
the Ricci scalar is finite at all points in the bulk. Far from
the brane R tends to a negative constant, characterizing
the AdS5 limit for the bulk. Note that the higher the
parameter p is, the lower is the constant, interpreted as
the inverse of the AdS scale. For p= 1 fig. 1 shows that
the scalar curvature for a non-deformed model presents a
maximum at the brane center y= 0, whereas for higher
values of p this maximum is splitted into two smaller
peaks that decrease with the increase of p. The presence
of regions with positive Ricci scalar can in principle be
connected to the capability to trap massive states near to
the brane, as we will investigate in the following sections.
Also note that for even larger values of p we see that the
tendency is for the Ricci scalar to approach to zero near
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Fig. 2: Plots of the potentials U1(z), U3(z), andU5(z).

to the brane center. In this way we expect the presence
of gravity resonances to be more pronounced for lower
values of p.

Gravity localization and resonances. – The issue of
gravity localization in this class of models was considered
by one of us in ref. [9]. As already noted in [12], plane-wave
solutions of Schrödinger-like equations in the transverse-
traceless sector of metric perturbations can present solu-
tions as resonant modes. Such structures were obtained by
Csaki et al. [11,27] when studying gravity localization.
Now we numerically investigate the presence of reso-

nances with a more refined method. The stability analysis
is performed after perturbing the metric as follows:

ds2 = e2A(y)(ηµν +hµν) dx
µ dxν −dy2. (13)

Here hµν = hµν(x, y) are small perturbations. In the
transverse-traceless gauge the perturbations turn to h̄µν ,
and the metric and scalar field fluctuations decouple,
resulting in the equation

h̄′′µν +4A
′ h̄′µν = e

−2A� h̄µν . (14)

Here � stands for the 4-dimensional D’Alembertian. The
extra dimension y is turned into a new coordinate z,
defined by

dz

dy
= e−Ap , (15)
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Fig. 3: Normalized |Hµν(0)|2 as a function of m, for m> 0, showing the resonance peaks for p= 1 (upper right panel), p= 3
(upper left panel) and p= 5 (lower panel).

which makes the metric conformally flat. Also, with the
help of redefinition

h̄µν(x, z) = e
ik·xe−

3
2A(z)Hµν(z), (16)

as shown by Bazeia et al. [9,28], the equation for the metric
fluctuations takes the form of a Schrödinger-like equation

−d
2Hµν

dz2
+Up(z)Hµν = k

2Hµν , (17)

where the potential is given by

Up(z) =
3

2
A′′p(z)+

9

4
A′2p (z). (18)

It was already shown [9] that the Hamiltonian is
positive definite and tachyonic modes are absent and
that it is possible to attain an explicit expression for
the non-normalized zero modes, responsible for gravity
localization.
Figure 2 shows that the Schrödinger potentials for

gravity fluctuations have the form of volcano potentials.
This inspired us to investigate the possibility of resonances
with the Numerov method [28], identifying resonances as a
peak in the normalized squared wave functions |Hµν(0)|2
at the brane center.
We considered normalization in a box with ends at
±zmax, far enough for the inverse square law Up(z)∼
αp(αp+1)/z

2 to be achieved. As gravity localization can
be determined by the far region of the potential [11,27],
the plot of z2Up(z) for −200< z < 200 gives α1 = 1.483.

This characterizes gravity localization where Ugrav(r), the
gravitational potential between two unit masses distant r
one from the other, reproduces the Newtonian limit for
large distances. However, for short distances there is a
1/r2αp correction due to the small massive modes. For
p= 1 this gives 1/r2.966, close to the Randall-Sundrum
1/r3 correction for the Newtonian potential. For larger
values of p, one needs larger values of zmax to achieve the
1/z2 region for Up.
In order to study resonances, we do not need to look for

large values of zmax, since we are interested in the effect
for which the wave function behavior changes abruptly
for a particular mass. For our purposes it is sufficient to
consider a normalization procedure with zmax = 100. We
found a clear peak for p= 1, as showed in fig. 3. We noted
that with the increase of p, the resonance peaks become
broader, showing that branes with smaller values of p are
more effective in trapping graviton KK modes. This can
also be noted with zero modes, where the modes decay
as 1/

√
z for z > zp and zp grows with p (see ref. [9]). For

p= 5 the peak thickness ∆m is too large for characterizing
a resonance. This was expected since the maximum of
the Schrödinger potential, firstly pronounced for p= 1 is
reduced considerably for larger values of p.
About our numerical method it is worthwhile to mention

that we use the method used by one of the authors
of the present work in ref. [28], in order to investigate
the spectrum of massive modes and its contribution for
gravity localization on thick branes. An important point
concerning that method is the exigence of a Z2 symmetric
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potential and that its applicability is only for even massive
modes. Details about that method are reviewed in the
appendix of ref. [28]. On the other hand, recently Cvetic
and Robnik [29] showed the presence of an extremely
thin resonance in an integrable model where the graviton
wave function modes were explicitly parametrized by the
thickness of the wall. The applicability of the numerical
method used in the present work could be confronted
with the results from Cvetic and Robnik, with excellent
quantitative agreement. This agreement was attained even
for larger masses, much lower than the value of the
potential energy at the top of the “crater of the volcano”.

Conclusions. – In this work we have studied the KK
modes of gravity in a model of deformed branes. The
parameter p of the model controls important features as
the brane thickness and energy distribution along the
extra dimension. We found that the increase of p causes
a splitting in the Ricci scalar, evidencing the appearance
of an internal structure, as can be found also from the
energy density analysis (see [9]). We investigate metric
perturbations as decoupled from the scalar ones in the
transverse-traceless gauge. From the asymptotic behavior
of the Schrödinger-like equation it can be proved that
gravity is localized for all parameters p, and tachyonic
gravity modes are absent. The normalized squared wave
functions |Hµν(0)|2 that we use to detect modes with high
amplitudes in the brane center reveal us that, excluding
the resonant modes, in deformed branes the lightest mode
couples strongly to the branes in comparison to KK modes
with higher masses.
Resonances in the gravity sector are observed for p= 1

and 3 as peaks in the |Hµν(0)|2 distribution. However,
larger values of p lead to produce broader peaks that
cannot technically characterize themselves as resonances.
This means that thinner branes are more effective for trap-
ping gravity. The increase of the deformation parameter p
gives branes where the splitting is more evident. However,
when analyzing the difference between the characteristics
of the resonances found for p= 1, p= 3 and p= 5, we can
observe that when the splitting of the brane increases,
such structures are destroyed. A similar characteristic was
noted in the study of the massive spectrum of vectorial
and tensorial gauge fields [17,18]. One last remark that we
make is about the size of the resonances. As claimed in
ref. [30] the width of the graviton resonance is inversely
connected to the lifetime. If the resonance is very narrow,
the lifetime becomes large. Otherwise if the resonances are
broader, their effects have no phenomenological relevance.
In our analysis this characteristic appears in brane solu-
tions which exhibit high splitting.
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