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Abstract – We investigate shock waves in the unitary Fermi gas by using the zero-temperature
equations of superfluid hydrodynamics. We obtain analytical solutions for the dynamics of a
localized perturbation of the uniform gas. These supersonic bright and subsonic dark solutions
produce, after a transient time, an extremely large (divergent) density gradient: the shock. We
calculate the time of formation of the shock and also simulate the space-time behavior of the waves
by solving generalized hydrodynamic equations, which include a reliable dispersive regularization
of the shock. We find that the shock spreads into wave ripples whose properties crucially depend
on the chosen initial configuration.
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One of the basic problems in physics is how density
perturbations propagate through a material [1,2]. In addi-
tion to the well-known sound waves, there are shock waves
characterized by an abrupt change in the density of the
medium [1,2]. Shock waves are ubiquitous and have been
studied in many different physical systems [1,2]. Ten years
ago shock waves have been experimentally observed also in
atomic Bose-Einstein condensates (BECs) [3–6], and theo-
retically investigated in various BEC configurations [7–14].
Very recently the observation of nonlinear hydrodynamic
waves has been reported in the collision between two
strongly interacting Fermi gas clouds of 6Li atoms [15].
The experiment shows the formation of density gradients,
which are nicely reproduced by hydrodynamic equations
with a phenomenological viscous term [15]. Nevertheless,
the role of dissipation is questionable [16] since the ultra-
cold unitary Fermi gas is noted as an example of an almost
perfect fluid [17]. Indeed in ref. [16] it has been shown,
by solving zero-temperature time-dependent Bogolibov-de
Gennes equations, that the viscous term is not necessary
to reproduce the experimental results of ref. [15].
Here we investigate the formation and dynamics of

shock waves in the dilute and ultracold unitary (diver-
gent inter-atomic scattering length) Fermi gas by using
the zero-temperature equations of superfluid hydrodynam-
ics [1]. At zero temperature fermionic superfluids in the
BCS-BEC crossover can be modelled by hydrodynamic
equations [18] and their generalizations with a gradient
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term [19] that induces a dispersive regularization of the
shock. In this paper we obtain analytical solutions for
the dynamics of a localized perturbation of the uniform
gas. We calculate the supersonic (or subsonic) velocity of
propagation of these bright (or dark) perturbations. We
show that bright perturbations evolve towards a shock
wave front, while dark perturbations produce the shock
in their back, and we calculate the period Ts of formation
of the shock. In addition, we study the space-time behav-
ior of the shock waves beyond this characteristic time Ts
by including a reliable quantum correction in the hydro-
dynamic equations [19]. In fact, according to the two-fluid
model of Landau [1], the viscous term acts only on the
normal component of the fluid, and at zero temperature
the normal component is zero. Morover, recent theoreti-
cal microscopic calculations [20] suggest that the viscos-
ity of the unitary Fermi gas is extremely small at very
low temperatures because the transverse current does not
couple to collective modes. By solving numerically these
generalized equations of the unitary Fermi gas we show
that the shock wave front spreads into wave ripples whose
properties crucially depend on the “brightness” (bright or
dark) of the chosen initial configuration. We expect that
our results are reliable when the normal density (with
its viscous term) is quite small, i.e., for a temperature
T much smaller than the critical temperature Tc of the
normal-superfluid transition. For the unitary Fermi gas
Tc � 0.2TF , where TF = εF /kB is the Fermi temperature
with kB the Boltzmann constant, εF = �

2(3π2n)2/3/(2m)
the bulk Fermi energy of the ideal Fermi gas, n the total
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density, and m the mass of each atomic fermion. Accord-
ing to ref. [21] for T < 0.1TF the normal fraction is below
10% and, in practice, in this range of temperatures our
approach is fully justified.
At zero temperature the low-energy collective dynamics

of a Fermi superfluid of neutral and dilute atoms at
unitarity can be described by the equations of irrotational
and inviscid hydrodynamics,

∂

∂t
n+∇· (nv) = 0, (1)

m
∂

∂t
v+∇

[m
2
v2+µ(n)+U(r)

]
= 0, (2)

where n(r, t) is the total density of the superfluid, v(r, t)
is its velocity field, and

µ(n) = ξ
�
2

2m
(3π2)2/3n2/3 (3)

is the bulk chemical potential of the system, with ξ � 0.4
a universal parameter [18]. Here we are supposing a
balanced system, namely the same number of fermions in
the two components of the spin (σ= ↑, ↓). The term U(r)
models the external potential which traps the atoms.
Let us consider the unitary Fermi gas with constant

density n̄ with U(r) = 0. Experimentally this configuration
can be obtained with a very large square-well potential
(or a similar external trapping), such that in the model
one can effectively impose periodic boundary conditions
instead of the vanishing ones. A density variation along
the z-axis with respect to the uniform configuration n̄
can be experimentally created by using a blue-detuned
(bright perturbation) or a red-detuned (dark perturba-
tion) laser beam [22]. In practice, we perform the following
factorization:

n(r) = n⊥(x, y)n‖(z), (4)

by imposing also

n⊥(x, y) = n̄⊥, (5)

n‖(z) = n̄‖ ρ(z) (6)

such that

n(r) = n̄ ρ(z), (7)

where n̄= n̄⊥n̄‖, and ρ(z, t) is the relative density,
i.e., the localized axial modification with respect
to the uniform density n̄. We impose periodic
boundary conditions along the z-axis, namely
ρ(z =Lz, t) = ρ(z =−Lz, t), with 2Lz the axial-domain
length. We set v(r, t) = (0, 0, v(z, t)) with v(z, t) the veloc-
ity field such that v(z =Lz, t) = v(z =−Lz, t). Moreover,
we impose that the initial localized wave packet satis-
fies the boundary conditions ρ(z =±Lz, t= 0) = 1 and
v(z =±Lz, t= 0) = 0. Because the dimensional reduction
is done assuming the uniformity in x, y directions, we
shall consider the propagation of a plane wave along the
z-axis.

Inserting eq. (7) into eqs. (1) and (2) one finds the
1D hydrodynamic equations for the axial dynamics of the
superfluid, given by

ρ̇+ vρ′+ v′ρ= 0, (8)

v̇+ vv′+
cls(ρ)

2

ρ
ρ′ = 0, (9)

where dots denote time derivatives, primes space deriva-
tives, and

cls(ρ) = csρ
1/3 (10)

is the local sound velocity, with cs = cls(1) =
√
ξ/3vF the

bulk sound velocity, vF =
√
2εF /m is bulk Fermi velocity

and εF =
�
2

2m (3π
2n̄)2/3 the bulk Fermi energy.

The bulk sound velocity cs is the speed of propagation
of a small perturbation ρ̃(z, t) with respect to the uniform
superfluid of density n̄. In fact, setting ρ(z, t) = 1+ ρ̃(z, t),
with ρ̃(z, t)� 1 and v(z, t) of the same order of ρ̃(z, t),
from the linearization of eqs. (8) and (9) we get the familiar
linear wave equation(

∂2

∂t2
− c2s

∂2

∂z2

)
ρ̃(z, t) = 0, (11)

for ρ̃(z, t) and a similar equation for v(z, t). Modelling the
initial perturbation with a Gaussian shape, i.e.,

ρ̃(z, 0) = 2η e−z
2/(2σ2), (12)

one finds [1,2] from the linearized equations

ρ̃(z, t) = η e−(z−cst)
2/(2σ2)+ η e−(z+cst)

2/(2σ2), (13)

with initial condition ˙̃ρ(z, t= 0) = 0. Thus, for the conser-
vation of the linear momentum, the initial wave packet
splits into two waves travelling in opposite directions with
the speed of sound cs. Obviously eq. (13) is reliable only if
|η| � 1. As expected, a small (infinitesimal) perturbation
gives rise to sound waves.
We can find wave solutions of eqs. (8) and (9) with a

generic initial density profile by following the approach
described by Landau and Lifshitz [1]. By supposing that
the velocity v depends explicitly on the density ρ, i.e.,
v= v(ρ(z, t)), one has v̇= dvdρ ρ̇, v

′ = dvdρρ
′. We now impose

that the two hydrodynamic equations reduce to the same
hyperbolic equation

ρ̇+ c(ρ)ρ′ = 0, (14)

where

c(ρ) = v(ρ)+
dv

dρ
ρ= v(ρ)+

cls(ρ)
2

ρ

(
dv

dρ

)−1
. (15)

It is quite easy to verify that, given an initial condi-
tion F (z) = ρ(z, t= 0) for the density profile, the time-
dependent solution ρ(z, t) of the hyperbolic equation (14)
satisfies the following implicit, but algebraic, equation:

ρ(z, t) = F (z− c(ρ(z, t))t). (16)
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To determine the local velocity of propagation c(ρ),
which is not equal to the sound velocity cls(ρ), we observe
that from eq. (15) we get

dv

dρ
=±cls(ρ)

ρ
. (17)

After separation of variables, and imposing that at infinity
the density is equal to one and the velocity field is zero,
we finally get

v(ρ) =±3cs(ρ1/3− 1). (18)

The velocity c(ρ) follows directly from the velocity v(ρ)
by using eq. (15). One finds c(ρ) = v(ρ)± cls(ρ), namely

c(ρ) =±cs(4ρ1/3− 3). (19)

In conclusion, we have found that the density field ρ(z, t)
satisfies the implicit algebraic equation (16) with c(ρ)
given by eq. (19). Note that a similar result, but with
a very different local velocity, has been obtained by
Damski [8] for the 1D BEC.
Equations (16) and (19) contain the dynamics of the

two waves propagating to the left and to the right with
initial condition (12). Some properties characterizing the
dynamics can be extracted from these equations. First
of all the two travelling waves have symmetric shapes
during the time evolution. In addition, both amplitude and
velocity of the extrema (maxima or minima, depending on
the sign of η) of the two waves are practically constant
during time evolution. In particular, the amplitude of the
extrema is given by A(η) = 1+ η while the velocity of the
extrema reads

V (η) = c(1+ η) =±cs(4(1+ η)1/3− 3). (20)

Notice that taking η= 0 the velocity of the impulse
extrema reduces to the sound velocity: V (0) = c(1) = cs =√
ξ/3vF . Moreover, bright perturbations (η > 0) move

faster than dark ones (η < 0), and the Mach number M =
V (η)/V (0) of these perturbations in the unitary Fermi gas
is simply

M = 4(1+ η)1/3− 3. (21)

For M > 1, which means η > 0 (bright perturbation), one
has supersonic waves, while for 0�M < 1, which means
η < 0 (dark perturbation), one has subsonic waves. In the
upper panel of fig. 1 we plot the Mach number M as
a function of the amplitude η of the perturbation. Note
that since 2η is the amplitude of the initial condition, see
eq. (12), the region η�−1/2 is unphysical.
Let us consider a bright perturbation (η > 0) moving to

the right. The speed of impulse maximum V (η) is bigger
than the speed of its tails V (0). As a result the impulse
self-steepens in the direction of propagation and a shock
wave front takes place. The breaking time Ts required for
such a process can be estimated as follows: the shock wave
front appears when the distance difference traveled by
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Fig. 1: Properties of the shock waves. Upper panel: Mach
numberM as a function of the amplitude η of the perturbation
(solid line). For M < 1 there are subsonic and dark (−1/2�
η < 0) waves, while for M > 1 there are supersonic and bright
(η > 0) waves. The dotted line separates the two regimes. Lower
panel: period Ts of formation (breaking time) of the shock wave
front as a function of the amplitude η of the perturbation. Ts
is in units of σ/cs, where σ is the width of the perturbation
and cs =

√
ξ/3vF is the bulk speed of sound, with vF the Fermi

velocity.

lower and upper impulse parts is equal to the impulse half-
width 2σ, namely [V (η)−V (0)]Ts = 2σ. This, by using
eqs. (19) and eq. (10), gives

Ts =
σ

2cs((1+ η)1/3− 1) . (22)

In the case of a dark perturbation (η < 0) the tails of
the wave packet move faster than the impulse minimum.
The shock appears in the back of the travelling wave, and
the period of shock formation is simply Ts = 2σ/(V (0)−
V (η)). In the lower panel of fig. 1 we plot the period Ts
as a function of the amplitude η of the perturbation. The
figure shows that as η goes to zero the period Ts goes to
infinity; in fact, in this limit the shock wave reduces to a
sonic wave (sound wave) which does not produce a shock.
After the formation of the shock eqs. (1) and (2) are not

reliable because their exact solutions given of eqs. (16) and
(19) are no more single-valued. To overcome this difficulty
we include a gradient quantum term in the hydrodynamic
equations, which become

∂

∂t
n+∇· (nv) = 0, (23)

m
∂

∂t
v+∇

[m
2
v2−λ �

2

2m

∇2√n√
n
+µ(n)+U(r)

]
= 0, (24)

We stress that at zero temperature the simplest regular-
ization process of the shock is a purely dispersive quantum
gradient term. Historically, the gradient term with λ was
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introduced by von Weizsäcker to treat surface effects in
nuclei [23]. This approach has been adopted for quantum
hydrodynamics of electrons by March and Tosi [24], and
also by Zaremba and Tso [25]. In the study of the BCS-
BEC crossover the gradient term has been considered by
various authors [26]. The choice of the parameter λ in
eqs. (23) and (24) is still debated, here we choose λ= 1/4,
a value which gives good agreement with Monte Carlo
calculations at zero and finite temperature (for details
see [19,21]). Moreover, we set ξ = 0.4.
We expect that eqs. (23) and (24) are reliable to study

the long-time dynamics of shock waves in the ultracold
unitary Fermi gas. It is well known that, according to the
two-fluid model and Landau’s criterion of superfluidity [1],
above a critical temperature vc a normal component
with a dissipative term appears in the fluid [1]. As
discussed in [27], for the unitary Fermi gas one has
vc � cs. Nevertheless, at ultracold temperature the normal
component is negligible and also the shear viscosity [17,
20]. For these reasons at zero temperature the shock waves
are dispersive and not dissipative [16].
Equations (23) and (24) can be formally written (for

any value of λ, also λ= 0) in terms of a Galilei-invariant
nonlinear Schrödinger equation [19]. Setting U(r) = 0 and
using eqs. (3) and (7) we easily get from eqs. (23) and (24)
a 1D nonlinear Schödinger equation. We solve this equa-
tion by using a Crank-Nicolson finite-difference predictor-
corrector algorithm [28] with the initial condition given
by eq. (12) and v(z, t= 0) = 0. In fact, as also shown by
Damski [8], we have verified that the initial velocity field
v(ρ(z, t= 0)) and v(z, t= 0) = 0 give practically the same
time evolution.
In fig. 2 we plot the time evolution of supersonic

shock waves obtained with σ/lF = 18 and η= 0.3, with√
�2/(mεF ) the Fermi length of the bulk system. The

figure displays the density profile ρ(z) at subsequent times.
Note the splitting on the initial bright wave packet into
two bright travelling waves moving in opposite directions.
As previously discussed, there is a deformation of the two
waves with the formation of a quasi-horizontal shock wave
front. Eventually, this front spreads into wave ripples.
There is no qualitative difference with respect to a Bose-
Einstein condensate [8] in the physical manifestation of
supersonic shock waves in the zero-temperature unitary
Fermi gas. Nevertheless, due to the very different equation
of state, there are large quantitative differences. Our
numerical analysis confirms that the breaking time Ts
decreases by increasing the amplitude η, while the velocity
V of the maxima of the travelling waves increases by
increasing η. There is a good agreement between our
analytical formulas, eqs. (20) and (22), and simulations:
the relative difference is within 5% for the velocity V and
within 20% for the breaking time Ts.
In fig. 3 we plot the time evolution of subsonic shock

waves obtained again with σ/lF = 18 and η=−0.2. Also
in this case the figure shows the splitting on the initial
dark wave packet into two dark travelling waves moving
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Fig. 2: Time evolution of supersonic shock waves. Initial
condition with σ/lF = 18 and η= 0.3. The curves give the
relative density profile ρ(z) at subsequent frames, where lF =√
�2/(mεF ) is the Fermi length and ωF = εF /� is the Fermi

frequency.
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Fig. 3: Time evolution of subsonic shock waves. Initial condi-
tion with σ/lF = 18 and η=−0.2. The curves give the rela-
tive density profile ρ(z) at subsequent frames, where lF =√
�2/(mεF ) is the Fermi length and ωF = εF /� is the Fermi

frequency.

in opposite directions. But here, as expected, the quasi-
horizontal shock appears in the back side of the travel-
ling waves. Our simulations show that for η < 0 the wave
ripples which appear at the breaking time Ts are always
dark, i.e., they never exceed the bulk density (compare
wave ripples of fig. 2 with those of fig. 3). Note that dark
shock waves have been studied long ago [29] in a differ-
ent physical context: the discrete nonlinear Schrödinger
equation. In that case the wave ripples can exceed the
bulk density, probably due to the discrete nature of
the Schrödinger equation. Also for dark shock waves
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our analytical predictions on velocity V of the minima
and breaking time Ts are quite accurate with respect
to numerical findings (similar relative differences of runs
with η > 0).
In conclusion, we have shown that at very low temper-

atures the unitary Fermi gas admits supersonic and
subsonic shock waves, for which we have developed analyt-
ical and numerical results. Our predictions suggest a much
cleaner method to produce shock waves with respect to
the recent experiment [15] based on the collision of two
6Li atomic clouds. The shape of these waves changes
during the time evolution giving rise to a shock wave
front at a characteristic breaking time. We have deter-
mined the Mach number of these travelling waves as
a function of the perturbation amplitude, showing that
supersonic bright and subsonic dark waves behave quite
differently.
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[23] von Weizsäcker C. F., Z. Phys., 96 (1935) 431.
[24] March N. H. and Tosi M. P., Proc. R. Soc. A, 330

(1972) 373.
[25] Zaremba E. and Tso H. C., Phys. Rev. B, 49 (1994)

8147.
[26] Kim Y. E. and Zubarev A. L., Phys. Rev. A, 70 (2004)

033612; Escobedo M. A., Mannarelli M. andManuel
C., Phys. Rev. A, 79 (2009) 063623; Rupak G. and
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