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Abstract – In this paper, we present a master stability function (MSF) for the synchronization
of identical maps coupled by a class of stochastically switching weighted directed networks that
encompasses Erdős-Rényi and numerosity-constrained models. Similarly to the classical MSF for
static networks, the stochastic MSF allows for assessing synchronization in terms of spectral
properties of the coupling network. Computation of the MSF involves the estimate of the Lyapunov
exponents for an auxiliary dynamical system as a function of two independent parameters that are
related to the spectral properties of the expectation and autocorrelation of the coupling matrix. We
illustrate the results through simulations on chaotic Henon maps coupled through a numerosity-
constrained network.

Copyright c© EPLA, 2011

Introduction. – Synchronization is an ubiquitous
phenomenon in nature and technology that has been the
subject of considerable research efforts in a variety of
disciplines. Synchronization has been observed in a wide
variety of phenomena ranging from biological systems,
that include animal grouping, fireflies’ blinking, animal
gaits, heart stimulation, epidemiology, and neural activity,
to secure communications, chemistry, meteorology, and
optoelectronics [1–5].
Despite the vast literature on synchronization, the great

majority of research activities has been focused on dynam-
ical systems that are coupled via static networks whose
topology and coupling strengths are constant in time [1–5].
Within these static network models, the approach based
on the master stability function (MSF) by [6] has emerged
as an effective and manageable tool for studying synchro-
nization. Specifically, the MSF allows for assessing the
linear stability of the synchronization manifold for any
interconnecting topology by using only the spectral prop-
erties of the coupling matrix, that can also be nondiago-
nalizable [7].
Here, we consider the synchronization of N chaotic

maps whose individual dynamics is governed by x(k+1) =
F(x(k)) where x∈Rm is the oscillator state, F :Rm→Rm
is a nonlinear function describing the system dynamics,
and k ∈N is the time variable. The oscillators are coupled
(a)E-mail: mporfiri@poly.edu

through a stochastically switching directed weighted
network described at time k by the zero row-sum matrix
M(k)∈RN×N = [Mij(k)]. The matrices M(k)’s are
independent and identically distributed matrices with
common random variable M . The equations of motion
read

xi(k+1) =F(xi(k))−
N∑
j=1

Mij(k)H(xj(k)), (1)

where i= 1, . . . , N and H :Rm→Rm is a nonlinear func-
tion defining inner coupling among oscillators.
Synchronization over networks that dynamically change

over time is a relatively untapped field that only recently
has attracted significant research efforts; nonetheless, this
topic finds important applications in modeling complex
systems and engineering adaptive networks [8]. Synchro-
nization over time-varying deterministic network topolo-
gies is considered in [9–13] while stochastic networks are
examined in [14–16]. Different mathematical tools are
adopted in these studies to establish sufficient condi-
tions for local or global synchronization, yet an analo-
gous notion of the classical MSF for dynamic networks
of coupled oscillators is currently lacking. The objec-
tive of this letter is to derive a stochastic MSF for
(1) when the individual units communicate following
the information protocol for conspecific agents presented
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in [17], which includes Erdős-Rényi [18] and numerosity-
constrained networks [19], among other network models.

Stochastic stability of the synchronization
manifold. – We say that the system of oscillators is
synchronized if the state vectors for all oscillators are
identical. Specifically, the oscillators are synchronized if
x1(k) = . . .= xN (k) = s(k) for all k ∈N and some s that
is a solution of the individual oscillator dynamics. The
synchronization of (1) can be studied by linearizing the
equations of motion in the neighborhood of the common
trajectory s(k) to obtain the following variational
equations:

ξi(k+1) =DF(s(k))ξi(k)−
N∑
j=1

Mij(k)DH(s(k))ξj(k),

(2)
where i= 1, . . . , N , ξi = xi− s is the variation of the
i-th oscillator, and DF and DH are the Jacobians of
the functions F and H, respectively. We decompose the
variation of the i-th oscillator into a component along the
synchronization manifold and a component transverse to
the synchronization manifold, that is, we write

ξi = ξ̃i+
1

N

N∑
j=1

ξj . (3)

By replacing eq. (3) into (2) and introducing ξ̃(k) =[
ξ̃1(k)

T, . . . , ξ̃N (k)
T
]T
∈RmN , we find the following equa-

tion for the transverse dynamics:

ξ̃(k+1) = (R⊗DF(s(k))−RM(k)⊗DH(s(k)))ξ̃(k).
(4)

Here, ⊗ is the Kronecker product and R= IN − 1
N
1N1

T
N ,

where IN is the identity matrix in R
N×N and 1N ∈RN is

the vector of all 1’s. By construction, the matrix R is an
orthogonal projection onto span{1N}⊥ as it is symmetric,
idempotent, and Ker(R) = span{1N}, see [20]. The matrix
RM can be considered as a modified graph Laplacian
following the terminology in [21].
To study the stochastic stability of the synchronization

manifold, we introduce the autocorrelation matrix Ξ̃ :N→
R
mN×mN defined by Ξ̃(k) =E

[
ξ̃(k)ξ̃(k)T

]
, where E[·]

means expectation and initial conditions for the transverse
dynamics are considered as parameters. By definition,
Ξ̃(k) is symmetric and positive semidefinite and its trace
quantifies the lack of synchronization, that is, the expected
value of ‖ ξ̃(k) ‖2, where ‖ · ‖ is the Euclidean norm. Since
the matrices M(k)’s are independent random variables,

the evolution of Ξ̃ is given by the following recursion [22]:

vec(Ξ̃(k+1)) = (R⊗DF⊗R⊗DF
−R⊗DF⊗E[RM ]⊗DH−E[RM ]⊗DH⊗R⊗DF
+E[RM ⊗DH⊗RM ⊗DH])vec(Ξ̃(k)), (5)

where vec denotes vectorization and we have omitted
the dependence of the Jacobians on time. Here, we have
used the well-known property of the Kronecker product
(A⊗B)vec(C) = vec(BCAT) with A, B, and C properly
sized matrices [23].
We say that the coupled oscillators stochastically

synchronize if (5) is stable; on the other hand, if (5) is not
stable, the oscillators do not stochastically synchronize.
This notion of synchronization is based on the concept of
mean square stability of stochastic systems [24] and the
overarching linearization of the system dynamics.

Stochastic communication. – We assume that
stochastic communication between coupled dynamical
systems follows the information protocol for conspecific
agents presented in [17]. In this protocol, each unit is
virtually not able to distinguish among other units and
draws its features from the same distribution at every
time step. More specifically, the cardinality of each unit’s
neighbor set is generated by the random variable D and
the weight that each unit assigns to its neighbors in the
updating protocol is generated by the random variable E
at any time step k. We assume that D and E are jointly
distributed random variables with bivariate distribution
fD,E(d, ε), where d∈ {0, 1, . . . , N − 1} and ε∈R. The
marginal probability density function fD(d) determines
the topology of the communication network and the
marginal probability density function fE(ε) determines
the strength of the coupling between the coupled dynam-
ical systems. The i-th row of a realization of the matrix
M has diagonal entry −εidi and off-diagonal entries in
{0, εi(k)}, where εi and di are realizations of the random
variables D and E . The off-diagonal elements in the i-th
row consist of di elements equal to εi and N − 1− di
elements equal to zero; every permutation of these zero
and nonzero off-diagonal elements is equally likely. The
function fD,E(d, ε) can be specialized to exemplary cases
to recover for example Erdős-Rényi random [18] and
numerosity-constrained [19] networks.
By using a counting argument on the population of

potential coupling matrices as prescribed by the consid-
ered protocol, closed form expressions for E[RM ] and
E[RM ⊗RM ] can be obtained. We note that the matrix
E[RM ] can be considered as the expectation of the
modified graph Laplacian and E[RM ⊗RM ] as its auto-
correlation. Following [17], we have

E[RM ] =
Nφ1

N − 1R (6)

and

E[RM ⊗RM ] =
(
Nφ1

N − 1
)2
(R⊗R)+ (IN ⊗R)F, (7)

where

F =
φ21

(N − 1)2F
(1)+

φ2

N − 2F
(2)+

φ3

(N − 1)(N − 2)F
(3).

(8)
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Here, φ1 =E[ED], φ2 =E[E2D2], and φ3 =E[E2D]. Also,
the matrices F (1), F (2), and F (3) have diagonal blocks of

the form: F
(1)
ii =−IN −N(N − 2)ei(Rei)T, F (2)ii = 1

N
IN +

N2−3N+1
N−1 ei(Rei)

T, and F
(3)
ii =− 1N IN + ei(Rei)T; and off-

diagonal blocks given by: F
(1)
ij =−IN +Nei(Rei)T+

Nej(Rej)
T, F

(2)
ij =

1
N
IN +

1
N−1ei(ei− ej)T− 1

N−1Nei
(Rei)

T− ej(Rej)T, and F (3)ij =− 1N IN + ei(ei− ej)T+
(Nei+ ej)(Rej)

T where i, j = 1, . . . , N and ei is the i-th
column of IN .
The matrix E[RM ] has an eigenvalue equal to zero

corresponding to the eigenspace Ker(R) and the eigenvalue
corresponding to the eigenspace Ker(R)⊥ is

µ� =
Nφ1

N − 1 . (9)

We note that eq. (6) corresponds to an all-to-all network
where links are equally weighted. The matrix E[RM ⊗
RM ] is also symmetric and has a null eigenvalue corre-
sponding to the eigenspace Ker(R⊗R) that coincides
with the span of Ker(R)⊗RN and RN ⊗Ker(R). Eigen-
vectors in (Ker(R⊗R))⊥ have eigenvalues in the set
{λ(2)� , λ(3)� , λ(4)� } given by

λ
(2)
� =

2Nφ21
(N − 1)2 +φ2−

φ3

N − 1 , (10a)

λ
(3)
� =

N2φ21
(N − 1)2 , (10b)

λ
(4)
� =

Nφ21
(N − 1)2 +φ2+φ3. (10c)

The corresponding eigenspaces are identified as Γ(2), Γ(3),
and Γ(4) and their dimensions are N − 1, N2− 3N +1,
and 1, respectively [17]. These eigenvectors are originally
derived in [19] and are universal to all communication
protocols for conspecific agents. These results are applica-
ble to any network size except of the case of N = 2, in
which neighbor selection is trivial.

Stochastic master stability function. – Let
v1, . . . ,vN2 be orthogonal and normalized eigenvectors of
E[RM ⊗RM ] ordered so that the first 2N − 1 vectors are
in Ker(R⊗R). In addition, for j = 2N, . . . , N2, denote the
eigenvalue corresponding to vj with λj ∈ {λ(2)� , λ(3)� , λ(4)� }.
We diagonalize the variational equation (5) by using the
decomposition

Ξ̃(k) =

N2∑
j=1

Vj ⊗Θj(k), (11)

where Vj =vec
−1(vj) and Θj :R→Rm×m identifies the

components of Ξ̃ along vj at time k for j = 1, . . . , N
2. In

other words, the pq-th component of the matrix Θj(k)

equals the trace of the matrix Ξ̃(k)T
(
Vj ⊗ epeTq

)
, where

ep ∈Rm has all entries equal to zero except of the p-th one
that is equal to one.
Next, we replace the decomposition (11) into (5) to

obtain a set of uncoupled equations for Θj with j =
1, . . . , N2. In particular, by direct substitution and taking
the matrix form, that is, by applying the operator vec−1

to both sides, we find

N2∑
j=1

Vj ⊗Θj(k+1) =
N2∑
j=1

(
RVjR

T⊗DFΘj(k)DFT

−RVjE[RM ]T⊗DFΘj(k)DHT
−E[RM ]VjRT⊗DHΘj(k)DFT
+E[RMVj(RM)

T]⊗DHΘj(k)DHT
)
.

(12)

Each of the summands on the right-hand side of eq. (12)
can be drastically simplified by using the facts that E[RM ]
is proportional to R and that Vj are the matrix form of the
eigenvectors of E[RM ⊗RM ]. In particular, we have that
RVjR

T vanishes for j = 1, . . . , 2N − 1 and is equal to Vj
otherwise; similarly, RVjE[RM ]

T and E[RM ]VjR
T vanish

for j = 1, . . . , 2N − 1 and are equal to µ�Vj otherwise.
The last term E[RMVj(RM)

T] also vanishes for j = 1, . . . ,
2N − 1 and it equals λjVj otherwise. Therefore, eq. (12)
reduces to Θj(k) = 0 for j = 1, . . . , 2N − 1 and

vec(Θj(k+1)) = (DF⊗DF−µ�(DH⊗DF+DF⊗DH)
+λjDH⊗DH)vec(Θj(k)) (13)

for j = 2N, . . . , N2.
From eq. (13), we define the stochastic master stability

equation for the stochastically coupled dynamical systems

θ(k+1) = (DF⊗DF−µ(DH⊗DF+DF⊗DH)
+λDH⊗DH)θ(k), (14)

where θ ∈Rm2 is the state of an auxiliary dynamical
system and we have introduced the parameters µ and
λ. The MSF, say Ω, is defined as the largest Lyapunov
exponent of (14) in terms of the parameters µ and λ and
the stochastic stability of (1) is ascertained by specializing

Ω to µ and λ equal to the three pairs (µ�, λ
(i)
� ), with

i= 2, 3, 4. Thus, the system is stochastically stable if Ω is
negative for all these three pairs and is unstable otherwise.
We note that the values of Ω on the curve λ= µ2 can

be obtained from the classical MSF for static networks
since the matrix in the right-hand side of the master
stability equation can be decomposed as (DF−µDH)⊗
(DF−µDH). In addition, we note that in the case F=H,
the master stability equation reduces to

θ(k+1) = (1− 2µ+λ)(DF⊗DF)θ(k), (15)

whose m2 Lyapunov exponents are {ln|1− 2µ+λ|+hi+
hj : i= 1, . . . ,m; j = 1, . . . ,m} where h1, . . . , hm are the

40014-p3



M. Porfiri

0.5

0.5

0

0

1

1.5

2

2

0 1 2 3
2

1

0

1

2

3

4

5

6

7

Fig. 1: (Color online) Stochastic MSF for coupled Henon maps.
Red contours identify a null value of the Lyapunov exponent.

Lyapunov exponents for the individual systems. Therefore,
the condition for stochastic synchronization reduces to

ln |1− 2µ�+λ(i)� |+2hmax < 0 (16)

for i= 2, 3, 4, where hmax is the largest Lyapunov exponent
of the individual systems. This result extends the classical
results on coupled map lattices [25,26] to stochastically
coupled maps.
In the case of constant coupling strength for all network

links, that is, E = ε∈R, we find that φ3 = εφ1 and that
µ� and {λ(2)� , λ(3)� , λ(4)� } are only functions of the aver-
age network degree and its variance. Therefore, for a
selected network model, all these parameters depend on
the coupling strength ε in at most a parabolic way.
In addition, for large networks and assuming that the
average degree and its variance stay bounded, from (9)

and (10), we have µ� = φ1, λ
(2)
� = φ2, λ

(3)
� = φ

2
1, λ

(4)
� =

φ2+ εφ1. Notably, for small values of ε, we have that

µ�� λ(2)� , λ(3)� , λ(4)� ; in this case, second-order terms in
ε are negligible and the system dynamics is practically
controlled by the expected coupling matrix similarly to
fast switching conditions for time-continuous systems [12,
15,16].

Illustration of the method. – We consider a network
of coupled canonical Henon maps, where the chaotic
dynamics of each individual is governed by [26]

x1(k+1) = 1− 1.4x21(k)+x2(k), (17)

x2(k+1) = 0.3x1(k). (18)

We further assume that the maps are coupled only through
their first state so that H1(x1, x2) =−x21(k)+x1x2 and
H2(x1, x2) = 0.
With these selections we compute the Lyapunov expo-

nents of (14) for a broad range of values of µ and λ by
using the numerical procedure reported in [27]. In partic-
ular, the values of µ and λ are varied in increments of 0.05

0.0 0.2 0.4 0.6 0.8 1.0
2

1

0

1

2

3

Fig. 2: Stochastic MSF computed for pairs (µ�(ε), λ
(2)
� (ε))

(solid line), (µ�(ε), λ
(3)
� (ε)) (dot-dashed line), and

(µ�(ε), λ
(4)
� (ε)) (dashed line) corresponding to a numerosity-

constrained network with N = 100 and n= 5.

and the computation of Lyapunov exponents uses initial
conditions whose components are randomly selected in the
interval [0, 0.1], 5000 iterations, and an estimated tran-
sient of 100 samples. Figure 1 shows the stochastic MSF
for the Henon map. If the oscillators are uncoupled, then
both the parameters µ and λ are zero and the stochastic
MSF gives 0.85 which is approximately twice the largest
Lyapunov exponent of the Henon map reported in [26].
The stochastic coupling among the oscillators results into
nonzero values of µ and λ that in turn control the network
synchronization through the stochastic MSF.
As an instance of stochastically coupled Henon maps, we

consider the numerosity-constrained network model in [19]
which requires that the number of neighbors of every
unit and the weight ascribed to neighbors are constant.
Here, links are inherently dependent as a link activation
is affected by the presence of other links through the
constraint imposed on the neighbor set cardinality. This
protocol can be written in terms of conspecific agents by
defining D and E to both be constant, that is, D= n∈
{0, 1, . . . , N − 1} and E = ε; in this case, φ1 = εn, φ2 =
ε2n2, and φ3 = ε

2n. We considerN = 100 units coupled via
a numerosity-constrained network with out-degree equal
to n= 5. By using the data in fig. 1 and by replacing
the closed form expressions for φ1, φ2, and φ3 introduced
above into (9) and (10), we find that the system is
synchronizable for coupling strengths in the approximate
range ε∈ [0.11, 0.32]. This finding is better illustrated in
fig. 2, where the MSF is plotted as a function of ε by using
the same numerical procedure illustrated above with fine

increments of ε of 0.01. Note that Ω(µ�(ε), λ
(2)
� (ε)) and

Ω(µ�(ε), λ
(3)
� (ε)) are practically overlapping as expected

from the relatively large network size and the fact that for
numerosity-constrained networks φ2 = φ

2
1.

As an illustration of the effectiveness of the proposed
MSF in assessing the network stochastic synchro-
nization, in fig. 3, we report the evolution of the
error norm defined as δ(k) = ‖(R⊗ Im)x(k)‖, where
x(k) =

[
x1(k)

T, . . . ,xN (k)
T
]T ∈RmN , for sample trajec-

tories and different values of ε. This quantity defines
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Fig. 3: Time evolution of the synchronization error for a
network of N = 100 canonical Henon maps coupled via a
numerosity-constrained network with n= 5 for ε equal to 0.05
(triangles), 0.2 (circles), and 0.33 (squares). The error grows
unbounded after approximately 130 samples for ε= 0.33; note
that only one of the Lyapunov exponents of (14) is positive and
yet synchronization is not possible.

the mismatch between the oscillators’ states for a given
trajectory and its expectation is equivalent to the norm
of ξ(k) when the individual oscillators are proximal to the
synchronization manifold. We select the same sequence of
network realizations in the three simulation studies and
we generate random initial conditions whose components
are randomly selected in the interval [0, 0.001] with a
uniform distribution. In fig. 3, we consider ε equal to
0.05, 0.2, and 0.33 to illustrate the existence of a bounded
region of synchronization in terms of the coupling strength
as predicted by the MSF in fig. 2. For ε= 0.2, the error
rapidly approaches zero consistently with the results in
fig. 2; on the other hand, the synchronization error does
not approach zero for ε= 0.05 and ε= 0.33 in line with
the proposed MSF approach, see fig. 2. Specifically, the
error becomes very large, albeit bounded, for ε= 0.05
while it grows unbounded for ε= 0.33.
In fig. 4, we report the phase portraits for the average

dynamics defined by 1
N

∑N
i=1 xi(k) that correspond to

the trajectories presented in fig. 3. Consistent with the
previous observations on the synchronization error, we
find that when the oscillators synchronize, their average
dynamics corresponds to the attractor of the Henon map.
Notably, even if the oscillators do not synchronize for
ε= 0.05, the coupling is so weak that the average dynamics
seem to be confined in the basin of attraction of the Henon
map; on the other hand, for ε= 0.33, the stronger coupling
causes the trajectories to grow unbounded along with their
average.
For the case ε= 0.2, in fig. 5, we report the error δ(k)

computed for 50 different realizations of the interconnect-
ing network and the same initial conditions whose compo-
nents are randomly selected in the interval [0, 0.001].
The dashed line shows the average of the numerical
simulations and color markers indicate different realiza-
tions. By taking a linear regression of the average error,
we find an exponential rate of decrease on the order

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.4
0.2
0.0
0.2
0.4

x1

x 2

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.4
0.2
0.0
0.2
0.4

x1

x 2

10 5 0 5 10
2
1
0
1
2

x1
x 2

Fig. 4: Phase portraits of the average dynamics for a network
of N = 100 canonical Henon maps coupled via a numerosity-
constrained network with n= 5 for ε equal to 0.05 (top), 0.2
(middle), and 0.33 (bottom). Simulation data use 500 samples
except of the bottom panel for comparison.

0 25 50 75 100 125 150
10 14
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0.01
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Fig. 5: (Color online) Fifty time evolutions (color markers)
and mean value (dashed line) of the synchronization error for
a network of N = 100 canonical Henon maps coupled via a
numerosity-constrained network with n= 5 for ε= 0.2.

of 0.14 that is approximately half of the value of Ω

at (µ�(0.2), λ
(2)
� (0.2)), namely, 0.29, from fig. 2. This is

consistent with the fact that the MSF is computed from
the variational equation (5), in which the trace of Ξ̃(k)
is equal to the expectation of the square of the norm of
ξ(k), that in turn corresponds to the expectation of δ(k)2

for proximal trajectories.
We comment that similar results can be obtained by

considering an Erdős-Rényi topology, where every two
units share a directed communication link with equal
probability p, whose strength is fixed to ε. This proto-
col corresponds to D having a binomial distribution
with parameters N − 1 and p and to E = ε, which yield
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φ1 = (N − 1)pε, φ2 = ((N − 2)p+1)(N − 1)pε2, and φ3 =
(N − 1)pε2.
Summary and discussions. – In this letter, we have

analyzed synchronization of a discrete time dynamical
system comprising chaotic maps that are coupled by a
stochastic weighted directed network. We have focused
on the communication protocol for so-called conspecific
agents to describe the stochastic coupling among the indi-
vidual units. Within this framework, every unit is equally
likely to be connected with any other network unit; in
addition, the node degree and the weight assigned to
emanating links are drawn from a bivariate distribution.
The selection of such distribution allows for recovering
both numerosity-constrained and Erdős-Rényi networks,
that span extreme scenarios of random networks with
highly dependent and completely independent links. These
networks share a common structure for the expected
coupling matrix and its autocorrelation whose spectral
properties can be found in [17]. For this network model,
we have established a novel stochastic MSF that allows
for assessing the network synchronization in terms of
the individual oscillator dynamics and fundamental scalar
moments that define the random coupling. The compu-
tation of the stochastic MSF requires the analysis of
dynamical system whose dimension is the square of the
dimension of an individual unit as a function of two para-
meters. These parameters are related to the eigenvalues
of the expected matrix E[RM ] and the autocorrelation
matrix E[RM ⊗RM ]. Within this framework, synchro-
nization does not require the network to be strongly
connected or to admit a spanning tree at all times, as it is
controlled by E[RM ] and E[RM ⊗RM ] rather than the
actual network realizations that may also represent highly
disconnected topologies.
We comment that the derivation of the stochastic MSF

is largely based on the fact that the expected coupling is
all-to-all, that is, E[RM ] is proportional to R; while it
does not make use of the explicit form of the eigenvectors
of E[RM ⊗RM ]. This hints that the proposed approach is
valid beyond the considered information-sharing scenario
based on conspecific agents to encompass nonsymmet-
ric and possibly nondiagonalizable matrices E[RM ⊗RM ]
following the line of proof of [7]. In general, we expect that
the proposed methodology can be extended to stochas-
tic couplings for which E[RM ⊗RM ], R⊗E[RM ], and
E[RM ]⊗R share the same Jordan canonical transforma-
tion. In addition, the proposed approach is readily special-
ized to coupled linear time-invariant maps, for which the
Lyapunov exponents are equivalent to the logarithm of the
absolute value of the spectra and the stochastic synchro-
nization problem reduces to a simple eigenvalue computa-
tion for small-scale systems.
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