The ordinary Bondi–Metzner–Sachs (BMS) group B is the common asymptotic symmetry group of all radiating, asymptotically flat, Lorentzian spacetimes. As such, B is the best candidate for the universal symmetry group of general relativity. However, in studying quantum gravity, spacetimes with signatures other than the usual Lorentzian one and complex spacetimes are frequently considered. Generalizations of B appropriate to these other signatures have been defined earlier. In particular, the generalization B(2, 2) appropriate to the ultrahyperbolic signature (+, +, −, −) has been described in detail, and the study of its irreducible unitary representations (IRs) of B(2, 2) has been initiated. The infinite little groups have been given explicitly, but the finite little groups have only been partially described. This study is completed by describing in detail the finite little groups and by giving all the necessary information in order to construct the IRs of B(2, 2) in all cases.