This book provides a timely review of our present understanding of plasma phenomena in magnetized terrestrial and solar space plasmas. The author's emphasis is on the fluid and particle modeling and interpretation of observed active processes in space plasmas, i.e. `the physical background of large plasma eruptions in space'. It is somewhat alarming for a plasma physicist to read that an emphasis on processes in spatially inhomogeneous plasmas means that the work `... excludes a considerable fraction of the available methods in space plasma physics, such as the theory of waves, instabilities and wave particle interactions on a homogeneous background', particularly in light of the fact that much of our knowledge of these plasmas is derived from observations of such waves. However, it is clear on reading the book that such a restriction is not a disadvantage, but allows the author to concentrate on the main theme of the book, namely the use of fluid and particle pictures to model the equilibrium and active states of space plasmas. There are many other books which cover the wave aspects of space plasmas, and would complement this book.
The book's coverage is based on the extensive and profound research of the author and his colleagues in the area of fluid and particle modeling of space plasma structures. After an introduction to the physical setting of active plasmas, and a necessarily concise, but effective, discussion of the fluid and particle models to be used, the steady states of the magnetized plasmas of interest are treated, including the magnetosphere, solar plasmas and current sheets. Next the dynamics of unstable states is covered, including MHD and tearing instabilities, and nonlinear aspects, with a detailed discussion of magnetic reconnection. Finally, the models are applied to magnetospheric and solar observations.
The book is attractively written and produced, and this reviewer managed to find a minimum number of errors. A particularly attractive feature is the author's effort to explain in physical terms the concepts and ideas behind the processes discussed, rather than rely on bare equations. Indeed, this reviewer gained some new insights from the author's careful discussion of various points. This feature helps to make the book ideal background reading for researchers entering this field, after an entry-level introduction like, for example, the book of Kivelson and Russell.