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Abstract
We calculate the energy of threshold fluctuation dFthr which triggers the transition of a
superconducting current-carrying bridge to the resistive state. We show that the dependence

d µ -( ) ( )F I I I I e1thr dep dep
5 4 , found by Langer and Ambegaokar for a long bridge with

length xL , holds far below the critical temperature in both dirty and clean limits (here Idep is
the depairing current of the bridge and ξ is a coherence length). We also find that even a ‘weak’
local defect (leading to a small suppression of the critical current of the bridge I Ic dep) provides

d µ -( )F I I I e1thr c c
3 2 , typical for a short bridge with xL or a Josephson junction.

Keywords: fluctuations, superconducting bridge, defects

(Some figures may appear in colour only in the online journal)

1. Introduction

The superconducting state of a bridge or wire with current is
stable with respect to infinitesimally small perturbations of
superconducting order parameter Δ up to currents close to the
critical (depairing) current. But if fluctuation-induced change of
Δ is sufficiently large, instability is developed in the super-
conductor even at <I Ic, leading to the appearance of a finite
resistance and dissipation. The theory of fluctuation-induced
switching was first was studied in the work of Langer and
Ambegaokar (LA) [1]. They considered a long (length xL ,
with ξ the coherence length) quasi-one-dimensional (transverse
dimensions smaller than ξ) superconducting bridge. To calculate
the threshold fluctuation LA proposed finding a saddle-point state
in the system nearest in energy to the ground state. They obtained
that threshold fluctuation corresponds to a partial suppression of
the superconducting order parameter in a finite segment of the
bridge with size of about ξ and derived the dependence of the
energy of threshold fluctuation on the applied current. Their
result is described well by following approximate expression [2]:
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where p l x= FF S 32 ,0 0
2 3 2 Φ0 is the magnetic flux quantum,

S=wd is the area of the cross section of the bridge with width w
and thickness d, λ is the London penetration depth of the
magnetic field and =I I2 3 3dep 0 ( p l x= FI c S 80 0

2 2 ) is the
depairing current in the Ginzburg–Landau (GL) model, which
coincides with the expected critical current of the long ( xL )
bridge. In [3] the LA approach was generalized for super-
conducting bridges with arbitrary length and it was shown that
the dependence d ( )F Ithr tends to the expression d =Fthr

 -( )I I I e1c c
3 2 for short bridges ( x µL I L; 1c is the

critical current of the bridge). This dependence is typical for the
energy of threshold fluctuation of Josephson junctions with a
sinusoidal current–phase relation [4].

The energy of threshold fluctuation was also calculated
for a long bridge using a microscopic approach [5, 6]. In [5]
the temperature and current dependences of dFthr were cal-
culated on the basis of the Eilenberger equations [7] for a
clean long superconducting bridge with only one conducting
channel. However, dFthr has been significantly overestimated
at finite current since the contribution to dFthr due to the work
performed by the current source was not taken into account.
In the present work we recalculate the dependence d ( )F Ithr at
different temperatures on the basis of the Eilenberger
equations, and find agreement with a power-5/4 law up to
=T T0.5 c, which coincides with the result found in [6] using

Usadel equations [8] for a long dirty bridge. We argue that the
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relation d ~( )F I e0thr dep found in the framework of the GL
model (see equation (1)) approximately holds in a broad
temperature range below Tc not only for long bridges (dirty or
clean ones) but also for short bridges, with the replacement of
Idep(T) by the actual critical current of the bridge Ic(T).

Our interest in the role of defects in d ( )F Ithr is motivated
by recent experimental works [9–11]. In experiments one
usually measures the switching current Isw (which has a ran-
dom value due to fluctuations) many times to find the average
value á ñIsw and the dispersion σ, which are directly related to
d ( )F Ithr (for the explicit relation between á ñI ,sw σ and d ( )F Ithr

see, for example, equations (2) and (3) in [11]). Note that
alternatively ( )F 0thr could be found from the temperature
dependence of resistivity near Tc, because

dµ -( ) ( ( ) )R T F kTexp 0thr [12]. Although in [10, 11]
experiments were done for long superconducting bridges in a
wide temperature interval below Tc good agreement with a
power-3/2 law was found. To explain this result, Khlebnikov
[13] recently developed a model which considered the bridge
as a discrete set of nodes connected by superconducting links;
in his model he neglected local suppression of the super-
conducting order parameter. Below we show that a power-3/2
law can be obtained for a long bridge in the framework of the
LA model if one takes into consideration the presence of
defects in the bridge, such as constrictions or local variation of
the critical temperature or mean path length. We argue that the
dependence d ( )F Ithr can deviate from a power-5/4 law even in
case of relatively ‘weak’ defects, when the critical current Ic of
the bridge with defects is not far from the depairing cur-
rent Idep.

2. Effect of defects on δF thr ðIÞ

Here we consider a model system consisting of a super-
conducting bridge with cross section S and length L con-
necting two superconducting banks whose cross section has
the area S Spad . Assuming that the maximum characteristic
transverse size is x~ d S , the problem can be con-
sidered as one-dimensional and only the dependence on the
longitudinal coordinate x is taken into account.

To consider the effect of defects on the dependence
d ( )F Ithr , we use the GL theory. To determine the energy of
threshold fluctuation it is necessary to find the saddle state of the
system corresponding to the local maximum of the free energy
in presence of an external current source. Since it is a stationary
state (albeit unstable), it is described by the GL equation

x  D + - - D D D =( ) ( ∣ ∣ ( )) ( )T T0 1 0 0, 2GL
2 2

c
2

GL
2

where x ( )0GL and D ( )0GL are, respectively, the coherence
length and the superconducting order parameter in the GL model
at zero temperature [12].

We seek the solution in the form D D =( )x GL

j( ) ( ( ))f x xexp i . Then the dimensionless GL equation has the
form
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where the condition of the constant current in the system,
I=const, is used (here j= =j f x I Sd d2 is the
current density in the bridge). In (3) the magnitude of the
superconducting order parameter f, length and current density
are measured in units of D = D -( ) t0 1GL GL , x =
x -( ) t0 1GL and =j I S0 0 ( =t T Tc is the dimension-
less temperature). Equation (3) should be supplemented with
boundary conditions at the ends of the bridge

= =-∣ ∣ ( )f f 1, 4L L
2 2

which follow from the assumption about nearly zero current
density at the banks, and thus the order parameter reaches its
equilibrium value f=1.

The energy of threshold fluctuation can be found using
the expression


d dj= - - ( )F F F

e
I

2
, 5thr saddle ground

where dj is the additional phase difference between the ends
of the bridge appearing in the saddle-point state and Fsaddle

and Fground are the free energies of the saddle-point and
ground states, respectively. In our units these energies take
the form

ò= - ( )F
F

f x
2

d . 6saddle,ground
0 4

Equation (3) with boundary conditions (4) is solved
numerically for a bridge with length x=L 30 . In the num-
erical solution, we use the relaxation method: the time deri-
vative ¶ ¶f t is added to the GL equation (3) and iterations
are performed until the time derivative becomes zero within a
specified accuracy. To find the saddle-point state, we use the
numerical method proposed in [14]: at a given current, we fix
the magnitude of the order parameter f (0) at the center of the
bridge and allow f to change at all other points. The state with
the minimum fixed f (0) value for which a steady-state solu-
tion exists is a saddle-point state.

We consider three types of defect. The first type corre-
sponds to variation of critical temperature Tc along the bridge.
To describe such a defect in the model, we write the GL
equation at the defect region (placed in the center of the
bridge) in the form

a- + - = ( )f

x

j

f
f f

d

d
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3

where the parameter *a = - -( ) ( )t t1 1 characterizes the
deviation from the critical temperature of the rest of the bridge
(here * *=t T Tc ). Absence of a defect corresponds to the
case a = 1, and decrease in local critical temperature * <T Tc c

corresponds to a < 1.
We consider defects with lengths x x=l 0.5 , and x2

and calculate dependences d ( )F Ithr at different α. The
results of our calculations for length x=l 0.5 are shown in
figure 1, where we also present the fitting expression
d d= -( )( )F F I I0 1 b

thr thr c . For a bridge with critical current
=I I0.95c dep (a = 0.6) we have »b 1.36, for a bridge with
=I I0.74c dep (a = -0.55) »b 1.45, and for a bridge with
=I I0.66c dep (a = -1.05) is well fitted by » =b 1.5 3 2

2
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typical for short bridge [3] and Josephson junction [4].
Besides we find that in all cases d ( )F I e0thr c (see inset in
figure 1), which is typical for a Josephson junction and
resembles the result found in the framework of the GL model
in limiting cases of both long xL and short xL
bridges.

The second type of defect models the inhomogeneity of
the cross-sectional area of the bridge. We assume that there is
region with cross-sectional area <S Sd and length l in the
center of the bridge (see figure 2). To describe such a con-
striction, the boundary condition (4) is supplemented by
conditions similar to the conditions from [3]
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where f f f, ,L C R are the magnitudes of the order parameter
to the left of the defect, in the defect and to the right of the
defect, respectively. The condition(8a) appears from the
variation of the GL functional for a superconductor with cross
section depending on x (which is responsible for the
appearance of the derivative ( ( ) )x S x f xd d d d ). Here S Sd is
not the actual ratio of cross-sectional areas but it is a reference
parameter characterizing a change in the derivative of the
function f in the x direction at the transition through
the bridge–defect interface.

The calculated dependences d ( )F Ithr for the constriction
with x=l and different cross sections Sd are shown in
figure 3 together with the fitting expressions d =Fthr

d -( )( )F I I0 1 b
thr c . For a bridge with =S S0.9d critical

current =I I0.987c dep and »b 1.36, for a bridge with
= =S S I I0.76 0.945d c dep ( »b 1.42) and for bridge with
= =S S I I0.5 0.795d c dep and »b 1.48. This result demon-

strates that even a small variation in the cross-sectional area
can significantly change the dependence d ( )F Ithr and neither a
power-5/4 law nor a power-3/2 law are suitable to fit the
current dependence of dFthr. As in case of local variation of Tc,
even a relatively ‘weak’ constriction ‘provides’ a power-3/2
law and d ( )F I e0thr c (see inset in figure 3).

Very similar results could be obtained if there is local
variation in the bridge of mean path length ℓ (a third type of
defect). In principle, to calculate d ( )F Ithr one can use analytical
results for the distribution of f and phase along the super-
conducting bridge from [15] but we use a numerical procedure
because the dependence of f on the coordinate is expressed
via special functions. We find that when ℓ is five times smaller
in the region with length x=l 0.5 the dependence
d d -( ) ( )F I F I I1.06 1thr J c

3 2 with I I0.73c dep.
The change of exponent from 5/4 to 3/2 for the types of

defectconsidered can be understood in the following way. In
a long defectless bridge the length of the critical nucleus (the
region with suppressed Δ) diverges as I Idep [1], while in a
bridge with defect its length is restricted by the length of
defect plus x~2 (when I I0.7c dep). This resembles the
situation with a short superconducting bridge which behaves
like a Josephson junction and has d µ -( )F I I1thr c

3 2.

3. The energy of threshold fluctuation at arbitrary
temperature

The results obtained in section 2 are valid near critical
temperature Tc since they are based on the GL model. Below

Figure 1. Dependence of the energy of threshold fluctuation on
current for bridges with local variation of Tc (on length x=l 0.5 in
the center of the bridge). Fitting functions d -( )( )F I I0 1 b

thr c are
shown by the solid lines, the parameters d ( )F 0thr and b are shown in
the inset. Here d =F I eJ c .

Figure 2. Superconducting bridge with cross-sectional area S and
length L, containing a constriction of length l and cross section Sd.

Figure 3. Dependence of the energy of threshold fluctuation on
current for a bridge with different constrictions (the length of
constriction is fixed: x=l ). The fitting functions d -( )( )F I I0 1 b

thr c

are shown by the solid lines, the parameters d ( )F 0thr and b are shown
in the inset. Here d =F I eJ c .

3
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we show example of defectless bridges for which the
dependences d d= -( )( )F F I I0 1 b

thr thr c ( =b 5 4, 3 2) and
d µ( )F I0thr c are valid at T Tc too.

First we consider, similar to Zharov et al [5], the case of a
long clean one-dimensional superconducting bridge ( xℓ 0,
with x p= Dv0 F 0 the coherence length in clean limit at
T=0) containing only one conduction channel. To find the
saddle state in that case we use the one-dimensional Eilen-
berger equations for the normal and anomalous Green’s
functions, w( )g x v, ,n F and w( )f x v, ,n F respectively
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where vF is the Fermi velocity, w p= +( )k T n2 1 2n B is the
Matsubara frequency. The Green’s functions obey the nor-
malization condition + =+g ff 12 . These equations are
completed with the self-consistency equation for the order
parameter Δ

ål
p w w
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and the expression for the supercurrent density
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2
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11

n n0 B
F
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n

Here λ is the coupling constant and N0 is the density of states
on the Fermi level. The summation is going over all Matsu-
bara frequencies.

Following [5], we seek the solution in the form of plane
wavesD µf, e kxi with complex amplitudes and solve (9). To
calculate the energy of threshold fluctuation, we use the
expression (5) derived by Eilenberger in [7]. Using this
expression and the saddle-point solution of(9), one can cal-
culate the energy of threshold fluctuation
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Here w w= D - D ¢  D ¢ + Da i I n R n0
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0
2 , w w¢ = +n n

ki 2, Δ0 is the absolute value of the complex amplitude of
the order parameter and DR0 and DI are the real and ima-
ginary parts of the complex amplitude, which is determined
by the equations
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In [5] expression(12) does not contain last term, which
includes the work performed by the current source on the
system during the transition of the system from the ground
state to the saddle-point state. The comparison of our results
with the results of [5] and the LA theory is shown in figure 4.
It is seen that accounting for this term significantly changes
the dependence d ( )F Ithr and brings it to a form that is similar
to(1) in the wide temperature range below the critical
temperature (only at =T T 0.05c is there noticeable deviation
from the power-5/4 law).

Now we consider the case of dirty superconducting
bridge ( xl 0). To calculate the energy of the saddle-point
state we use the Usadel equation [8] for the normal w( )g x,n

and anomalous w( )f x,n Green’s functions in standard para-
metrization [16]

w q w w q w= = c( ) ( ) ( ) ( )
( )

( )g x x f x x, cos , , , sin , e ,
15

n n n n
xi

where θ and χ are real functions. With that parametrization
the Usadel equation reads as





q
w q q q- + + D =⎜ ⎟⎛
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D
q

2

d

d 2
cos sin cos 0, 16n

2

2 s
2

while the self-consistency equation and the expression for the
supercurrent density take the forms

åp q
w

D = -
D

w >
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T
k Tln 2 sin , 17

nc
B

0n


åp q=
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( )j eN D T
q

4 sin . 180
s

0

2

n

Here D is the diffusion coefficient and  c= ( )q xd ds is the
superfluid momentum. The free energy in(5) can be written

Figure 4. Dependence of the energy of threshold fluctuation on
current for a long bridge ( x ( )L T ) at different temperatures in the
clean and dirty limits. We compare this with the results following
from the GL model (solid lines, equation (1)) and [5] (white circles,
equation (12) without last term).
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Equations (16)–(18) are numerically solved for a long
bridge using Newton’s method with the boundary conditions
q q= ¥ at x= x 15 Tc

( x = D k TT B cc
), where q¥ is the

solution of the uniform Usadel equation


w q q q- + + D =¥ ¥ ¥ ¥⎜ ⎟⎛

⎝
⎞
⎠ ( )D

q
2

cos sin cos 0. 20n s
2

The search for the saddle state is performed in a similar way
as that based on the GL theory, with the only difference that
we fix the ratio q q¥( )sin 0 sin at x=0 instead of the
magnitude of the order parameter. The dependence d ( )F Ithr is
shown in figure 4. It can be seen that for a dirty long bridge
the current dependence of dFthr remains close to the depend-
ence described by equation (1). d d( ) ( )F F0 0thr LA (see
figure 5) for a broad range of temperatures below Tc and if
one uses for Idep(T) the result from microscopic calculations
and not the GL depairing current. In the clean limit the
deviation is stronger, reaching about 15% for d ( )F 0thr as
T 0 [5].
Alongside the case of long bridges we also study short

bridges ( x ( )L T ) in the dirty limit. In this case we can
neglect non-gradient terms in (16) inside the bridge, as done
by Kulik and Omelyanchuk [17], and we obtain the following
equation:





q
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where qC defines θ inside the bridge. In [17] the solution of
this equation was found together with the current–phase
relation f( )I
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where d f w= D +¥( )cos 2 n
2 2 and f is the phase dif-

ference across the bridge. In(22) for each current there are
two values of f corresponding to two different states—the
smaller f corresponds to the ground state and the larger f
corresponds to the saddle state. The strategy for finding dFthr

is as follows: for fixed current we find two values of f, then
with these f we use the analytical solution from [17] for qC,
while for θ outside the bridge we numerically solve
equations (16) and (17), neglecting the pair breaking effect of
the current/supervelocity in the banks (which is applicable
when the cross section of the banks S Spad ). Solutions in
the bridge and in the banks are matched using the boundary
conditions

q q

w

d

=

=
f

d

 

D f
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2 2 2 2

q q q= =- ¥∣ ∣ ( ), 25L RL Lsys
2

sys
2

where q q,L R are the functions θ in the left bank and right
bank, respectively. Here x= +L L40 Tsys c

is the length of the
modeled system, including the bridge (with length L) and the
banks with cross section Spad and length -( )L L 2sys which
are in contact with much wider banks where θ is equal to its
value at the given temperature and zero current. The above
conditions appear from the conservation law for spectral
currents [18] and is similar to the boundary conditions (8).

The calculated d ( )F Ithr are shown in figure 6. For
x ( )L T ( x=L 0.2 Tc

) the power-3/2 law is approximately
valid at all temperatures (note the noticeable difference at
I I0.8 c for =T T0.5 c and =T T0.05 c) while for a bridge

with x=L 0.6 Tc
the condition x ( )L T is not applicable at

low temperatures, which leads to stronger deviation from the
power-3/2 law in a wide range of currents near Ic. Note that

d ( )F I e0thr c (see inset in 6) has its largest deviation at
low temperatures.

Finally, in the dirty limit we find how d ( )F 0thr depends on
the length of the bridge. Earlier, in [3] we claimed that the
dependence d ( )F L0,thr may have a minimum at

x- ( )L T2 3 for a proper choice of bank and bridge
widths. We performed calculations (to determine the saddle
state, the condition q = =( )x y0, 0 is added) using the two-
dimensional Usadel equation in the the same geometry as in
[3] (see figure 4 there) and the same geometrical parameters
but we did not find a minimum (see figure 7). Instead d ( )F 0thr

monotonically increases as L decreases following increase of

Figure 5. Temperature dependence of the energy of threshold
fluctuation at zero current for a long bridge ( x ( )L T ) in the clean
and dirty limits. The energy is measured in units
of d =( )F I e0 6 2LA dep .
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Ic. This result forced us to check our calculations made in the
framework of the GL model [3] and we found that this result
is an artifact of the grid approximation used. With a proper
grid we can confirm the absence of a minimum in the
dependence d ( )F Lthr in the GL model too.

4. Discussion

We demonstrate that functional dependence of the energy of
threshold fluctuation (perturbation) on current following from
the GL model remains valid at temperatures well below Tc in
both dirty and clean limits if one uses the actual critical
(depairing) current but not the GL depairing current. This
result gives us hope that the strong effect of even a relatively

‘weak’ defect (which does not strongly suppress the critical
current of the bridge and provide I Ic dep) on the dependence
d ( )F Ithr that was found at ~T Tc is temperature independent
and could also be applicable at low temperatures.

Our results could be used for qualitative explanation of
the dependence d ~ -( ) ( )F I I I1thr c

3 2 found in [10, 11] for
long bridges/wires as due to the presence of intrinsic defects
in their samples. Unfortunately we are not able to make a
quantitative comparison due to the lack of important para-
meters (resistivity and diffusion coefficient of the bridges/
wires, their width and thickness) which are needed to see how
far the actual critical current of the bridge is from the
depairing current. An alternative explanation of the experi-
ments is based on a model of the bridge/wire as chain of
weakly connected, via Josephson coupling, granules [13]
which naturally leads to a power-3/2 law, but it is not clear
how this model could be applicable to the results in [10, 11].

5. Conclusion

We calculate the energy of threshold fluctuation which
switches the current-carrying superconducting bridge to the
resistive state. We make calculations at arbitrary temperature,
for different bridge lengths and in the presence of defects
connected with local variation of Tc, mean path length ℓ or
cross section of the superconductor. It is found that the pre-
sence of defects has strong influence on the form of current
dependence of the energy of threshold fluctuation, changing it
from d -( ) ( )F I I I1 dep

5 4 valid for long defectless bridge
to d -( ) ( )F I I I1 c

3 2 which is typical for short bridges
and Josephson junctions. Additionally, using microscopic
theory we show that the results, obtained on the basis of GL
theory, stay valid at temperatures significantly below Tc if one
uses a proper temperature-dependent critical (depairing)
current.
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