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Abstract
A new approach to feedback cooling of many-particle ensembles is considered. The homodyne
detection of counter-propagating probe beams is shown to provide enough information to realize
an efficient ‘bang-bang’ cooling algorithm. The feasibility of the method is demonstrated via
numerical Monte Carlo simulations of classical trajectories of the particles taking into account
the spontaneous emission noise. The numerical analysis and approximate theoretical treatment
predict the cooling rate as being inverse proportional to the square root of the number of particles
in the ensemble.
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1. Introduction

The application of laser cooling to particles with a complex
structure of energy levels is limited due to the absence of
cycle transitions [1]. The standard approach to overcome this
difficulty is to use re-pumping lasers, as in recent successive
molecular cooling experiments [2, 3]. Another approach is to
use dipole force for cooling, thereby avoiding internal tran-
sitions. The mechanism of energy extraction in this case is not
obvious. In one group of such methods the motion of particles
is dipole-coupled to an optical cavity field [4–8] with sub-
sequent energy loss via cavity leaking. The other group of
methods is feedback cooling, where the loss channel is similar
to cavity cooling, but mediated by an electronic feedback
circuit. There are many feedback cooling proposals and
experiments [9–14].

In a recent paper [15] we proposed to combine cavity
cooling and feedback. In particular, we considered the pho-
todetection of light back-scattered from a sample of particles
to adjust the strength of the periodic optical potential. It has
been shown that cooling takes place if the optical potential is
proportional to the integral of the measured signal. The
algorithm involved in the integration is a copy of the process
that takes place in the cavity also without additional electronic
feedback. The introduction of feedback, however, allows for
more flexible processing of the measured signal and thus,

possibly, a more efficient cooling algorithm. We will explore
this possibility.

It will be shown that an efficient cooling algorithm,
discussed in [12] for a single atom case, can be adopted to the
feedback setup presented in [15]. In the algorithm, an optical
potential with a fixed depth is applied to the particles only if
they on average approach the potential maximums and is
switched off otherwise. Such a control type is often referred to
as a ‘bang-bang’ control.

Numerical simulations of particle motion subjected to
feedback will be shown to demonstrate the rapid decrease of
the ensemble energy. While performing the simulations, we
take into account the spontaneous emission to vacuum modes
that results in the random momentum kicks and heats the
sample. This effect will be shown to decrease the rate of
cooling.

Another important question that arises when dealing with
the many-particle systems is the dependence of cooling on the
number of particles. Unfortunately, since the cooling method
we discuss here is based on the measurement of the collective
observable, the cooling rate decreases with the number of
particles. The rate is inversely proportional to the square root
of the particle number. However, the estimations we made on
the basis of the numerical simulations show that even for
rather large ensembles the method demonstrates a reasonable
cooling time.
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2. Cooling algorithm and setup scheme

In the scheme that we are going to discuss the cooling will be
achieved via appropriate control of the intensity I of the fields
forming the optical standing wave potential
U U I kxsin0

2( )= , where k is the wave number of the fields
and U0 is the constant factor for the fixed detuning [16]. The
motion of the particles will be restricted to the single
dimension along the x axis. The classical equations of motion
for the ith particle of mass m are then given by
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To compensate for the kinetic energy one should keep the
derivative of the energy in equation (2) negative. This can be
done by the appropriate control of the potential depth
determined by the intensity I. Since I 0 , to obtain the net
energy subtraction one should apply the potential only if

kxcos 2 0
t i i

d

d
( )å > , otherwise the optical potential should be

switched off. In this case the energy change according to
equation (2) will be always negative or at least zero.
Furthermore, to provide the maximal possible energy
subtraction one should apply the maximal available intensity
Imax. The ‘bang-bang’ control law then reads
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where x( )q is the Heaviside step function with 0 0( )q = . A
similar concept applied to a single atom has been proposed in
[12]. Thus, the feedback implies the measurement of the
collective quantity kxcos 2i

N
i1 ( )å = . We will discuss below a

possible physical realization of this cooling algorithm in a
ring cavity modeling the particles as two-level atoms.

The two-level approximation should not be considered as
a key assumption relevant for the validity of the discussed
approach. Moreover, as will be seen below, the natural regime
of the method is off-resonant interaction between the light and
the particles, where the only important parameter is the
polarizability of the particles. In general, the approach we
discuss here is applicable to a broad range of particles
including heavy nanoparticles, as discussed in [17, 18].
However, for the first experimental demonstration of the
discussed approach it might be advantageous to use precooled
alkali atoms with strong atom-field interaction provided by
relatively small detuning. In this regime the heating due to
spontaneous emission can be relevant. The two-level

approximation used here allows us to take this effect into
account in a simple way.

As a model system we consider the atoms placed inside a
ring cavity as shown in figure 1. The cavity is pumped with
weak probe fields, p

1( )h and p
2( )h , as well as with strong con-

trolled fields, s
1( )h and s

2( )h . The probe and controlled fields
should be distinguishable (via polarization or small frequency
detuning), but phase-locked. The atoms scatter photons
between the counter-propagating probe (dashed lines) and
strong (solid lines) modes. The scattered probe signals are
measured using homodyne detectors HD1 and HD2. The
results of these measurements are then combined to yield

kxcos 2i
N

i1 ( )å = and processed in the circuit FB according to
the algorithm described above to switch on/off the strong
fields, s

1( )h and s
2( )h , which provide the controlled optical

potential for the atoms.
In a practical realization an additional, for example

optical dipole, trap may be needed to keep the atoms inside
the cavity. As follows from equation (3) for cold atoms, when
the argument of the Θ-function is zero there is no potential
(I 0= ) applied to the atoms due to the feedback. Thus the
feedback provides only cooling, not the trapping, mechanism.
Simulating the cooling process, we will not include a trapping
potential and will focus on the kinetic energy of the atoms
leaving the spread of the cloud undefined. In a more experi-
mentally-oriented consideration, an additional trapping
potential can easily be included.

3. Mathematical model

The atomic system is modeled as a set of identical two-level
atoms. The ground and excited states of the atoms are
labeled as g∣ ñ and e∣ ñ. The transition frequency between these

Figure 1. Setup scheme. The phase quadratures of the scattered
probe fields p

1( )h and p
2( )h are measured with homodyne detectors

(HDs) and combined to give the required collective observable. In
the control circuit (FB) the time derivative of the measured signal is
calculated and the signal to switch on/off the strong fields, s

1( )h and

s
2( )h , is generated.
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levels is 0w . The internal dynamics of the ith atom is
described by the operators e gi ∣ ∣s = ñá+ , g ei ∣ ∣s = ñá- and

e e g gi
z ∣ ∣ ∣ ∣s = ñá - ñá obeying commutation relations

,i i i
z[ ]s s s= -- + and , 2i i

z
i[ ]s s s=- -.

The atoms interact with the counter-propagating modes
of the ring cavity. There is no principal difference between the
interaction of the atoms with the probe and the strong modes.
Thus, we first derive the general equations for the atoms and
two counter-propagating cavity modes and then apply specific
approximations to the weak probe and to the strong modes.
The two counter-propagating modes with the frequency Lw
are represented by the photon creation and annihilation
operators ai

† and ai, where i 1, 2= correspond to the
clockwise and the counterclockwise modes, respectively.
These cavity modes are excited by two external coherent
fields with amplitudes 1( )h and 2( )h .

The total Hamiltonian of the system can be written in the
form

H H H H H . 40 p int R ( )= + + +

The Hamiltonian H0 describes the free atoms and the free
radiation fields and reads
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Hp is responsible for the pumping of the cavity modes

H a ai . 6
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The Hint is the atom–light interaction Hamiltonian

H g a ae e h.c. , 7
i

k x k x
iint 1

i
2

ii iL L( ) ( ) å s= - + +- +

where g d Vi 2L 0w= describes the coupling of the
atoms to the cavity fields, with d being the electric dipole
moment of the atoms and V being the volume of the cavity.

In order to take into account the spontaneous emission
and the corresponding heating effect, the atoms are addi-
tionally coupled to a reservoir of vacuum modes of fre-
quencies kw with creation and annihilation operators b

ks
† and

bks
 . The decay of the cavity modes 1 and 2 is due to their

interaction with the vacuum field outside the cavity, described
by bosonic modes c1qs

† , c1qs
 with frequencies q1

w  and c2qs
† ,

c2qs
 with frequencies q2

w  . Thus the whole reservoir contrib-
ution to the Hamiltonian reads

H b b g b
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The atomic coupling to the reservoir is described by the
constant g d ei 2ks k ks0 ( · ) w=

   , where ek s,
 is the

vacuum mode polarization vector and  is the external
quantization volume. The interaction constants of the cavity
modes with their reservoirs gq s,1,2

 are assumed to be weakly
dependent on the reservoir mode number.

Using the Hamiltonians (4)–(8) the Heisenberg–Lange-
vin equations for the atomic internal and external degrees of
freedom as well as for the cavity fields can be obtained [19]
and read:
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where the cavity amplitude decay rate
gq s q,

2
L( )k p d w w= å -  . F ti

... ( )( ) are the operator Lange-
vin forces having the following correlation functions
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where the spontaneous decay rate d c32
0
3

0
3( )w pG = has

been introduced.
Following the standard approach [20] the operator Hei-

senberg–Langevin equations (9) are substituted with the
c-number equations using the operator ordering: a†, s+, x p,{ },

zs , s- and a, which is symmetric with respect to the atomic
position and momentum. The operators are substituted with
the corresponding c-numbers *a , s*, x, p, s z, s and α.

Then we adiabatically eliminated atomic internal degrees
of freedom assuming that their relaxation constant Γ is much
larger than the relaxation rates of all other dynamical vari-
ables. We also neglect the quantum noise in these variables.
Then the stationary solutions describing internal degrees of
freedom read as
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where 0 Ld w w= - is the detuning between atomic transition
and laser fields. Using this result and assuming that

g4 22 2 2∣ ∣d + G > the evolution of the atomic momentum
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is given by
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In equation (12) the first term corresponds to the dipole force
as it scales as 1 d for large detuning and the second term is
responsible for the radiation pressure caused by possible
imbalance of the clock- and counterclockwise modes
amplitudes.

The general result for the mode amplitudes is given by
the equation
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Below we consider rather weak coupling between the atoms
and the cavity modes so that g Ni 2 2∣( )∣ ∣ ∣k d + G  . This
regime is addressed as it does not require micro-cavities and
can be easily accessed in an experiment. Then equation (13)
can be simplified to

n
n g e
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, 14i
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k d
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where n1,2 1,2
2( )h k= denotes the number of photons in the

probe or strong field modes in the absence of atoms.
In order to discuss the measurement of the required

collective observable we make a step back and return to the
quantum fields a1 and a2, which were replaced by classical
amplitudes 1,2a . The quantum analog of equation (14) has the
same form, but instead of classical amplitude 1,2h one should

write operators b F1,2 1,2 a
1,2( )h= + . The quantum Langevin

forces are due to the vacuum noise entering the cavity and can
be given in terms of the input fields as F a2a

1,2
1,2

IN( ) ( )k= .
As discussed above, in order to perform the control one

needs to know the time evolution of k xcos 2 iL( )å . This
quantity can be measured as follows. First, the Y-quadratures,
Y a a i21,2

OUT
1,2

OUT
1,2

OUT( ( ) )( ) ( ) ( ) †= - , of both of the output probe
fields are measured via the HDs. This is schematically shown
in figure 1. Assuming that the average driving field in both
probe modes is the same, 1 2h h h= = , these quadratures read

Y Y
g
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X

2 4
2 2

2 2 2 ,
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where we used the shortened notations k xcos 2 iL( )X = å
and k xsin 2 iL( )Q = å . The input field X-quadratures
X a a 21,2

IN
1,2

IN
1,2

IN( ( ) )( ) ( ) ( ) †= + have also been introduced. The
well-known input-output relation [21] has also been used to
link the input, output and intracavity fields. It is easy to see
that the sought many-atom variable Ξ can be obtained taking
the sum of the two Y-quadratures: Q Y Y1

OUT
2

OUT( ) ( )º + .

Indeed the quantum average of this sum reads

Q
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The use of the ring cavity and homodyne detection may
look like an unnecessary complication since, as discussed in
[10, 12], the linear cavity transmission can be measured to
determine Ξ. This is true if the number of atoms is fixed.
Generalizing the approach of [12] to the many-atom case we
obtain that the transmission signal depends on k xcosi i

2
L( )å .

The derivative of this quantity is proportional to the required
derivative of k xcos 2i iL( )å only if the number of atoms is
fixed. Otherwise, the atom-number fluctuations deteriorate the
measured signal. This effect does not appear in the case of
homodyne detection, where the required quantity is measured
directly.

The measurement noise poses a limit to the performance
of the feedback cooling. The dominant source of the mea-
surement noise is the photon number fluctuations in the probe
fields. The noise spectrum due to the quantum fluctuations of
the measured quantity can be found using equation (15). We
separate the noise due to the quantum light fluctuations and
the variations of the measured quantity due to the atomic
motion. First, we assume that the atoms do not move during
the measurement time and calculate the correlation function
taking the average over the quantum state of the probe light.
The corresponding noise spectrum is calculated by perform-
ing the Fourier transform of this correlation function. For the
detected quantity Q we obtain the following noise spectrum

S
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Here we assumed that the input fields are in the vacuum state
so that all the quadrature correlations equal t t1 4 ( )d - ¢ . In
the regime of weak atom–field coupling as described above
we assumed g N2 i 2∣ ∣ ∣ ∣k dG +  . Taking this inequality
into account in equation (17) we see that the expression for
the quantum noise spectrum simplifies to the vacuum noise
limit

S
1

2
. 18q ( ) ( )w »

Let us now compare the quantum measurement noise in
equation (18) with the typical variations of the signal due to
the motion of the atoms. Using the average signal,
equation (16), we calculate the spectrum of the fluctuations of
this signal due to the chaotic motion of the atoms. For the
sake of simplicity we assume that the atoms are independent
and characterized by identical single-atom distribution func-
tions. These single-atom distribution functions will be
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approximated as

f x p
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where σ is the spatial localization. The other parameters in
equation (19) are the atomic mass m, the ensemble
temperature T, and the Boltzmann constant kB. The calcul-
ation of the correlation function Q t Q t( ) ( )d d ¢ and the
subsequent Fourier transform give the following spectrum
of the fluctuations due to the atomic motion

S
g N

k V

8

4

1 e
e . 20

k

cl

4 2 2

3 2 2 2

4 2

L

k V
L
2 2 2

L
2 2( ) ∣ ∣

( )
( ) ( )w

d h
k d

=
G +

- s- - w
p

In this expression we used the average velocity of the atoms
V k T m8 B ( )p= in the ensemble. The feedback will
operate correctly if the ‘classical’ spectrum, equation (20),
will be larger than the quantum white noise, equation (18), in
some spectral interval. For simplicity we require that the
classical fluctuations exceed the quantum noise for the zero
frequency. Furthermore, we distinguish between uniformly
distributed atomic ensemble with s  ¥ and the localized
ensemble where the opposite limit holds, 0s  . The
condition for the measurement to provide correct information
on the atomic state for the uniformly distributed atoms then
reads

C n

N k V

8

4

1 1

2
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( )
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dG +
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Here the photon number in the probe field np
2( )h k=

and the atom-field coupling parameter C g N2∣ ∣º
4 12 2( )k dG +  have been defined. This inequality

allows to estimate the number of probe photons needed to
correctly measure the atoms. It is seen that the critical
parameter is k VL , which is the inverse of the time an atom
moves over a single period of the feedback potential. For high
temperature and high atomic velocities the number of photons
should be sufficiently large. If for example, C 0.1~ and
k VL k~ , then the required number of photons in the probe
field will be n N10p > .

This requirement changes if the atoms are well localized.
For such ensembles the measurement condition reads
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d k
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This result shows that for tight localization, 0s  the
quantum noise can dominate if the atomic velocity is not
sufficiently small. This can pose a limit to the operation of the
feedback cooling. However, even in an unfavorable case of
too small ratio V4s , the feasibility of the feedback cooling
can be restored by choosing a sufficiently large number of the
probe-field photons. Thus the quantum measurement noise
should not spoil the feedback cooling at least in principle.
Therefore in this paper we assume that the feedback cooling
operates in the regime where the measurement noise can be
neglected.

The role of the actuator is played by the pair of additional
strong modes, which form the already-mentioned feedback

potential. These fields also get scattered by the atoms, but the
change of their amplitudes due to such scattering is very small
compared to the unperturbed values, so in the following
simulations we neglect this effect. Another effect that will
also be ignored is the influence of the probe fields on the
atomic momenta. This is done since the probe fields are
assumed to be small compared to the strong controlled field.

The later assumption is not always valid as the cooling
bang-bang algorithm prescribes a zero control field for the
negative value of the derivative of k xcos 2 iL( )å . During the
time periods when this condition is fulfilled the probe field is
the only perturbation to the atoms. Thus, the intensity of the
probe fields will contribute to the cooling limit. In this paper
we concentrate on the efficiency of the feedback cooling at
higher temperatures and neglect the effects that are relevant
for the regime of low atomic energies. Being limited to quasi-
classical motion of the atoms, we ignore the direct influence
of the probe fields on the atomic momenta.

Thus, in the equations for the atomic momenta the optical
fields are the strong controlled fields. In these equations we
keep the Langevin forces, which allows us to take into
account the heating due to spontaneous emission. The
equation for the ith atom now reads

p U n k x
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4
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where the Langevin forces i
p
( ) have the following correla-

tions
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This result is obtained taking into account the 3D angular
distribution of the spontaneously emitted photons and the fact
that only the x-projection of the recoils contribute to the
considered momentum.

4. Simulation results and discussions

We solve equations (23) numerically via direct Monte Carlo
simulations of stochastic atomic trajectories. For time step-
ping we use the Euler–Maruyama method [22]. During these
simulations we neglect possible measurement and processing
errors that appear during the real-time evaluation of the
derivative of k xcos 2 iL( )å . The intensities of the strong fields
or their photon numbers ns s s

1 2 2 2( ) ( )( ) ( )h k h k= = are con-
trolled as described by the algorithm in equation (3).

We assume that initially the atoms are homogeneously
distributed over a single period of the optical potential pro-
duced by the strong control fields interference, that is over the
length 2Ll . Due to the periodicity of the optical potential
and the absence of the interaction between the atoms this
assumption does not lead to the loss of generality. The initial
momentum distribution is assumed to be Maxwellian with the
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temperature of the ensemble equal to 100 × recoil temper-
ature T k mk2rec

2
L
2

B( )= .
The simulation results for the fixed detuning 100d = G

and the fixed number of photons in the controlled fields
n 1000s = are shown in figure 2. Different curves in this plot
correspond to different numbers of atoms. Each curve is
obtained by averaging over 500 realizations of initial condi-
tions. The figure shows that small ensembles with fewer than
10 particles lose more than 80% of their energy in about 200
excited state lifetimes. The rate of cooling drops as the
number of atoms increases. This is the consequence of the
collective character of the cooling process, where there is no
access to individual particles.

The curves corresponding to N 5= and N 10= in
figure 2 show that the cooling slows down as the energy
approaches zero. Thus, in order to characterize the cooling
efficiency as a function of the number of atoms we compare
the cooling rates at the beginning of the process, where (see
figure 2) the energy decay is almost linear for all tested atomic
numbers.

In figure 3 the slope of the energy time dependence is
shown as a function of the inverse square root of the number
of the atoms. The results of the simulations show that this
dependence is well represented by the linear function, which
means that the cooling rate is inverse proportional to the
square root of the number of atoms. Extrapolating the results
shown in figure 3 to an even larger number of atoms, one can
estimate the cooling time of a rather big ensemble. For
example, the ensemble of N 106= atoms can be cooled,
according to figure 3, in about 5 104´ excited state lifetime
cycles, which is about 1 millisecond. This estimation indi-
cates that the cooling process can be of practical value. The
obtained scaling of the cooling rate is typical for the methods
based on the collective coupling of atoms to a cavity mode.
See, for example [23], where the similar trend has been
observed and discussed.

For the purpose of practical implementations of the
method it is interesting to consider the possibility of using
rather small detuning δ. This allows for stronger coupling
even for relatively small photon numbers. The noise due to
spontaneous emission in this case will spoil the cooling as
shown in figure 4.

The positive effect due to small δ is the faster drop of the
kinetic energy in the beginning of the cooling process,
compare the curves for 100d = G and 10d = G in figure 4.
However for longer time the spontaneous emission limits the
cooling rate. For extremely small detuning, as it is demon-
strated by the case d = G in figure 4, the cooling at the
beginning of the process is changed to heating. Although a
slow decrease of the energy takes place at later times, the
regimes such as with d = G are not practical and reasonably
large values of the detuning should be recommended.

In order to illustrate physical reasons for some of the
effects observed in numerical simulations we consider the
limit when the atoms are already quite localized. In this case a
rather simple and closed set of evolution equations for the

Figure 2. The evolution of the energy per particle in units of recoil
energy for the ensembles with different numbers of atoms. The
photon number in the controlled fields is 1000, the detuning is

100d = G. Time is measured in units of the excited state
lifetime 1 G.

Figure 3. Dependence of the cooling rate for small t on the inverse
square root of number of atoms.

Figure 4. Evolution of the kinetic energy per atom for different
values of the atom-field detuning δ.
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collective quantities can be derived via the harmonic
approximation, i.e. taking k x k xsin 2 2i iL L( ) » and

k xcos 1iL( ) » . Let us consider the evolution of the following
second moments:
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Here K is the average kinetic energy per particle, L is the
ensemble spatial localization, and G is the position-momen-
tum correlation. Using the evolution equations (23) and
taking into account the Ito rule when dealing with the
stochastic terms in the momentum equations, we obtain the
following evolution equations for the defined above averages
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The feedback algorithm that is considered here under
harmonic approximation implies the measurement of the
localization L(t) and the application of the control action
depending on the sign of its derivative: L t G t( ) ( )¢ = . In the
proposed bang-bang type control we assume n 0s = if
G t 0( )  and n ns max= otherwise. Under these conditions
there is a steady-state solution of equation (26) with K 0¯ = ,
G 0¯ = , n 0s¯ = . The steady-state value of the localization L̄ is
not specified.

This simple result indicates that in the semi-classical
regime with perfect measurement and signal processing cap-
abilities the method can cool an ensemble down to zero
temperature. This optimistic conclusion does not hold if the
intensity of the probe field is taken into account. The probe
will determine the minimal value of the field acting on the
atoms if G t 0( )  . As it is seen from equation (26) there is no
steady state solution in this case. The system will oscillate and
will not reach the sought zero energy, K 0= . For large
detuning, where the spontaneous emission can be completely
ignored, the probe field np will determine the limiting kinetic
energy K k U Ln4 pL 0¯ ¯= .

Note that contrary to feedback methods based on the idea
of stochastic cooling [9, 11, 13] the efficient cooling here
does not require remixing. This is seen from the fact that the
zero energy steady state can be dynamically obtained without
explicit or implicit use of direct atom–atom scattering. In this
respect, the described approach, as well as the single-atom
method of [10], is closer to the cavity cooling and self-
organization [6] with the feedback due to the cavity enhanced
by the carefully designed external electronic feedback.

Let us now apply equation (26) to estimate and qualita-
tively explain the dependence of the cooling rate on the

number of atoms as shown in figure 3. The slope of the
kinetic energy at the beginning of the evolution is given by
the value of the derivative of the kinetic energy at t 0= , that
is k U G D n4 0 sL 0 0[ ( ) ]- . The dependence on the number of
atoms is in the initial correlation G(0). Taking into account
the independence of the atoms in the initial thermal ensemble
the variance of G(0) reads

G
N

x p0
1

. 272 2
th

2
th[ ( )] ( )áD ñ = áD ñ áD ñ

Thus the magnitude of the initial value of the moment G can
be estimated as N1~ , which also gives an approximate
dependence of the cooling rate on the number of particles.
Such a dependence reflects the collective character of the
cooling process and poses certain limits on the size of the
sample of particles that can be effectively cooled. The
presented simple reasoning is confirmed by the simulation
results, see figure 3.

Note that the steady-state zero energy can be obtained
even in the presence of the noise due to spontaneous emis-
sion. The spontaneous emission can, however, greatly reduce
the rate of cooling and even cause initial heating of the
ensemble, if k U G D4 0 0L 0 0( ) - . This condition can be
fulfilled if the number of atoms is large or the atom–field
detuning δ is small. The simulation results, figure 4, showing
the effect of the detuning are thus in qualitatively agreement
with the conclusions of the harmonic approximation. Thus,
simple analysis based on equation (26) can explain important
features of the atomic evolution.

5. Conclusions

The efficient algorithm of feedback cooling of non-interacting
many-particle ensembles has been discussed. The method is
based on the measurement of the collective scattering of light
from the ensemble. Thus, in this aspect this method is similar
to systems considered in cavity cooling and self-organization.
Contrary to these systems, the scattered signal in the dis-
cussed approach is processed electronically. This con-
siderably increases the freedom in generating the control
action based on the measurement result. In particular, we
consider the feedback action proportional to the time deri-
vative of the detected signal.

It is shown that the collective observable of the sample of
which knowledge is required to obtain the feedback cooling is
the sum of the cosines of atomic coordinates. This quantity
can be measured via homodyne detection of the phase-
quadrature of counter-propagating weak probe fields inter-
acting with the cavity.

The numerical simulations of the evolution of the parti-
cles, performed with the spontaneous emission taken into
account, demonstrate the obvious cooling effect. Although the
cooling rate decreases for larger number of particles as the
square root of this number, this effect does not seem to render
the method impractical.

Simple analysis based on the harmonic approximation of
the optical potential explains certain features of the particle
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evolution qualitatively. The cooling of ensembles with a
larger number of particles happens at a lower rate as the
measured feedback signal, being the collective quantity,
decreases as the square root of the number of particles.

Spontaneous emission was shown to decrease the cooling
rate and in certain cases even cause initial heating of the
ensemble. However, this process cannot affect the cooling
limit as the light potential directly and consequently the
spontaneous emission is switched off for the cold sample.

Finally, the discussed cooling approach was shown to
work for many-particle ensembles in the presence of spon-
taneous emission. Thus, it can be considered as a possible
alternative for the standard cooling techniques where the latter
cannot be applied or has severe limits.
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