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Abstract
A difference algebraic converging method for electron scattering from molecule (DACMe) is
suggested based on the recently proposed difference converging method (DCM) to predict
unknown differential cross sections (DCSs). The applications of the DACMe to electron
scattering from tetrahydrofuran (THF) molecule at energies below 20 eV show that: (1) the
DACMe DCSs excellently reproduce all the available experimental data; (2) the DACMe method
correctly predicts unknown DCSs that may not be given experimentally; (3) the DACMe can be
used as an economic and useful alternative method to predict the correct DCSs where such
scattering data are required; (4) the DACMe method does not depend on the size and the
stereochemistry structure of a scattering molecule; (5) the algebraic modification to the DCM
enhances the computational efficiency of the DCM theoretical study by at least 110 times.

Supplementary material for this article is available online
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1. Introduction

Over the last decade, much attention has been paid to the
investigation of low energy 20 eV<( ) electron interaction
with the building blocks of DNA, since it could cause sig-
nificant lesions to deoxyribonucleic acid (DNA), such as
single and double strands break [1–4]. The interaction
between electrons and biomolecules is also of great sig-
nificance in the physical and biological fields, such as
radiobiology [5–8]. Extensive research on electron scattering
from components of DNA and ribonucleic acid (RNA) has
been focused on measuring or calculating the differential
cross sections (DCSs), the integralcross sections (ICSs) and
the momentum transfer cross sections (MTCSs). The low
energy electron scattering from an essential component of the
DNA backbone and RNA [9, 10], the tetrahydrofuran (THF)
molecule, a heterocyclic five-member hydrocarbon com-
pound, has been widely studied, and much detailed data on

DCSs, ICSs and MTCSs has been obtained experimentally
and theoretically [11–25].

Experimentally, the elastic DCSs for electron scattering
from THF in the energy range of 6.5 to 50 eV have been
measured using a crossed electron-target beam apparatus by
Colyer et al [12], and the magnetic-angle-changing technique
has been applied to measure the DCSs over the scattering
angles of 20°–180° in the energy range of 6 to 20 eV [14].
Recently, Lemelin and coworkers reported the absolute cross
sections for an energy range of 1 to 19 eV based on a high-
resolution electron energy loss spectrometer [13]. It can be
seen from these articles that the DCSs were measured at some
angles, but were not given at other angles experimentally, and
those missed DCSs may play indispensable roles in studying
the interactions between electron and THF. Therefore, the-
orists have developed or applied some delicate quantum
methods to calculate DCSs, ICSs and MTCSs for electron
scattering from biomolecules in the last decade. For instance,
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Winstead, McKoy and coworkers applied the Schwinger
Multichannel (SMC) method and the Born corrected SMC
method to calculate the DCSs, ICSs and MTCSs for an
electron colliding with THF [18, 19]. The independent atom
method (IAM) was applied to calculate DCSs and ICSs by
Mozejko and Sanche [20]. Trevisan et al studied the DCSs
and MTCSs using the complex Kohn variational method [21].
Fuss and coworkers obtained much theoretical cross section
data using the IAM based on the screening-corrected addi-
tivity rule method [22]. Garland et al conducted a critical
analysis of the experimental and theoretical cross sections,
and proposed a full set of cross sections for scattering ener-
gies less than 300 eV of this scattering system [23].

The cross sections obtained from modern theoretical
methods are usually calculated using scattering wave-func-
tions and scattering potentials with given physical models.
Delicate ab initio scattering studies are very useful in that
they can usually help us understand the physics of many
scattering systems, especially those systems where available
scattering data from different research groups are in poor
accord. On the other hand, although many quantum calcula-
tions have excellent agreement with experimental results for
some scattering angles and energies using complicated and
delicate scattering wave-functions and potentials, some fail to
derive good results at other angles and energies using the
same system wave-functions and scattering potentials as will
be shown later. Particularly, when scattering angles q( ) are
smaller than 20° (and in some cases when 130q > ),
experimental DCSs may not be available and the calculated
DCSs of different theoretical methods may differ from each
other. Therefore, such cases call for different scattering
methods to address these problems.

Recently, Sun and coworkers proposed a difference
converging method (DCM) to calculate the DCSs, ICSs and
MTCSs for electron scattering from any molecules [26]. And
an analytical formula is developed in the DCM to establish a
physical relation between the known experimental DCSs and
an unknown one. The DCM theoretical calculations do not
depend on the size and the stereochemistry structure of a
scattering molecule and do not use any scattering wave-
functions and scattering potentials, but rather use the DCM
formula and a set of physical converging requirements. The
DCM digs out almost all delicate quantum information and
relevant physical effects which are internalized in the known
experimental data rather than mimic this information through
the use of basis parameters and physical models.

The DCM studies [26] on electron scattering from N ,2

H O,2 CH4 and CF I3 molecules show that, although the DCM
does not give a theoretical picture of scattering wave-func-
tions and scattering potentials, it indeed reproduces all known
experimental DCSs and correctly predicts unknown ones that
may not be available experimentally or may not be correctly
given theoretically.

The present work improves the computational efficiency
of the DCM studies by introducing an algebraic technique to
the DCM protocol, and applies the modified DCM to study
the DCSs, ICSs and MTCSs of electron scattering from the

THF C H O4 8( ) target, which is a typical biomolecule and an
important constituent of the DNA molecule.

In section 2, the DCM method will be outlined and the
algebraic improvement on the DCM will be presented.
Section 3 shows the applications and discussions. Section 4
gives the summary of this study.

2. Theoretical method

The quantum mechanical formula used to calculate the DCS
functions d k0q( ) for electron-molecule scattering may be
written as an expansion of the form [26–28],
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where k E20
2 =( ) represents the energy of the incident

electron, q is the scattering angle, P cosL q( ) is the Legendre
polynomial that is not a function of incident energy E [29], BL

is the angle-independent scattering coefficient that is essen-
tially the function of incident energy and the interaction
potentials between electron and molecule. In the following,
the function d k0q( ) will be called a DCS for convenience. All
scattering physics are included in these scattering coefficients.
The lowest two coefficients B0 and B1 are directly related to
the ICS k0s ( ) and the MTCS km

0s ( ) by [28, 30],
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where the scattering coefficients B B,0 1( ) can be evaluated
using equations (A7) and (A11) of the supplemental data (SD)
of [26].

Based on the fact that all experimental DCSs satisfy the
physical equation (1), a DCM equation that bridges the
measured DCSs and the unknown one is derived using mul-
tiple differences of DCSs in [26] as,
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The calculable expansion coefficients Tk and their related
coefficients are defined in the SD of [26], and they are the
functions of Legendre polynomials P cos .L q( ) There are no
mathematical approximations and physical models used in the
derivation, and there are no experiential or unknown para-
meters in equation (4). One can predict an unknown DCS
d n 1q +( ) by using a set of physical converging requirements
and n known experimental DCSs d d d, , , n1 2q q q¼[ ( ) ( ) ( )] for
n=15. The DCM equations similar to equation (4) are also
given in the SD of [26] for n 15.<

Although previous DCM studies [26] on electron scat-
tering from N ,2 H O,2 CH4 and CF I3 molecules have obtained
excellent theoretical DCSs, the computational process on a
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normal PC is relatively time consuming due to the many
algorithmic steps involved. This present study will modify the
DCM method by introducing an algebraic performance in the
DCM computational process, and will apply the modified
method to study electron scattering from a biomolecule of
THF C H O4 8( ) for the first time. The modification is described
as follows:

The first mathematical difference di k,D between two
physical DCSs d iq( ) and d kq( ) can be given from equation (1)
as,

d d d B P B P B P

B P B P B P

B P B P 5
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where P P cosL L i
i qºq ( ) and P 1.0

i =q The coefficient B0 can be
expressed from equation (1) for d jq( ) as,
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Similarly, the second difference between the DCS differences
d1,2D and d2,3D is,
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Rearranging it, one can get B1 for scattering angles
, , ,1 2 3q q q( )
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Now substituting the B0 in equation (6) into the equation for
d ,lq( )
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Substituting the coefficient B1 in equation (8) into the above
equation,

d d B P P B P P

B P P d

d d P B P

B P B P

P P

2

.

l j

L L L

L L

2 2 2 3 3 3

1

2 3 11 2 12

3 13 1

1 1

l j l j

l j

l j

max max max

max max

q q

q

q q

= + - + -

+ + - +

- + -

- - -

´ -

q q q q

q q

q q

q q

q q





( ) ( ) ( ) ( )

( ) {[ ( )

( ) ( )]
}

( )

Rearranging it, one has,
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The indices l j,( ) are chosen such that p l iq( ) will not be zero.
Equation (11) corresponds to a set of linear algebraic equations
of L 1max -( ) unknown coefficients B B B, , , L2 3 max( ) for
given l j, ,( ) and can be rewritten as,

PB D 13= ( )
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where l jq q¹ and d d d d2 .123 1 2 3q q q q= - +( ) ( ) ( ) ( ) In the
coefficient matrix P, all matrix elements p l iq( ) are the functions
of Legendre polynomials P P cos .L L i

i qºq ( ) The elements of
matrix D are the functions of experimental DCSs d .iq( )
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Therefore, one can easily solve algebraic equation (13)
using a set of chosen experimental DCSs d d, ,1 2q q[ ( ) ( )

d d, ;L j1maxq q¼ -( ) ( )] for unknown scattering coefficients
B B B, , , .L2 3 max( ) The coefficients B0 and B1 can then be
obtained using equations (6) and (8), respectively.

Since no orbital parameters of bases functions and potential
models are used in the above derivations, the only errors
introduced to the scattering information B B B B, , , , L0 1 2 max( )
are those from known experimental DCSs. One may use d jq¶ ( )
denoting the error of the experimental DCS d jq( ) and Bi¶ for
that of B .i The error in equation (11) may be written as

B p B p B p

d d d d
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d dp

2

16
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To have minimum errors on the right hand side (RHS) of
equation (16), one may require that the known coefficients
p p p, , ,l l l L2 3 maxq q q¼{ ( ) ( ) ( ) } on the left hand side are mini-
mum because one may not know the values of
errors B B B, , , .L2 3 max¶ ¶ ¼ ¶( )

Since solving the DCM equation (4) involves many
more interim algorithmic steps than solving the algebraic
equation (13), one may choose the latter to greatly enhance
the computational efficiency. Because one will use
d jq( ) and L 1max -( ) other experimental-based data
d lq( ) l L l j1, 2, , 1;max= ¼ - ¹( ) in the matrix D of
equation (15), one should choose Lmax d iq( ) from m known
experimental data when solving equation (13). Therefore
one will solve equation (13) N Cm

Lmax= times. Since there
are Cm

Lmax L mmax <[ ] ways to choose Lmax experimental
DCSs out of the m known ones, therefore, one may obtain
Lmax mathematical solutions of scattering information
B B B B, , , , L0 1 2 max( ) by solving equation (13). One can find
the best physical solution from the Cm

Lmax ones using the
following converging requirements:

p p p
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where equation (18) says that the maximum value of
the L 1max -( ) coefficients p l iq( ) should be as small as
possible such that the errors of the known experimental
DCSs on the RHS of equation (16) are minimum.
Equations (19) and (20) require that the calculated

DCSs d l calq( ) converge with each corresponding exper-
imental counterpart d .l texpq( ) Equations (21) and (22)
require that the theoretical ICSs and MTCSs obtained using
equations (2) and (3) should converge with the exper-
imental ones.

When the best converged scattering coefficients
B B B B, , , , L0 1 2 max( ) are obtained, one has the best physical
representation of the experimental DCSs and therefore can use
such information to predict the unknown DCSs. The accuracy
of the predicted DCSs d l calq( ) uniquely depends on the integ-
rity and the accuracies of the known experimental DCSs. Since
a multiple mathematical difference method, an algebraic
method and a set of physical converging standards are used in
above protocol to obtain correct scattering information and
thereafter to predict unknown DCSs, one may call such a
method the difference algebraic converging method for electron
scattering from molecule (DACMe), and call the obtained
theoretical DCSs the DACMe DCSs d d .l l DACMecalq qº( ) ( ( ) )

The DACMe is not explicitly molecular structure
dependent, and not explicitly electronic state and scattering
potential dependent. All molecular structure, electronic state
and delicate scattering information is included in the exper-
imental DCSs and in the scattering coefficients B s.k ¢ There-
fore, the DACMe can be applied to study the DCSs of electron
scattering from any molecule where experimental data are not
available.

3. Applications and discussions

The DACMe method is applied to study the DCSs, ICSs and
MTCSs of low energy electron scattering from a THF
molecule based on an experimental study [14] for scattering
energies of 6, 7, 8, 10, 12, 15 and 20 eV, and based on recent
measurements [12] for 8 and 20 eV respectively. Dampc and
coworkers [14] presented experimental DCSs for scattering
angles 180 ,calq   and Colyer et al [12] reported their
measured DCSs in the 130calq q <  <  angular region. The
experimental ICSs k texps ( ) and the MTCSs km

texps ( ) used to
converge the DACMe calculations as given in equations (21)
and (22) were generated by integrating the normalized SMC
DCSs (which are not given in the experiment) of 0 calq  
[18, 19] and the experimental DCSs of 180calq   [14].
Winstead and McKoy [18] presented their calculated SMC
DCSs without Born corrections for dipole potentials while
Gauf and coworkers [19] included the Born corrections in
their SMC DCSs. The converged DACMe scattering coeffi-
cients Bk are listed in table A1, available at stacks.iop.org/
JPB/50/085201/mmedia of the SD of the present study for
scattering energies of 6, 7, 8, 10, 12, 15 and 20 eV [14]. The
experimental DCSs and the DACMe results are tabulated in
tables A2–A8 of the SD, and are plotted in figures 1–7 with
relevant quantum scattering calculations, respectively. In
these figures, the dot-dashed curve (—·—) gives the SMC
DCSs [18] without Born correction for dipole scattering
potential. The dashed curve (— —) shows the Born corrected
SMC DCSs [19]. The solid curve (—) is the DACMe DCSs
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obtained using the SMC amended experimental (full) ICS1
and MTCS1 without Born correction as converging require-
ments. The double-dots-dashed curve (—··—) presents the

Born corrected DACMe obtained using Born SMC amended
experimental (full) ICS2 and MTCS2 as converging require-
ments. The dotted curve (···) gives the DCSs of the complex

Figure 1. Elastic DCSs of e+THF at 6 eV. Full circles (●), experiment data of Dampc et al [14]; hollow circles (d), experiment data of
Gauf et al [19]; black solid curve (—), presents DACMe obtained using SMC amended experimental ICS1 and MTCS1 as converging
requirements; double-dots-dashed curve (—··—), presents Born corrected DACMe obtained using Born SMC amended experimental ICS2
and MTCS2 as converging requirements; dot-dashed curve (—·—), SMC calculation [18]; dashed curve (— —), Born corrected SMC
calculations [19]; dotted curve (···), from the complex Kohn variational method [21].

Figure 2. Elastic DCSs of e+THF at 7 eV. Full circles (●), experiment data of Dampc et al [14]; solid curve (—), presents DACMe
(without Born correction) obtained using SMC amended experimental ICS1 and MTCS1 as converging requirements; dot-dashed curve
(—·—), SMC calculation [18]; dotted curve (···), from the complex Kohn variational method [21].
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Kohn variational method [21]. The comparative studies
indicate that the computational speed of the DACMe con-
verging studies is at least 110 times faster than that of the
original DCM for every scattering energy.

Table A2 and figure 1 show that both the DACMe DCSs
without Born correction (—) and those with Born correction
(double-dots-dashed curve (—··—)) excellently reproduce all
recently measured data (●) at 6 eV [14], and correctly present

the detailed physical shape of the experimental DCSs. The
Born corrected DACMe DCSs (double-dots-dashed curve
(—··—)) correctly predict the values and physical shape of all
DCSs for 30q <  which are not given by the experimental
study [14]. The agreement between the experimental DCSs
and both DACMe data is much better than that between the
experiment and the SMC DCSs or the Born corrected SMC
DCSs (‘—·—’ [18] or ‘— —’ [19]), and that between the

Figure 3. Elastic DCSs of e+THF at 8 eV. All notations are as those in figure 2.

Figure 4. Elastic DCSs of e+THF at 10 eV. All notations are as those in figure 1.
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experiment and the complex Kohn DCSs (···) [21]. The inset
indicates that the Born corrected SMC DCSs (— —) heavily
overestimate the DCSs of 10 ,q <  particularly for scatter-
ing angles 3 .q <  The correctness of the predicted DACMe
DCSs can also be seen from the small relative percent error
(0.06%) of present (Born corrected) DACMe ICS (72.41)
from the Born DACMe amended experimental ICS (72.45) in
table 1. This picture can also be seen from the MTCS data in
table 2.

Figures 2–7 and tables A3–A8 present similar physical
pictures for 7, 8, 10, 12, 15 and 20 eV as that of 6 eV,
respectively. These figures and tables indicate that the
DACMe DCSs (—) have better agreement with the exper-
imental ones (●) [14] than the SMC and the Born corrected
SMC (‘—·—’ [18] and ‘— —’ [19]) and the complex Kohn
DCSs (···) [21].

The experiment curves and all theoretical DCS curves are
in similar shape in figure 2 at 7 eV and in figure 3 at 8 eV to

Figure 5. Elastic DCSs of e+THF at 12 eV. All notations are as those in figure 2.

Figure 6. Elastic DCSs of e+THF at 15 eV. All notations are as those in figure 1.

7

J. Phys. B: At. Mol. Opt. Phys. 50 (2017) 085201 L Zhang et al



the case in figure 1. There are no Born corrected SMC cal-
culations available for these two energies. In figure 2 the
DCSs of the SMC and the complex Kohn are quite smaller
than both the experimental and the DACMe ones at backward
scattering of 145 ,q >  and in figure 3 the former two are
evidently greater than the latter for 160 .q > 

All theoretical studies give good results in figure 4 at 10 eV
and in figure 5 at 12 eV (and in table A5 and in table A6), but
the Born corrected SMC at 10 eV shows a too strong forward
scattering peak for 10q <  (up to106 000 10 cm sr16 2 1´ - -

at about 0q = ) compared to that in figure 1. There are also
no Born corrected SMC data for 12 eV. The SMC and the
complex Kohn show a higher backward scattering tail for

160q >  in figure 5. The SMC with Born-dipole correction
and the complex Kohn DCSs in figure 6 present an evident f-
wave scattering feature at 15 eV, however the experiment and
both the DACMe (—) and the Born corrected DACMe (in table
A7 and in double-dots-dashed curve) data show a clear p-wave
scattering feature. Finally, table A8 and figure 7 indicate that
both the experiment and the DACMe DCSs have p-wave
dominated scattering at 20 eV, instead of d-wave and f-wave
mixed scattering as given by the SMC and the complex Kohn
results.

Table 1 presents experimental-based ICSs, theoretical
DACMe ICSs and relative percent error of each scattering
energy, respectively. Table 2 gives similar comparative data
for MTCSs. The SMC amended experimental (full) ICSs and
MTCSs consisted of integrating the normalized SMC DCSs
of 0 calq   [18, 19] and the experimental DCSs of

180calq   [14]. The angle calq is indicated in both tables for
every energy. The cross sections obtained from integrating the
experimental DCSs of 180calq   will be called the exper-
imental partial ICSs or MTCSs [14], and are given in bold in

the second column of both tables 1 and 2, and the ones in the
third column are the SMC amended experimental (full) ICS1
or MTCS1. The fourth column presents the Born SMC
amended experimental (full) ICS2 or MTCS2.

For comparison, the Born DACMe amended exper-
imental (full) ICS3 and MTCS3 are evaluated by integrating
the Born corrected DACMe DCSs of 0 to calq and the
experimental DCSs of calq to 180° [14], and listed in bold in
the fifth column of both tables. The contributions of the Born
DACMe DCSs of 0 calq   to the ICS3 or the MTCS3 are
not treated by skills like normalization and average. The
present theoretical DACMe ICSs without Born correction are
listed in the sixth column. The seventh column gives the Born
corrected DACMe ICSs in bold.

The relative percent error of the experimental partial ICS
from the SMC amended experimental (full) ICS1 (with ‘c’),
that from the Born SMC amended experimental (full) ICS2
(with ‘d’), and that from the Born DACMe amended exper-
imental (full) ICS3 (with ‘e’) are given in the parentheses of
the second column, respectively, for every scattering energy.
The relative percent error of the theoretical DACMe ICS
(without Born correction) from the SMC amended exper-
imental ICS1 (with ‘f’), and that of the Born DACMe ICS
from the Born DACMe amended experimental ICS3 (with ‘g’)
are listed in the parentheses of the sixth and the seventh
columns, respectively. Table 2 gives the similar errors for
MTCSs.

The ICS data in table 1 indicate that: (1) the experimental
partial ICSs obtained using numerical integration of exper-
imental DCSs over scattering angles of 180calq   indeed
carry about 20% to 100% errors due to missing the scattering
information of 0 .calq   (2) The absolute value of the

Figure 7. Elastic DCSs of e+THF at 20 eV. All notations are as those in figure 1.
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Table 1. Integral cross sections (in 10−16 cm2) of e+THF at 6, 7, 8, 10, 12 15 and 20 eV based on different experimental data [12, 14].

Amended experimental ICSs

Energy Experimental partial ICS SMC ICS1
Born

SMC ICS2 Born DACMe ICS3 Theoretical DACMe ICS
Theoretical DACMe ICS with Born

correction

6 eVa 35.06 30calq = ( ) (−40.05%c, −97.58%d,
−106.65%e)

49.1 69.27 72.45 49.68 (−1.18%f) 72.41 (0.06%g)

7 eVa 39.62 20calq = ( ) (−21.66%c) 48.2 — — 47.22 (2.03%f) —

8 eVa 34.21 25calq = ( ) (−42.65%c) 48.8 — — 49.85 (−2.15%f) —

10 eVa 34.6 20calq = ( ) (−28.9%c, −67.77%d,
−44.16%e)

44.6 58.05 49.88 44.78 (−0.4%f) 50.04 (−0.32%g)

12 eVa 31.85 20calq = ( ) (−39.09%c) 44.3 — — 46.98 (−6.05%f) —

15 eVa 29.03 20calq = ( ) (−46.4%c, −70.48%d,
−53.22%e)

42.5 49.49 44.48 42.81 (−0.73%f) 44.54 (−0.13%g)

20 eVa 27.23 20calq = ( ) (−50.57%c, −64.74%d,
−50.79%e)

41 44.86 41.06 39.56 (3.51%f) 40.97 (0.22%g)

8 eVb 22.72 25calq = ( ) (−77.02%c) 40.22 — — 41.41 (−2.96%f) —

20 eVb 17.18 20calq = ( ) (−131.08%d, −116.53%e) — 39.7 37.2 — 37.22 (−0.05%g)

a
The theoretical data at this energy is calculated based on the experimental measurements of Dampc et al [14], and the experimental partial ICS is obtained by integrating the experimental DCSs [14] of calq to 180 .

b The theoretical data at this energy is calculated based on the experimental measurements of Colyer et al [12] and the experimental partial ICS is obtained by integrating the experimental DCSs [12] of calq to 130 .
c The error of the experimental partial ICS from the SMC amended experimental (full) ICS1.
d The error of the experimental partial ICS from the Born SMC amended experimental (full) ICS2.
e The error of the experimental partial ICS from the Born DACMe amended experimental (full) ICS3.
f The error of the DACMe ICS without Born correction from the SMC amended experimental (full) ICS1.
g The error of the DACMe ICS with Born correction from the Born DACMe amended experimental (full) ICS3.
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Table 2. Momentum transfer cross sections (in 10−16 cm2) of e+THF at 6, 7, 8, 10, 12 15 and 20 eV based on different experimental data [12, 14].

Amended experimental MTCSs

Energy Experimental partial MTCS
SMC

MTCS1
Born SMC
MTCS2

Born DACMe
MTCS3 Theoretical DACMe MTCS

Theoretical DACMe MTCS with Born
correction

6 eVa 34.08 30calq = ( ) (−1.53%c,
−1.5%d, −4.55%e)

34.6 34.59 35.63 35.11 (−1.47%f) 35.71 (−0.22%g)

7 eVa 34.55 20calq = ( ) (−1.01%c) 34.9 — — 34.78 (0.34%f) —

8 eVa 31.45 25calq = ( ) (−1.75%c) 32.0 — — 31.996 (0.01%f) —

10 eVa 31.16 20calq = ( ) (−0.77%c,
−0.77%d, −1.16%e)

31.4 31.4 31.52 31.5 (−0.32%f) 31.56 (−0.13%g)

12 eVa 26.99 20calq = ( ) (−6.34%c) 28.7 — — 27.6 (3.83%f) —

15 eVa 24.35 20calq = ( ) (−3.49%c,
−1.15%d, −1.52%e)

25.2 24.63 24.72 24.83 (1.47%f) 24.77 (−0.2%g)

20 eVa 21.87 20calq = ( ) (−2.42%c,
−1.23%d, −1.55%e)

22.4 22.14 22.21 22.28 (0.54%f) 21.98 (1.04%g)

8 eVb 18.04 25calq = ( )(−74.33%c) 31.45 — — 32.9 (−4.61%f) —

20 eVb 9.72 20calq = ( )(−95.06%d, −90.02%e) — 18.96 18.47 — 18.46 (0.05%g)

a
The theoretical data at this energy is calculated based on the experimental measurements of Dampc et al [14], and the experimental partial MTCS is obtained by integrating the experimental DCSs [14] of calq to 180 .

b The theoretical data at this energy is calculated based on the experimental measurements of Colyer et al [12] and the experimental partial MTCS is obtained by integrating the experimental DCSs [12] of calq to 130 .
c The error of the experimental partial MTCS from the SMC amended experimental (full) MTCS1.
d The error of the experimental partial MTCS from the Born SMC amended experimental (full) MTCS2.
e The error of the experimental partial MTCS from the Born DACMe amended experimental (full) MTCS3.
f The error of the DACMe MTCS without Born correction from the SMC amended experimental (full) MTCS1.
g The error of the DACMe MTCS with Born correction from the Born DACMe amended experimental (full) MTCS3.
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percent error (with ‘g’) of the Born DACMe ICS from the
Born DACMe amended experimental ICS3 is less than 0.4%,
and that (with ‘f’) of the DACMe ICS (without Born correc-
tion) from the SMC amended experimental ICS1 is less than
6.1% for every energy, which implies that the Born DACMe
DCSs, particularly those of 0 ,calq   and therefore the Born
DACMe ICSs better represent the true scattering physics of
this scattering system. (3) The difference between the Born
DACMe ICS and the DACMe ICS (without Born correction)
is becoming smaller as scattering energy increases, and so is
that between Born SMC ICS and the SMC ICS. Comparisons
among small angle DCSs in figures 1 to 7 also give such an
observation. This confirms the fact that the dipole scattering
potential plays a very important role in low energy electron-
polar molecule scattering. And such a dipole effect may be
neglected for this scattering system at energies greater than
20 eV. Therefore, in the cases where the dipole included cross
sections are not available at higher scattering energies, one
may use the ones without dipole contributions from a credible
theoretical method. The MTCS data in table 2 give similar
pictures.

It is worth noting that although the ICS and the MTCS
can be used as two converging standards to physically
converge the theoretical DCSs, the numerical integration on
DCSs over all scattering angles indeed sums over and
averages all scattering angular features, and therefore hides
the detailed physical differences of the DCSs obtained from
using different theoretical methods.

All above DACMe cross sections are generated by using
the experimental DCSs of Dampc et al [14] which are
extended out to 180 degrees. In order to test the feasibility and
the practicability of the DACMe method to the experimental
DCSs which do not have the data in scattering angles

calq q <  and 130 ,q >  this study also performed DACMe
calculations using the measured DCSs of Colyer et al [12] for
this scattering system at 8 and 20 eV as examples. The
DACMe DCSs and the experimental data [12] are listed in
tables A9, A10 of the SD for 8 and 20 eV, respectively. In the
last two lines of both tables 1 and 2, the experimental partial
ICSs and MTCSs are generated by integrating the measured
DCSs of Colyer et al in angles of 130 .calq   The theory
amended experimental ICS and the MTCS are obtained by
integrating the known theoretical (SMC, or Born SMC or
Born DACMe) DCSs of 0 calq   and 130 180 ,   and the
measured DCSs [12] of 130 .calq  

In figures 8 and 9, the hollow circles (d) are Colyer
et al’s experimental DCSs in scattering angles

130 .calq q <  <  The double-dots-dashed curve (—··—) in
figure 8 at 8 eV presents the DACMe DCSs which are
obtained using SMC amended experimental ICS1 and
MTCS1 as converging requirements, and the one in figure 9
at 20 eV presents the Born corrected DACMe DCSs obtained
using Born SMC amended experimental ICS2 and MTCS2 as
converging requirements. All other curves are as the
corresponding ones of figure 1. It can be seen from both
figures that the measured data (d) of Colyer et al [12] are
generally smaller than the experimental DCSs (●) of Dampc
and coworkers [14].

Table A9 and figure 8 show that the DACMe DCSs at
8 eV excellently reproduce each corresponding experimental
data (black solid curve matches (●)) and double-dots-dashed
curve (—··—) matches (d), respectively. Although there are
no measured data (d) of Colyer et al [12] available for angles

130 ,q >  the DACMe (double-dots-dashed curve) still
predict meaningful DCSs which have values within the error
bar of other measured data (●) of Dampc and coworkers [14].

The Born corrected DACMe DCSs in table A10 and
figure 9 at 20 eV present the same agreement quality with
both measured data as those in figure 8. The excellent
agreement between the Born corrected DACMe ICS and the
Born DACMe amended experimental (full) ICS3 (of the last
line of table 1) at this energy also indicates that the predicted
DACMe DCSs of both calq q <  and 130q >  correctly
give the values and physical shape of the unknown DCSs in
these angular regions.

4. Summary

This study improves the DCM method [26] by introducing an
algebraic technique to enhance the computational efficiency
of the DCM protocol, and applies the DACMe—the improved
DCM—to predict the DCSs of electron scattering from a THF
molecule at 6, 7, 8, 10, 12, 15 and 20 eV based on a set of
accurate experimental data. The study shows that the DACMe
DCSs (with Born correction for dipole potentials) not only
excellently reproduce all accurate experimental data [12, 14],
but also correctly predict the numerical values and the
detailed physical shapes of all DCSs that may not be given
experimentally or may carry non-negligible errors from other
theoretical methods. Studies on cross sections also verify the
understanding that the dipole polarization potential makes
significant contributions to the electron-polar molecule scat-
tering in small angle and at low energy regions. This study
indicates that the DCM/DACMe not only works excellently
for small molecules [26] but also for important biomolecules,
and that the DCM/DACMe is independent of the stereo-
chemistry structure and the size of a scattering molecule.
Studies also indicate that the computational speed of the
DACMe is more than 110 times faster than that of the original
DCM on a normal PC and therefore the DACMe greatly
enhances the computational efficiency.

Extensive quantum scattering studies on electron scat-
tering from many inorganic/organic molecules using varies
scattering methods have shown their power in obtaining good
theoretical cross sections and in explaining physical pictures
of scattering systems. However, there are still many situations
where complicated scattering wave-functions and delicate
scattering potentials of a given scattering system generate
satisfactory cross sections at some scattering angles or ener-
gies, but may give less satisfactory or even incorrect data at
some other angles or energies.

The DACMe method can work as an alternative to pro-
vide correct DCSs that may not be available experimentally or
may not be accurately given by some theoretical methods,
although it indeed does not provide a scattering potential
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Figure 8. Elastic DACMe DCSs of e+THF at 8 eV based on different experimental DCSs. Full circles (●), experiment data of Dampc et al
[14]; black solid curve (—), presents DACMe based on the experimental data of Dampc et al; hollow circles (d), experimental data of Colyer
et al [12]; double-dots-dashed curve (—··—), presents DACMe based on the experimental data of Colyer et al [12]. Both DACMe DCSs
(solid curves, without Born correction) are obtained using the SMC amended experimental ICS1 and MTCS1 as converging requirements;
dot-dashed curve (—·—), SMC calculation [18]; dotted curve (···), from the complex Kohn variational method [21].

Figure 9. Elastic DACMe DCSs of e+THF at 20 eV based on different experimental DCSs. Full circles (●), experiment data of Dampc et al
[14]; black solid curve (—), presents Born corrected DACMe based on the experimental data of Dampc et al; hollow circles (d), experimental
data of Colyer et al [12]; double-dots-dashed curve (—··—), presents Born corrected DACMe based on the experimental DCSs of Colyer et al
Both Born corrected DACMe DCSs (solid curves) obtained using the Born SMC amended experimental ICS2 and MTCS2 as converging
requirements; dashed curve (— —), Born corrected SMC calculations [19]; dotted curve (···), from the complex Kohn variational
method [21].
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picture. The DACMe may work as an easy and economic
theoretical supplement in cases where correct scattering cross
section data are demanded.
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