The diffusive thermal conductivity tensor of the
A1-phase of
superfluid 3He
at low temperatures and melting pressure are calculated beyond the s–p approximation, by
using the Boltzmann equation approach. The interaction between normal–normal,
normal–Bogoliubov and Bogoliubov–Bogoliubov quasiparticles in the collision
integrals are considered for important scattering processes such as binary
process. At low temperatures, we show that the scattering between Bogoliubov
and normal quasiparticles in binary processes plays an important role in the
A1-phase, and Bogoliubov–Bogoliubov interaction is ignorable.
We show that the two normal and superfluid components take part in
elements of the diffusive thermal conductivity tensor differently. We
obtain the result that the elements of the diffusive thermal conductivities,
Kxx,
Kyy and
Kzz, are
proportional to T−1, and also that the superfluid components of the diffusive thermal conductivity tensor,
and
, are proportional to T3
and T, respectively.