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Introduction

In the context of molecular simulations, hybrid quantum 
mechanics-molecular mechanics (QM-MM) schemes consider 
the system as a sum of two parts: solute (QM fragment) and 
solvent (MM fragment) [1–20]. The particles are assigned to 
one of these two groups according to their role: atoms directly 
involved in bonds breaking or forming, or in polarization or 
charge transfer effects, must be considered in the QM region, 
whereas those atoms not participating in these processes are 

included within the MM subsystem. These two groups are 
described at different levels with different Hamiltonians, but 
they interact with each other, generally self-consistently.

QM-MM schemes have been applied extensively and suc-
cessfuly along the last couple of decades, to model finite chem-
ical and biological systems. The impact of this methodology 
has been acknowledged through the Chemistry Nobel Prize 
of the year 2013, which was awarded to some of its founders 
for the development of multiscale modelling. One of the 
major successes of this approach was in the study of chemical 
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Abstract
We introduce and discuss a hybrid quantum-mechanics molecular-mechanics (QM-MM) 
approach for Car–Parrinello DFT simulations with pseudopotentials and planewaves basis, 
designed for the treatment of periodic systems. In this implementation the MM atoms are 
considered as additional QM ions having fractional charges of either sign, which provides 
conceptual and computational simplicity by exploiting the machinery already existing in 
planewave codes to deal with electrostatics in periodic boundary conditions. With this strategy, 
both the QM and MM regions are contained in the same supercell, which determines the 
periodicity for the whole system. Thus, while this method is not meant to compete with non-
periodic QM-MM schemes able to handle extremely large but finite MM regions, it is shown 
that for periodic systems of a few hundred atoms, our approach provides substantial savings 
in computational times by treating classically a fraction of the particles. The performance and 
accuracy of the method is assessed through the study of energetic, structural, and dynamical 
aspects of the water dimer and of the aqueous bulk phase. Finally, the QM-MM scheme is 
applied to the computation of the vibrational spectra of water layers adsorbed at the TiO2 
anatase (1 0 1) solid–liquid interface. This investigation suggests that the inclusion of a second 
monolayer of H2O molecules is sufficient to induce on the first adsorbed layer, a vibrational 
dynamics similar to that taking place in the presence of an aqueous environment. The present 
QM-MM scheme appears as a very interesting tool to efficiently perform molecular dynamics 
simulations of complex condensed matter systems, from solutions to nanoconfined fluids to 
different kind of interfaces.
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reactions inside the active site of proteins. In this type of simu-
lations the solute described quantum-mechanically comprises 
the active site, while the rest of the protein plus hydration water 
molecules are treated classically [1, 2, 17, 21]. Leaving aside 
the applications in biochemistry, hybrid QM-MM methodolo-
gies in a non-periodic setting have also been employed in var-
ious other contexts, as for example proton transfer reactions in 
water clusters [5, 22], or in different kinds of materials which 
were modeled as finite structures: these works have addressed 
solid–liquid [9], metal-organic [16], and oxide interfaces [23].

On the other hand, the QM-MM methodology applied in 
periodic boundary conditions (PBC) for both the QM and MM 
parts, has been rarely reported in the literature. A few exam-
ples imposing periodicity to the MM region only to model 
pure phases and dilute solutions can be found for semiem-
pirical or first-principles approaches [3, 15, 24]. Laino et al 
[10, 11] developed a QM-MM method in periodic boundary 
conditions based on Gaussian basis sets and multigrids to treat 
the long-range interactions, which was tested on the simula-
tion of surface defects present at the α-quartz phase of silica. 
Other periodic QM-MM implementations with Gaussian basis 
sets have been proposed based on the reduction of the elec-
tron density to point charges, after which the classical Ewald 
summation can be applied [19, 25]. Such strategy has been 
implemented for both semiempirical [25] and ab initio [19] 
Hamiltonians. In this line, Golze and co-workers elaborated 
a method for the treatment of metallic interfaces, where the 
interactions between the quantum-mechanical adsorbate and 
the classical substrate are handled at the molecular mechanics 
level [20]. To the best of our knowledge only Yarne et al [6] 
developed a hybrid QM-MM methodology imposing PBC to 
the whole system in a pseudopotentials planewaves (PPW) 
code [26]. In this case electrons were confined to a smaller 
unit cell inside the supercell needed to describe the whole 
system, and periodicity was limited to 1 or 2D [6].

In the present article, we present a formulation for hybrid 
QM-MM calculations based on density functional theory 
(DFT) in a PPW framework. In particular, this scheme has 
been devised for the Car–Parrinello method as implemented 
in the Quantum Espresso code [27]. The goal is to have avail-
able a hybrid QM-MM methodology in PBC appropriate 
to describe condensed matter in complex environments, 
as solid–liquid or liquid–liquid interfaces, where the main 
interest or the ‘chemistry’ involves one of the two phases—
the QM part—under the influence of the other—the MM part. 
This could be useful in solid-water interfaces, where the solid 
and any adsorbed species can be described quantum-mechan-
ically, while the solution may be modeled using a classical 
force-field. We illustrate this kind of application through the 
study of titania in contact with an aqueous phase. The oppo-
site representation, in which the solid constitutes the MM part, 
might also be appealing if the interest were in the properties 
of the other phase, as it could be the case of nanoconfined 
molecules or fluids. To the best of our knowledge, no other 
QM-MM model has been based on the present strategy, which 
we believe is a very interesting one for atomistic simulations 
of interfaces or nano-spaces with high accuracy at an afford-
able computational cost.

QM-MM method in the pseudopotential plane wave 
framework

Partitioning of the total energy

In the DFT-PPW approach used in the Quantum Espresso 
code, the QM energy can be cast as [26, 28]:

[ ] [ ] [ ] [ ]ρ ρ ρ ρ= + + + + +E T E E E E Ee iiQM H PS
loc

PS
nl

XC� (1)

On the right hand side of the above equation, from left to 
right, there is the kinetic energy of the electrons, the Hartree 
energy, the ion–ion repulsion, the local and non-local contrib
utions to the pseudopotential energies, and the exchange-
correlation functional. Here ( )ρ r  is the electron charge density.

In the context of QM-MM models, the Hamiltonian and the 
energy of the system are written as:

ˆ ˆ ˆ ˆ= + + −H H H Htot QM MM QM MM� (2)

= + + −E E E Etot QM MM QM MM� (3)

where −HQM MM (and the related energy −EQM MM) is a cou-
pling term describing the interaction between the two regions 
of the system. In the MM region, atoms are typically treated as 
point charges of charge ZI interacting with each other through 
electrostatics, dispersive-repulsive and harmonic potentials, 
so that the molecular mechanics energy EMM is the sum of 
three contributions [29]:

= + +E E E EMM ele LJ bond� (4)

where Eele, ELJ and Ebond denote the electrostatic, the Lennard-
Jones, and the bonding energy respectively, the later of which 
models the intramolecular degrees of freedom. In turn, these 
terms are normally computed as:
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In the second of these three equations σIJ and εIJ are the 
Lennard-Jones radius and interaction energy between atoms I 
and J. In the last expression, k a,i i, and vn, represent force con-
stants for the harmonic potentials controlling bond lengths, 
angles and torsions, respectively. Within the MM region we 
will consider only water molecules, which internal degress of 
freedom are described through the O-H distances and H-O-H 
angles, and therefore the third term in the last equation will 
not be present.

The −EQM MM contribution appearing in equation  (3) can 
normally be explicitely written as the sum of an electrostatic 
and a non-electrostatic term. As it will be shown below, how-
ever, in the working formula implemented here the electrostatic 
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contribution to −EQM MM can not be written separately, because 
it is intertwined with the total electrostatic energy.

The electrostatic energy in the PPW framework

In the PPW method, the electrostatic contribution comes from 
the sum of the second, third, and fourth terms on the right 
hand side of equation (1):

[ ] [ ] [ ] ( ) ( )

( ) ( )

∫∫

∫∑∑ ∑ ∑

ρ ρ ρ
ρ ρ

ρ

= + + =
| − |

+ | − | +
| − |

′
′

′

= = = = ≠

E E E E

v
Z Z

r r
r r

r r

r r R r
R R

1

2
d d

d
1

2

ii

s

N

l

P
s

I
I

P

J J I

P
I J

I J

es H PS
loc

1 1
PS
loc,

1 1,

s

� (8)
where s indicates the atomic species, N is the number of dif-
ferent atomic species, and v s

PS
loc,  is the local part of the pseudo-

potential for each species. ZI is the ionic charge of the nuclei 
(which amounts to the atomic number minus the valence elec-
trons) and RI their positions. P stands for the number of ions 
and Ps for the number of ions corresponding to the atomic 
species s. We adopt the same convention used in the computa-
tional code, in which the sign of the electronic charge is taken 
as positive and the ionic charge as negative.

Due to the long-range decay of electrostatic interactions, 
[ ]ρEH , [ ]ρEPS

loc  and Eii diverge if they are calculated separately. 
It turns out to be convenient to introduce a fictitious ionic 
charge, ( )ρα r , which is added to the Hartree energy term and 
substructed from the other two. In this way, a total neutral 
charge density is defined, ( ) ( ) ( )ρ ρ ρ= +αr r rT , and the elec-
trostatic energy can be rewritten as:
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(9)

The Hartree and the local pseudopotential contributions can  
be expanded in Fourier space, and the ion-repulsions treated 
with the Ewald method. In particular, if the ionic charge is 
defined as a sum of Gaussian functions centered on every nuclei,

( ) / ∑ρ
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3 2
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2 I
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after some manipulation the electrostatic energy can be 
expressed as [26]:
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where Ω is the volume of the supercell, /η1  is a cutoff dis-
tance parameter, and ( )S Gs  is an atomic structure factor for 
each species s,

( ) ∑=
=

− ⋅S G e .s
I

P
G R

1

i
s

I
s

� (12)

In the last couple of equations, ˜( ) ˜ ( ) ˜ ( )ρ ρ ραG G G, , T , and ˜ ( )v Gs
PS
loc,  

are the coefficients of the Fourier expansions of the corresp
onding real space functions, with G the reciprocal lattice vec-

tors ( ∫= Ω =∑
Ω

−f f f fG r r r G1 e d , eGr
G

Gri i˜ ( ) / ( )   ( ) ˜ ( ) ). The 

complementary error function erfc(x) arises from the point-
charges interactions screened by the Gaussian functions, with 
n an index running over cells in real space. The short-ranged 
nature of this interaction ensures that the sum converges very 
fast: typically, only first neighbours need to be considered.

Total energy in the QM-MM implementation

One of the key points in our hybrid approach is to conceive 
the MM atoms in the same way as the pseudoions of the QM 
region within the PPW framework. There are basically two 
differences between MM and QM ions in this case: (i) the 
MM atoms do not include a non-local pseudopotential term, 
and (ii) the MM ions can have a partial charge, which can be 
either negative or positive, according to the charge parameter 
in the force field. Hence, in our implementation, the electro-
static energy is extended to include the MM atoms:

[ ] [ ] [ ] [ ]ρ ρ ρ ρ= + + +E E E E Ees H PS
loc

em im� (13)

where [ ]ρEem  and Eim represent, respectively, the interaction 
of the electron density with the classical charges, and the 
Coulomb interaction between all ions, both QM and MM.

∫∑ ∑ρ ρ= | − |
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E vr r R rd
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Here M and Pm are, respectively, the number of classical spe-
cies and the number of atoms for the m species. The func-
tion vm

MM is the pseudopotential associated with the classical 
species m, to be defined below. RI is the position of every 
atom, irrespective of being quantum or classical, and ZI is 
its charge, that will be typically a non-integer number in the 
MM region. T denotes the total number of atoms in the system 
( = ∑ +∑T P Ms

N
s m

M
m).

The pseudopotential associated with the classical atoms, 
vm

MM, has to verify a few properties: has to be a smooth con-
tinuous function to be numerically tractable with Fast Fourier 
Transforms, has to decay as the inverse of the distance r at 
long ranges, and must avoid the divergence when →r 0. We 
have adopted the functional form proposed by Laio et al [7] :

| − | = =
−

−
v v r Z

r r

r r
r Rm

I
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mMM MM
cm
4 4

cm
5 5

( ) ( )� (16)
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with m the classical atom species, Zm its charge, and rcm a cutoff 
radius appropriate for every species. This function approaches 
Zm/r for �r rcm, and goes smoothly to /Z rm cm for r  =  0. Even 
if the exact value of vMM at short ranges is not critical, it has 
to be small enough not to become a trap for the electrons. In 
the case of plane-wave basis, sharp MM potentials of positive 
species may cause electronic charge localization on the clas-
sical atoms: this is called the spill out effect. The possibility of 
electron density flowing to the MM region can be minimized 
using a classical pseudopotential which varies softly and has 
a small magnitude at short distances. The function defined in 
equation (16) satisfies these conditions, providing at the same 
time an appropriate interaction between MM and QM atoms. 
The values of rcm have to be parameterized for every classical 
species, and may also depend on the particular combination 
of DFT scheme and force-field. In practical terms, however, 
as mentioned in [7] or discussed below, the dependence of the 
QM-MM interactions on rcm is relatively weak within a broad 
range, and therefore the exact values of the cutoff radii, while 
kept within prudential limits, do not appear to be a crucial 
feature.

With these modifications, the electrostatic energy amounts 
to the following final form:
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This expression is identical to equation (11), aside from the 
term involving the structure factor ( )S Gm  corresponding to 
the MM species, and from the fact that the sums in the last 
two terms run over MM and QM atoms. The charge ρα now 
includes the contribution of the MM ions, and therefore it can 
take either negative or positive values across space.

There is a non-electrostatic contribution to the QM-MM 
energy which is analogous to that between atoms in the MM 
region:
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where now εsm and σsm are the parameters for the Lennard-
Jones interaction of a classical atom of species s with a 
quantum atom m. This energy prevents the MM charges of 
negative sign from collapsing on the positive QM nuclei. The 
MM subsystem in the present study involved H2O molecules, 
which were described through the SPC flexible water model 
(SPC/Fw) proposed by Wu, Tepper and Voth [30]. The same 
set of parameters for σ and ε were used in both the MM-MM 
and the QM-MM non-electrostatic interactions, given respec-
tively in equations (6) and (18).

At this point it must be noticed that most force-fields, 
including the SPC/Fw potential, do not consider any Coulomb 
interactions between atoms belonging to the same molecule. 
In the present formulation, however, the electrostatic energy 

in equation (17) arises from pairwise interactions of every ion 
with all the others, and those of intramolecular origin can not 
be easily individualized and excluded from the rest. A simple 
way to correct for this overcounting could be to separately 
compute the Coulomb interactions inside each molecule, and 
then substract it from the total energy. In this case, such a cor-
rection would be:
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where nH O2  is the number of water molecules in the MM 
region, and RO

i , RH
i

1 and Ri
H2 are the positions of the three 

atoms belonging to molecule i.
Finally, combining all the contributions together, we com-

pute the total energy as:
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etot es XC PS
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bond intra
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where ELJ,MM considers the Lennard-Jones interactions 
within the MM region, and Ebond the intramolecular harmonic 
contributions between connected MM atoms (equation (7)).

Forces

The atomic forces can be calculated for the QM and for the 
MM atoms as the derivative of the total energy, equation (20), 
with respect to the ionic positions. This leads to analytical 
forces in all cases. For the QM atoms, there is no explicit 
dependence of [ ]ρTe  and [ ]ρEXC  on RI, and therefore only three 
terms survive in the derivative:
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The former of these terms on the right hand side above can be 
developed as:
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On the other hand, the Lennard-Jones contribution to the 
force is simply:
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The contribution originating in the non local part of the 
pseudopotential energy is part of the standard QM implemen-
tation and will not be discussed in the present context.

The expression for the forces on the atoms belonging to 
the MM subsystem will have two terms in common with 

J. Phys.: Condens. Matter 28 (2016) 335201



D Hunt et al

5

equation (21), plus the pure MM contributions, whose deriva-
tives are straightforward:
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Assessment of the model: water dimer and 
aqueous liquid phase

The water dimer

The potential energy curve of a water dimer, with one mol-
ecule in the QM domain and the other in the MM region, 
was calculated as a first test. The geometry of the dimer was 
optimized for a series of oxygen–oxygen separations. It is 
important to note that there are two inequivalent configura-
tions in which this curve can be obtained, depending on 
whether the MM molecule plays the role of donor or acceptor 
of the hydrogen bond. In the water dimer depicted in the inset 
of figure 1, the hydrogen bond donor is the molecule on the 
left and the acceptor is on the right. Therefore, two curves can 
be obtained.

Calculations were performed in a supercell of dimen-
sions  × ×19 9.5 9.5 Å

3
, to minimize the interactions of the 

water dimer with their periodic images. The cell dimen-
sion is longer along the x axis because this is the direction 
in which the potential energy is scanned. The PBE approach 
to the DFT exchange-correlation energy [31] in combination 
with ultrasoft pseudopotentials [32] were adopted to compute 
total energies and forces. The Kohn–Sham orbitals and charge 
density were expanded in planewaves up to a kinetic energy 
cutoff of 50 and 200 Ry, respectively. An electronic mass of 
400 a.u. was used to propagate the wavefunctions according 
to the Car–Parrinello scheme. The rcm values adopted for the 
QM-MM interactions were 0.21 Å and 0.27 Å for the hydrogen 
and oxygen atoms, respectively. These values provide the best 
agreement with respect to the classical and quantum-mechan-
ical interaction energies and radial distribution functions (see 
below).

Before discussing the QM-MM results, we will examine 
the curves provided by the pure QM (DFT) and MM (SPC/
Fw) methodologies. These are plotted in figure  1. The dif-
ference in the description is readily apparent: the QM curve 
is shifted to a weaker interaction and to a longer distance at 
the minimum, with respect to the MM curve. Reported exper
imental values, of 2.98 Å for the oxygen–oxygen separation 
[33, 34], and ranging from 3.6 to 5.2 kcal mol−1 for the mag-
nitude of the interaction at the minimum energy geometry 
[35–38], are better reproduced by the quantum-mechanical 
model, which provides an optimized hydrogen-bond energy 
of 4.9 kcal mol−1 at 2.9 Å. Similar results have been obtained 
from previous DFT calculations based on both localized 
and extended basis functions [39–43]. On the other hand, 
the classical-mechanics water dimer interaction, of nearly  
7.4 kcal mol−1, is clearly above the available experimental data. 
The reason for this overestimation is that the SPC and SPC/ Fw  
potentials, as most water force-fields, are parameterized to 

reflect the properties of the bulk liquid phase [30, 44], where 
the molecular dipole moments are significantly enhanced with 
respect to the isolated molecule (see next section). As a matter 
of fact, the minimum of the MM curve, at nearly 2.7 Å, is 
coincident with the first peak of the oxygen–oxygen radial dis-
tribution function (RDF) for liquid water at room temperature.

The QM-MM potential energy curves, presented in figure 1 
together with the results corresponding to the pure SPC/ Fw 
and DFT calculations, turn out to be quite interesting. As men-
tioned above, two configurations can be considered in this 
case, depending on the identity of the donor of the H-bond. 
Examination of the curves leads to the following observation: 
the QM-MM curve in which the acceptor is the MM molecule, 
roughly reproduces the SPC/Fw curve, whereas the QM-MM 
curve where this role is played by the QM molecule, is very 
close to the DFT results. In other words, the QM-MM curves 
are essentially reflecting the identity of the acceptor. This is a 
meaningful result, understandable when we recall that most 
of the charge density involved in the bond, and therefore the 
polarization effect, corresponds to the oxygen atom. The elec-
tron density associated with the H atom is much lower and 
localized, and there is not a major effect if this electron den-
sity is replaced by a bare pseudopotential.

Ideally, both QM-MM curves should be identical. In prac-
tice, however, a discrepancy is immanent to all QM-MM 
models, since these curves are tied to the QM and MM 
Hamiltonians, which necessarily provide different descrip-
tions of the bond. For the calculations in the condensed phase, 
we expect that the difference between the two kinds of inter-
actions (involving the QM water molecule as the donor or as 
the acceptor) will be substantially attenuated. The results in 
the next section, concerning the properties in the bulk, suggest 
that this is certainly the case.

Figure 2 presents the interaction energies at the minima 
of the curve, as a function of the hydrogen and oxygen rcm 
parameters. A decrease in rcm

H  strengthens the interaction 
when the MM molecule is the hydrogen-bond donor, as a con-
sequence of an enhanced Coulombic attraction. A decrease in 

Figure 1.  Interaction energy for a water dimer as a function of 
the O-O distance, according to DFT (QM), SPC/Fw (MM), and 
hybrid QM-MM calculations. In the dimer depicted in the inset, the 
molecule on the right plays the role of H-bond acceptor.
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rcm
O  when the MM molecule is the acceptor, instead, has the 

opposite effect, as could be expected from the negative charge 
of the MM oxygen. The chosen cutoff radii minimize the dif-
ference between the interaction energies of the two possible 
configurations (QM-acceptor and QM-donor), maximizing 
the agreement between the QM-MM potential energy surfaces 
with either the full QM or full MM curves, according to the 
identity of the acceptor. The effect of the rcm values on the 
interaction energies is minor over a broad range. In [7] larger 
values were adopted, but we have found that these deteriorate 
the quality of the radial distribution functions in the present 
scheme.

Bulk phase properties

Car–Parrinello molecular dynamics simulations were per-
formed on a system of 64 water molecules, of which one was 
described quantum-mechanically and the rest classically. The 
simulations were conducted at 300 K using the Nosé–Hoover 
thermostat in a cubic box in periodic boundary conditions, 
with a density corresponding to 1 g cm−3, and a time-length of 
6 ps. A planewaves basis of 25 Ry for the Kohn–Sham states 
and 200 Ry for the charge density were employed, together 
with the PW91 exchange-correlation functional [45].

The average dipole moment for a water molecule in the gas 
phase obtained from the Car–Parrinello dynamics is 1.81 D,  
very close to the experimental value of 1.86 D [46, 47]. In the 
system of 64 H2O molecules representing the bulk phase, the 
polarization exerted by the classical environment raises the 
dipole moment of the QM molecule to an average of 2.88 D. 
This number is in full agreement with reported estimates of 
2.95 D from ab initio simulations [48], or ±2.9 0.6 D from 
the x-ray structure factor [49]. Figure  3 depicts the com-
puted dipole moments of water as a function of time, both 
isolated and in the classical aqueous environment. The dashed 
lines represent the experimental values. Such a good accord 

demonstrates that the polarization effect is finely accom-
plished by the QM-MM scheme.

Figure 4 presents the vibrational frequencies of the water 
molecule in the gas and in the liquid phases, computed from 
the Fourier transform of the time correlation function of the 
atomic velocities ( )tv  [50],

( )   ⟨ ( ) ( )⟩∫ ∑ω
π

= ω

−∞

∞
−

=

I t
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2
d e
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0t
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i i
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1
� (25)

(all spectral lineshapes presented here have been subject to a 
Gaussian smoothing). Depending on the system, on the vibra-
tional mode, and on the electronic mass, ionic frequencies in 
Car–Parrinello dynamics may show redshifts of a few percent 
with respect to spectroscopic data [51]. In the present case, 
the positions of the peaks fall between 100 to 200 cm−1 below 
the experimental frequencies, consistently with previous 
Car–Parrinello simulations of H2O [52, 53]. For the isolated 
molecule, it is possible to recognize two bands in figure  4, 
corresponding to the stretching and bending modes, centered 
at 3500 and 1480 cm−1 respectively. In the liquid state these 
bands become broader and noisier, with an additional set of 
peaks below 1000 cm−1 arising from librations. The first thing 
to note is that the stretching frequencies shift to lower wave-
numbers in the liquid, whereas the bending experiences the 
opposite trend. This is the same behavior as observed from IR 
spectroscopy, where the stretching in the liquid is redshifted in 
about 300 cm−1, and the bending mode is blueshifted in nearly 
50 cm−1 [54]. Our simulations in the liquid give peaks which 
are spread and too much splitted to establish unambiguously 
the magnitudes of these shifts; however, considering the center 
of mass of the bands, it turns out that the shift of 300 cm−1 
in the stretching frequency is pretty much reproduced by the 
QM-MM model, while the change in the bending frequency 
appears overestimated by a factor of two. These predictions 
for the spectral shifts in water are, from a quantitative point 
of view, of a quality comparable to that obtained from full 
quantum-mechanical Car–Parrinello simulations [52, 53].

Figure 2.  Interaction energy (absolute value) at the minima of 
the QM-MM curves, as a function of the rcm parameters. The red 
curve shows the dependence on rcm

H  when the MM molecule is the 
hydrogen-bond donor, while the black curve depicts the effect of 
rcm

O  when the MM molecule is the acceptor. Dashed lines indicate 
the interaction energies in the full QM and MM models.

Figure 3.  Time evolution of the dipole moment of a quantum-
mechanical water molecule in the gas phase, and in an aqueous 
environment consisting of 63 classical molecules in a cubic cell. 
The dashed horizontal lines show the experimental values, from 
[46] and [49].
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Radial distribution functions for the model of 64 water 
molecules are displayed in figure  5. Classical molecular 
dynamics simulations with the SPC/Fw potential in PBC were 
performed in the same system with the LAMMPS code [55]. 
The upper panel confirms that the electrostatic description 
of the MM atoms within the QM-MM approach, including 
the correction to the intramolecular Coulomb forces, repro-
duces the dynamics dictated by the SPC/Fw force-field. The 
subtle discrepancies between the classical and the QM-MM 
curves are attributable to differences in the length of the sim-
ulations, to the distinctive numerical implementation of the 
Ewald sums in every code, and possibly to the presence of the 
QM water molecule. The radial distribution function corresp
onding to the quantum-mechanical oxygen atom is presented 
in the lower panel of figure 5. In comparison to SPC/Fw, this 
curve is more structured, with maxima and minima appearing 
respectively above and below. Its shape does not seem to be 
converged, probably because insufficient sampling: note that 
in this case the RDF is built from a single water molecule out 
of 64. Various studies of liquid water using the Car–Parrinello 
method with GGA functionals and an electronic mass com-
parable to the one employed here, have found overstructured 
oxygen–oxygen RDFs at room temperature and pressure  
[43, 53, 56, 57], suggesting that in these conditions this 
approach represents bulk water in a glassy or supercooled 
state. Data from one of these works is depicted in figure 5. 
The radial distribution function of the QM oxygen atom in 
our QM-MM simulation turns out to be intermediate between 
those obtained from pure classical and pure quantum-mechan-
ical Car–Parrinello molecular dynamics.

Considerations on computational efficiency

At variance with other QM-MM schemes in the PPW frame-
work, in which the classical region does not have to be 
included in the simulation box, in the present treatment the 
MM atoms need to be contained in the supercell together with 

the QM atoms. Then, the amount of planewaves and the size 
of real space grids are the same or about the same as in a 
quantum-mechanical calculation with an equal number of total 
atoms, and therefore the QM-MM implementation does not 
involve any significant decrease in memory requirements. In 
spite of this, the reduction of the QM region cuts the quantity 
of Kohn–Sham states to be evolved in the Car–Parrinello 
dynamics, which may have a substantial impact on the overall 
computing time. As a matter of fact, the computational effort 
in the quantum-mechanical Car–Parrinello scheme for a given 
unit cell size is approximately proportional to the number of 
atoms, with a slope larger than 1, which tends to increase with 
system dimensions. As a consequence, the speedup achieved 
by the QM-MM approach is roughly linear with the replace-
ment of QM by MM atoms. This behavior is reflected in 
figure  6, which illustrates the relative decrease in computa-
tion time with the increase of the number of atoms represented 
classically, for the cases of 32 and 64 water molecules. As 
expected, the gain in performance becomes more significant 
as the system grows bigger.

In ab initio modelling of solid interfaces in contact with a 
bulk liquid, the solvent fills a major fraction of the supercell, 
often representing between 1/2 to 2/3 of the total atoms. In the 
solid–liquid interface model for anatase (1 0 1) discussed in 
the next section, for instance, the number of classical atoms 
is 144, out of a total of 264. In this situation, the QM-MM 
calculation turns out to be 5 times faster than a full QM simu-
lation. In the case of a quantum-mechanical water molecule 

Figure 4.  Simulated vibrational spectra of water in the gas and 
in the liquid phases. In the later case, the aqueous environment is 
represented by 63 classical molecules in a cubic cell. The computed 
frequency shifts are in qualitative agreement with IR spectroscopic 
data.

Figure 5.  Upper panel: RDFs computed for all pairs of MM 
atoms in the QM-MM system of 64 water molecules. The dashed 
lines correspond to the curves obtained from classical molecular 
dynamics simulations with the SPC / Fw potential. Lower panel: 
RDFs for MM oxygen atoms (black) and for the QM oxygen 
atom (red), from the simulations of the 64 molecules system. The 
amount of data-points to construct the QM RDF is only 1/63 of that 
involved in the MM RDF, which explains the uneven, unconverged 
structure of the former. The symbols show the positions of the 
maxima and the minima in the RDF obtained from quantum-
mechanical Car–Parrinello simulations (squares) and from x-ray 
diffraction experiments (circles), extracted from [43] and [58] 
respectively.
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surrounded by 63 classical ones, examined in the previous 
section, the acceleration goes above one order of magnitude.

Water vibrational frequencies at the solid–liquid 
interface of TiO2 anatase

Many of the most relevant applications of TiO2 implicate the 
solid–liquid interface, which entails a serious challenge to 
first-principles modelling, given the need for extensive simu-
lations to achieve an appropriate configurational sampling of the 
fluid phase. Thus, ab initio molecular dynamics investigations 
considering the water liquid phase in contact with titania 
have been carried out only in a limited number of occasions, 
to address the rutile (1 1 0) [59–62] and the anatase (1 0 1)  
and (0 0 1) surfaces [63]. Instead, there is a large number of 
DFT studies which have examined stoichiometric and defec-
tive titania interfaces in the presence of just a few water mono
layers, typically ranging from one to three [64–72]. In this 
section we illustrate the applicability of our hybrid quantum-
mechanics molecular-mechanics scheme through the calcul
ation of the water vibrational frequencies at the anatase (1 0 1)  
interface. We aim at determining to what extent the explicit 
inclusion of the liquid phase affects the dynamical properties 
of the first adsorbed layers. To this end, results from QM-MM 
molecular dynamics simulations representing the liquid 
phase, are compared with those coming from QM simulations 
incorporating just one or two H2O monolayers.

The DFT parameters concerning planewave basis, pseudo-
potentials, and exchange correlation functional, were the same 
as employed to describe the water bulk phase in the previous 
section. The anatase (1 0 1) surface was represented using a 
×2 2 supercell, containing six layers of TiO2 units, and Γ-point 

sampling. Cell dimensions were × ×7.56 10.24 22.67Å
3
 

for the QM calculations. In the QM-MM simulations the 
z-parameter was extended to 30.23 Å to accommodate the 
aqueous phase, consisting of 16 QM plus 48 MM water mol-
ecules. In particular, the first two water monolayers adjacent 

to the solid surfaces were modelled quantum-mechanically, 
to get the corresponding vibrational frequencies and to avoid 
a direct interaction between SPC/Fw water and titania. The 
probability of molecule exchanges between water layers is 
very low, in particular in the first adsorbed monolayer, where 
residence times have been estimated to be in the order of sev-
eral nanoseconds through molecular dynamics simulations 
[73, 74]. We have not observed any such exchanges in our 
simulations (in any case, if they were detected in a particular 
model interface, this could be resolved by increasing the size 
of the QM domain). Molecular dynamics simulations were 
performed at 300 K with the Nosé–Hoover thermostat, with 
sampling windows of 6 ps. Figure 7 displays the model struc-
ture employed in the QM-MM calculations of the solid–liquid 
interface.

Figure 8 shows the vibrational density of states corresp
onding to the water molecules directly adsorbed on the TiO2 
surface, computed through equation  (25). The three panels 
compare three different coverages: monolayer (top), bilayer 
(center), and the liquid environment (bottom). For the single 
layer, the stretching mode, appearing at around 3500 cm−1, is 
the strongest one, vaguely resembling the vibrational patterns 
of water in the gas phase. With the incorporation of a second 
layer, the intensities arising from librations and bending 
become larger than that associated with the stretching, 
which in turn moves slightly to the left. This trend is simi-
larly observed in the presence of the bulk liquid, where the 
librations dominate the spectra. Hence, in general terms it is 
observed that the vibrational behavior of the H2O molecules 
in the first layer, roughly shifts from gas-like to liquid-like 
as the degree of hydration is increased. The main features in 
our computed spectra are in line with those obtained from 
neutron scattering experiments on water confined in anatase 

Figure 6.  Dependence of the total computational time with the size 
of the classical domain, keeping constant the total (QM  +  MM) 
number of atoms. The benchmarks correspond to 100 Car–Parrinello  
steps parallelized on four processors for systems of 64 and 32 
water molecules in a cubic unit cell. Tests on different number of 
processors, up to 16, provide identical trends.

Figure 7.  Slab model used in the QM-MM simulations of the  
TiO2 anatase (1 0 1) surface in contact with a bulk water phase.  
The water molecules were represented classically, except those 
forming the first and second adsorbed layers.
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nanoparticles, where librations and bending are predominant, 
and the stretching absorption band is shifted to lower frequen-
cies with respect to the gas phase [75].

The aqueous media has a major influence on the spectra of 
the second water layer. Figure 9 shows that in the absence of 
the liquid environment, the stretching of the water molecules 
in the second layer is very weak in comparison with librations 
and bending. The typical bulk-water features are recovered as 
the MM environment is included in the simulation.

The above results suggest that the internal degrees of 
freedom of a water molecule in a single layer on anatase (1 0 1)  
retain some of the character they have in the gas phase. 
Moreover, the sole inclusion of a second H2O layer appears 
to be enough to recreate, at least to some extent, the dynamics 
in the presence of a bulk aqueous phase. This behavior can be 
tracked to the hydrogen bond network arising in each case. 
For a single adsorbed layer, the H2O molecules are tightly 
bound to the five-coordinate Ti atoms, with one or both of 

their hydrogen atoms forming relatively weak hydrogen-
bonds with the bridging oxygen sites on the surface. On the 
other hand, an inspection of the trajectories in the presence of 
a second row of solvent molecules reveals that, most of the 
time, the molecules in the first layer are involved in hydrogen-
bonds with at least another H2O molecule, either as a donor 
or as an acceptor. In the liquid phase the number of hydrogen 
bonds that can be formed, and the polarization effects, are even 
larger. Yet, the incorporation of a few water molecules beyond 
the first monolayer is sufficient to induce on the adsorbate, a 
dynamical behavior very close to the one corresponding to 
full hydration.

Summary

We have presented an approach to perform hybrid quantum-
mechanics molecular-mechanics simulations with the 
Car–Parrinello method in the context of the pseudopotential-
planewaves setting. At variance with other QM-MM imple-
mentations existing in planewaves codes, in the present 
approach the classical atoms are treated on the same footing 
as the quantum-mechanical ions, which naturally leads to 
periodic boundary conditions for the totality of the system. 
Thus, all QM and MM atoms need to be contained within the 
same real space grid determined by the simulation cell. As a 
consequence, the size of the MM region has an impact on the 
computational cost, and this method would not be convenient 
for extended systems where this region is extremely large, or 
exceeds by far the size of the QM part. It turns out that, for 
a given unit cell, the scalability is approximately linear with 
the substitution of QM by MM atoms. In typical calculations 
of solid–liquid interface models involving a few hundred 
atoms, in which the solvent represents more than one half of 
the system, speedup factors above five can be attained with 
the present scheme. We applied our implementation to the 
computation of the vibrational spectra of water adsorbed at 
the TiO2 anatase (1 0 1) surface, at various coverages. It was 
found that the presence of a second monolayer of water mol-
ecules is enough to mimick the effect of an aqueous environ
ment on the vibrational frequencies of the first adsorbed layer. 
This methodology seems particularly suited for molecular 
dynamics simulations in condensed matter systems including 
one or more fluid phases. Solutions, nanoconfined fluids, or 
solid–liquid and liquid–liquid interfaces, are all examples 
where this scheme could be extremely valuable.
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Figure 8.  Simulated vibrational spectra corresponding to the 
first water monolayer adsorbed on the anatase (1 0 1) surface, at 
different coverages: monolayer (top panel), bilayer (middle panel), 
and bulk liquid (bottom panel).

Figure 9.  Simulated vibrational spectra corresponding to the 
second water monolayer adsorbed on the anatase (1 0 1) surface, for 
a bilayer (top panel) and the bulk liquid phase (bottom panel).
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