In the framework of the thermal-spike model the present paper deals with the effect of the electronic stopping power (Se) in metals irradiated by swift heavy ions. Using the strength of the electron-phonon coupling g(z) with the number of valence electrons z as the unique free parameter, the increment of lattice temperature induced by swift-heavy-ion irradiation is calculated. Choosing z=2, the calculated threshold of defect creation by Se for Ti, Zr, Co and Fe is about 11, 27.5, 28 and 41 keV nm-1, in good agreement with experiment. Taking the same z value, the calculation shows that Al, Cu, Nb and Ag are Se insensitive. Moreover, in Fe, the differences in the damage created by U ions of different energies but exhibiting the same value of Se may be interpreted by a velocity effect. Using z=2, other calculations suggest that Be (Se>or=11 keV nm-1), Ga (Se>or=5 keV nm-1) and Ni (Se>or=49 keV nm-1) should be sensitive to Se but Mg should not. These examples put the stress on the effect of the physical parameters governing the electron-phonon coupling constant apart from z determination: the sound velocity linked to the Debye temperature and the lattice thermal conductivity. Furthermore, a simple criterion is proposed in order to predict the Se sensitivity of metals.