A study of the magnetoresistance of the charge-transfer salt at hydrostatic pressures of up to 20 kbar: evidence for a charge-density-wave ground state and the observation of pressure-induced superconductivity

, , , , , , , , and

Published under licence by IOP Publishing Ltd
, , Citation W Lubczynski et al 1996 J. Phys.: Condens. Matter 8 6005 DOI 10.1088/0953-8984/8/33/009

0953-8984/8/33/6005

Abstract

The magnetoresistance of single crystals of the quasi-two-dimensional (Q2D) organic conductor has been studied at temperatures between 700 mK and 300 K in magnetic fields of up to 15 T and hydrostatic pressures of up to 20 kbar. Measurements of the resistivity using a direct-current van der Pauw technique at ambient pressure show that the material undergoes a metal-to-insulator transition at ; below this temperature the resistivity increases by more than five orders of magnitude as the samples are cooled to 4.2 K. If the current exceeds a critical value, the sample resistivity undergoes irreversible changes, and exhibits non-ohmic behaviour over a wide temperature range. Below 30 K, either an abrupt increase of the resistivity by two orders of magnitude or bistable behaviour is observed, depending on the size and/or direction of the measurement current and the sample history. These experimental data strongly suggest that the metal - insulator transition and complex resistivity behaviour are due to the formation of a charge-density wave (CDW) with a well-developed domain structure. The magnetotransport data recorded under hydrostatic pressure indicate that pressure has the effect of gradually reducing the CDW ordering temperature. At higher pressures, there is a pressure-induced transition from the CDW state to a metallic, superconducting state which occurs in two distinct stages. Firstly, a relatively small number of Q2D carriers are induced, evidence for which is seen in the form of the magnetoresistance and the presence of Shubnikov - de Haas oscillations; in spite of the low carrier density, the material then superconducts below a temperature of . Subsequently, at higher pressures, the CDW state collapses, resulting in Q1D behaviour of the magnetoresistance, and eventual suppression of the superconductivity.

Export citation and abstract BibTeX RIS

Please wait… references are loading.
10.1088/0953-8984/8/33/009