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Abstract
Using the Wigner function approach for electromagnetic radiation fields, we
investigate the behavior of low energy photons radiated by the deceleration
processes of two colliding nuclei in relativistic heavy ion collisions. The
angular distribution reveals information of the initial geometric configurations,
which is reflected in the anisotropic parameter v2, with an increasing v2 as
energy decreases. This behavior is qualitatively different to the v2 from the
hadrons produced in the collisions.
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1. Introduction

In the physics of relativistic heavy ion collisions, the determination of the initial collision
geometry is one of the fundamental pieces of information required to investigate the dynamics
of the created matter, such as quark–gluon plasma. Knowledge of the reaction plane is
indispensable to study the anisotropic collective flows of the matter. This geometry is
deduced indirectly from, for example, the statistical average over an event ensemble by
calculating the cumulant of the correlation functions of hadrons, which are generated through
very complex strong interactions [1]. On the other hand, photons do not suffer from strong
interactions, and the so-called direct photons are considered to carry information about the
early stages of collisions. Numerous studies in this line have been carried out from the early
days of the relativistic heavy ion program [2–18]. See [19] for a recent review on this subject
and also the references therein.

Among the various mechanisms for producing direct photons, we consider brems-
strahlung radiation. This process is usually modeled as classical radiation from the decelerated
protons of the incident nuclei [2–11]. In [20], the authors focused on the behavior of the
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higher energy (1 GeV) photons, which are dominantly produced by the incoherent sum of
the bremsstrahlung radiation from individual decelerated protons, reproducing the spectrum
of the observed radiation [21]. In this case, any meaningful information on the initial geo-
metry on the nuclear scale is expected to be washed out.

However, for lower energies electromagnetic fields may be generated coherently from
each decelerating proton, when their spatial separation is on the order of the corresponding
wavelength of the radiation. If this occurs, we expect the following two effects. The first is
that the amount of radiation increases as~Zeff

2 , instead of Z2 eff in the incoherent case, where
Zeff is the effective number of charges which contribute to the electromagnetic radiation in the
collisions. The second is that the angular distribution of the radiated photons will reflect the
geometric configuration due to the interference of radiation from the two incident nuclei.
When we have a sufficient yield of coherent photons in the very low transverse momentum pT
region, the elliptic flow v2 for the direct photons will be dominated by such coherent photons.

In this work, we study the photon spectrum and its angular distributions of the low energy
photons, which are produced by the coherent radiation from two decelerated incident nuclei.
We first calculate the electromagnetic fields by introducing the simplified trajectories of the two
incident nuclei. These nuclei are treated as point-like objects with an effective charge Zeff. From
this, we obtain the phase-space distribution of the photons with the help of the Wigner function,
which expresses the photon spectrum and the angular distribution. We further show that the
corresponding anisotropic parameter v2 reveals a very enhanced nature in the lower pT.

In the following, we use  e m= = = =c 10 0 and the fine structure constant is defined
by a p= e 4EM

2 ( ) in the SI (rationalized) unit.

2. Model of collisions and electromagnetic radiation

Let us consider a collision of two identical nuclei with the impact parameter b . In the strong
coherence limit, we can simplify the situation by replacing these nuclei with point-like particles
which have an effective charge Zeff. One may expect that Zeff is the same as the number of
participant protons Z bpart ( ) from one of the nuclei, but more generally, only a portion of the
participant protons can contribute to the coherent radiation. Then we have the restriction,

Figure 1. The schematic for the collision of two incident nuclei.

J. Phys. G: Nucl. Part. Phys. 43 (2016) 095103 T Koide and T Kodama

2



Z Z beff part ( ). We further consider that the protons in each nucleus will be completely
stopped by the collisions with other protons or neutrons, as is the initial condition of the Landau
hydrodynamic model. Our geometrical coordinate is represented in figure 1, where the -z axis is
chosen as the collision direction and the two incident nuclei collide at t=0.

In general, the deceleration by the collisions occurs in a finite time period, which is
characterized by stopping time tS. For the ultra-relativistic heavy ion collisions, tS is given by
the order of the Lorentz contracted thickness of the projectile, t g~ RS , where R and γ are
the nuclear radius and the Lorentz factor, respectively. For the relativistic limit g  1 the
stopping time will be very small. For the sake of simplicity, we consider the infinitesimal limit
of t .S In this case, the deceleration is given by the Dirac delta function in time. See also the
discussion in appendix A.

Then the trajectories of the nuclei 1 and 2 are, respectively, expressed in the Cartesian
coordinates as
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where d2 represents the transverse distance between the two centers of mass of the respective
participant protons (see figure 1). This is usually smaller than the impact parameter, d b2 .
At infinite distance ( = -¥t ), the nuclei move with a constant speed V0 which should be less
than one.

The solution of the Maxwell equations for these trajectories is given by the Liénard–
Wiechert potential [22]. Since we are interested in the behaviors of the radiation at the
detector position, we drop irrelevant contributions at infinite distance. Then, the contributions
from the charge x


t1( ) are given by
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All the quantities appearing on the right-hand sides are evaluated at the emission time t1,
defined by the causality equation, x- = -

 
x t t t1 1 1∣ ( )∣ .

Therefore, eliminating the emission times,
 
E x t,1( ) and

 
B x t,1( ) are re-expressed as
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where = - + +-r x d y z2 2 2( ) . The corresponding electromagnetic fields from x


t2 ( ) can
be obtained by replacing the two parameters d V, 0( ) by - -d V, 0( ) in equation (2).
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3. The Wigner function of electromagnetic fields

To extract the spectrum of the photons radiated from the classical electromagnetic fields, the
frequency distribution of the radiation energy is often interpreted as the energy distribution of
photons with the help of Einsteinʼs relation. However, it is known that the classical
electromagnetic field can be interpreted as the wave function of the corresponding photons
[23–26]. Here we employ this approach to calculate the photon angular distribution.

Let us introduce a complex vector function as

= +
  
F E B

1

2
i . 3( ) ( )

Then the source-free Maxwellʼs equations can be re-expressed in a similar form to the Dirac
equation as

¶ = - 
  
F T Fi i , 4t ( · ) ( )

with a constraint,

 =

F 0, 5· ( )

where

T is the spin-1 generator of O 3( ). Equation (5) constrains only the initial condition of

F . From the definition, one can easily see that the energy density and the Poynting vector are
expressed as *

 
F F· and *- ´

 
F Fi , respectively. For other properties of this quantum-

mechanical interpretation of the vector wave function see [25].
To discuss the physical observables measured by a detector at a given location, it is

convenient to introduce the phase-space distribution function, known as the Wigner function.
In the present case, we have
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,( ) represents the contribution from the electric (magnetic) field. After some algebra, we
find
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Here, =


r x∣ ∣ and =

d d, 0, 0( ).

As is well-known, the Wigner function does not correspond to the phase-space dis-
tribution since, in general cases, it can take negative values. However, as shown below, the
large distance behavior guarantees the non-negativity of the Wigner function. Since


x and t
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are macroscopic quantities associated with the physical measurements of a detector, they are
much larger than the magnitude of p1 , where p is on the order of MeV∼GeV. Thus, the
significant contributions in the q integrals in equation (7) come from the domain satisfying
q r t, due to the exponential factor in the integrands. Therefore we can safely expand them

with respect to q/r. The integrands contain the product of two delta functions with respect to
t, which is approximately re-expressed as d - +

 
t x q 2 2( ( ) ) d - -
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In the above, θ is the azimuthal angle of

x with respect to the z-axis (see figure 1). For r d ,

we find
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Equation (8) clearly shows that
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4. Photon spectrum

Substituting equation (8) into equation (10), we obtain the momentum spectrum. Because of
the Dirac delta functions in equation (8), note that this is equivalent to the sum of all energies
of the incoming photons to a detector at
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where the integral for the solid angle W


RD

is performed within the domain D corresponding to
the aperture of the detector. In the above, we integrate all photon energies coming into the
detector. Re-expressing this with the photon number N, we have

p
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p d
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where y represents the rapidity. See appendix B. In the following calculations, we
choose =V 10 .

For example, let us take ~Z 80eff and ~d 1 fm as a near central Au + Au collisions. In
this case, the order of the magnitude of the photon spectrum is

p
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where Jn is the Bessel function of order n. In figure 2, we show the behavior of the above
rough estimate (solid line) together with the PHENIX data, just for the sake of comparison.
Although our calculation seems to be consistent with the experimental data, our idealization
of full stopping is not well satisfied in RHIC energies. Rather, our model will be more suitable
for experiments on the lower energies such as the NICA or FAIR programs [27, 28], where a
large stopping power is expected. Note that if we calculate the same spectrum assuming
incoherent radiation as is done in [20], the magnitude of the spectrum decreases by one or two
orders.

The angular distribution of the photons reveals an interesting behavior as shown in
figure 3. Here, we plotted only the factor -

 
p d1 cos 2( · ) in the radial coordinate with

respect to the azimuthal angle f at the vanishing rapidity y=0 where =p pT , and we find

Figure 2. The photon spectrum. The solid line represents the results from our model
calculation. The circles and dashed line indicate the PHENIX data [21] and the scaled
proton–proton collision fit, respectively.
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that there are common dips at f p=  2. These dips correspond to the direction of the
normal vector to the reaction plane. If such a feature is measurable experimentally, we could
determine the event plane unmistakably and even determine the parameter d quantitatively.

However, unfortunately, the total yield of such low energy photons is very small <20( )
even in the most favorable conditions of our model. If we consider the further experimental
difficulties in the detection of the low energy photons, the determination of the event geo-
metry in the event-by-event (EbyE) basis seems to be unrealistic.

On the other hand, the above peculiar behavior will be reflected in another tractable
observable, the anisotropic parameter, such as v2. In our model, v2 is calculated as

=
-

v p
J p d

J p d

2

1 2
. 14T

T

T
2

2

0
( )

( )
( )

( )

A similar expression was calculated by [29] in a different context. In figure 4, we plot the
above v2 for d=1 fm as before. In contrast to the well-known behavior of v2, the coherent
electromagnetic radiation shows an increasing v2 for the lower pT, achieving its maximum
value 1/2 for p 0T , independent of the value of d. Therefore, if such an increase of v2 in
the low energy photons <p 0.5 GeVT( ) is found experimentally, it can be considered as a
genuine signal from the coherent electromagnetic radiation of the deceleration, although it
will be affected by the incoherent radiation. See the discussion in section 5. Such a behavior is
not expected from the usual hydrodynamic, kinetic, or microscopic pictures of the collective
flow mechanism [19, 30].

5. Concluding remarks and discussion

In this short exercise, we investigated the behavior of the low energy photons radiated by the
deceleration processes of the two incident nuclei in relativistic heavy ion collisions. We
assumed that the coherent radiation is dominant, so that the two colliding nuclei are replaced

Figure 3. The angular distributions at y=0. The solid, dashed, and dotted lines
represent the results of =p 300T , 400, and 500 MeV, respectively. The axes x and y
correspond to those in figure 1.
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by point charges, and the deceleration mechanism is simply characterized by the Dirac delta
function. We thus consider a full stopping scenario, such as the Landau-type initial condition,
which may have better prospects in lower energy heavy ion collisions, such as the upcoming
NICA and FAIR experiments [27, 28].

We found that the angular distribution of the low energy photons reveals well the initial
geometric configurations at the deceleration processes. Such a property is reflected in the
anisotropic parameter v2, showing a very enhanced nature in the lower pT. If the angular
distribution is measurable in the EbyE basis, the initial geometry could be determined.
However, the total photon multiplicity in our model is on the order of 10~20 in an optimistic
situation, so that the EbyE based analysis seems to be improbable. On the other hand, since
these signals have characteristic patterns for a given initial geometry, they may be still useful
to improve the determination of the initial conditions by using, for example, their correlations
with other particles. Another interesting possibility for the multiple soft photon emission
mechanism was suggested in [31], but the nature of the angular distribution of the produced
photons would be different from ours.

In this work, we considered a very idealized model of the deceleration where the coherent
electromagnetic radiation occurs from the overall nuclear charges, and did not discuss a
mechanism to maintain such a coherence by relativistic heavy ion collisions. To clarify these
points and examine the above possibilities, it is important to apply the present approach to
more realistic initial conditions and possible collective deceleration mechanisms, for example,
shock wave formation [11]. The Wigner function approach described here will be useful for
this purpose. We leave this as a future task.

As shown in figure 4, our coherent radiation of the low energy photons exhibits an
increasing v2 as energy decreases, achieving its maximum value 1/2 at =p 0T . This is the
case considering only the coherent radiation. As discussed, the coherence for higher momenta

Figure 4. Low energy behavior of v2 of the direct photons obtained from the coherent
radiation for d=1 fm.
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will be quickly destroyed and incoherent photons should be dominant. We may roughly
evaluate such an effect assuming that the coherent contribution vanishes exponentially with a
characteristic scale Dp as a function of p ,T while the incoherent contribution becomes
dominant for Dp pT . In such a case, the anisotropic parameter v2 in equation (14) is
replaced by

=
+ -D

v p
J p d

Z J p d

2

1 2e 2
. 15T

T
p p

T
2

2

2
eff 0T

( )
( )

( )
( )

In figure 5, we show the results of equation (15) forD =p 0.2 GeV with squares. For the sake
of comparison, the PHENIX data are also plotted (filled circles) [21]. Note that in the
presence of the incoherent contribution, v2 vanishes at =p 0T and the maximum is shifted to
a finite value of pT. Current experimental measurements of v2 of the direct photons are only
from 0.5GeV and above [21], and thus it is still difficult to see whether the coherent radiation
mechanism is present or not. However, it is interesting to note that the experimental data seem
to show the beginning of such an increase for p 0.5 GeVT as is shown in figure 5, which is
qualitatively in agreement with the behavior of v2 calculated with the coherent radiation
mechanism. Of course, our deceleration scenario is not applicable to the RHIC experiment, so
any direct comparison will not be appropriate. On the other hand, if this behavior of v2 is
attributed to the coherent radiation of the photons, we expect that such a signature should be
enhanced in NICA and FAIR. In this aspect, the measurements of the lower energy direct
photons are essential to clarify the presence of the coherent mechanism in relativistic heavy
ion collisions.

Figure 5. v2 from direct photons. Squares denote the results with the effects of the
incoherent mechanism given by equation (15) with D =p 0.2 GeV. Filled circles
indicate the experimental data from PHENIX [21].
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Appendix A. Sensitivity of the rapidity distribution on deceleration

The trajectories (1) can be considered as if we take the vanishing tS limit of the para-
meterization of a continuous deceleration,

⎛
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which is similar to [20], except for the difference in the argument of tanh.
Substituting this into the above calculations and taking the vanishing limit of tS, we find

that the factor -
 
p d p1 cos 2 2{ ( · )} in equation (12) is replaced by
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In particular, in the ultra-relativistic limit V 10( ), the angular distribution of the photons is
given by
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One can see that the rapidity distribution shows a rather hyperbolic increase for y 1∣ ∣ , so that
the photon yield is strongly enhanced in the forward and backward directions, while the angular
distribution tends to be isotropic. However, for the central rapidity y=0, the above result still
coincides with equation (12). Therefore, in the plane at the central rapidity, the angular
distribution of photons is independent of the deceleration mechanism as long as the time scale tS

is small enough. This suggests the possibility that the behavior at y=0 is relatively insensitive
to deceleration mechanisms if the characteristic time scale of the deceleration is small enough .

For the sake of comparison, let us consider the incoherent limit. Then our spectrum for
the deceleration of the Dirac delta function, equation (12), is replaced by
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On the other hand, in the small tS limit of the continuous deceleration, equation (A4), we have
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These rapidity dependencies are, respectively, to be compared with the low energy limit and
the Rindler acceleration cases discussed in [20]. However, in our case, equation (A5) does not
necessarily correspond to the non-relativistic case, since V0 can be arbitrary close to unity, and
equation (A6) shows a faster increase in rapidity compared to the large deceleration limit of
the Rindler case. That is, the difference of the deceleration mechanism drasticallychanges the
rapidity distribution of the photons. See also the related calculations in [32].

Appendix B. Rapidity

Our variables, shown in figure 1, can be expressed in terms of the rapidity. For the sake of
simplicity, we consider the case where the mass is negligibly small. Then the rapidity is
defined by

=
+

-
y

p p

p p

1

2
ln . B1z

z

( )

Then the energy and longitudinal momentum are expressed as

=p p ycosh , B2T ( )

=p p ysinh . B3z T ( )

We can also express pz as

q =
p

p
cos . B4z ( )

Substituting this into equation (B1), we have

q = ycos tanh , B5( )

q =
y

sin
1

cosh
. B6( )
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