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Abstract
We demonstrate that the use of analytical on-shell methods involving calc-
ulation of the discontinuity across the t-channel cut associated with the
exchange of a pair of massless particles (photons or gravitons) can be used to
evaluate one-loop contributions to electromagnetic and gravitational scatter-
ing, with and without polarizability, reproducing via simple algebraic
manipulations, results obtained previously, generally using Feynman diagram
techniques. In the gravitational case the use of factorization permits a
straightforward and algebraic calculation of higher order scattering without
consideration of ghost contributions or of triple-graviton couplings, which
made previous evaluations considerably more arduous.

Keywords: Compton scattering, gravitational Compton scattering, quantum
gravity

1. Introduction

The calculation of scattering amplitudes is a staple of theoretical physics, and recently
a number of investigations have been reported which study higher order effects in
electromagnetic scattering [1–4], gravitational scattering [5–11] and both [12–14].
The goal of such calculations has typically been to find an effective potential which
characterizes these higher order effects. For both electromagnetic and gravitational inter-
actions, the leading potential is, of course, well-known and has the familiar r1 fall-off
with distance. The higher order contributions required by quantum mechanics lead to
corrections which are shorter range, from local to polynomial fall-off as r1 n with n 2.
This effective potential is defined to be the Fourier transform of the nonrelativistic
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where = -q p pi f is the three-momentum transfer. Then, for lowest order one-photon or
one-graviton exchange, the dominant momentum-transfer dependence arises from the
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yields the well-known r1 dependence. By dimensional analysis, it is clear that shorter-range
r1 2 and r1 3 behavior can arise only from nonanalytic q1 ∣ ∣ and qln 2 dependence, which are

associated with higher order scattering contributions. Analytic momentum dependence from
polynomial contributions in such diagrams leads only to short-distance (d r3 ( ) and its
derivatives) effects. Thus, if we are seeking the long-range corrections, we need identify only
the nonanalytic components of the higher order low energy contributions to the scattering
amplitude.

The basic idea behind use of on-shell methods is that the scattering amplitude must
satisfy the stricture of unitarity, which requires that its discontinuity across the right-hand cut
is given by

å= - = -T T T T TDisc i . 4fi fi fi
n

fn ni( ) ( )† †

By requiring that equation (4) be satisfied, we guarantee that the correct nonanalytic structure
will be maintained, and below we demonstrate how this program can be carried out in the case
of the electromagnetic and gravitational scattering of spinless particles, with and without
polarizability effects2. We will show how results obtained previously using Feynman diagram
techniques can be obtained by much simplified analytical on-shell methods. This
simplification arises essentially due the interchange of the order of integration and
summation. That is, in the conventional Feynman technique, one evaluates separate (four-
dimensional) Feynman integrals for each diagram, which are then summed. In the on-shell
method, one first sums over the Compton scattering diagrams to obtain helicity amplitudes
and then performs a (two-dimensional) solid-angle integration. There are a number of reasons
why the latter procedure is more efficient. For one, by using the explicitly gauge-invariant
Compton and gravitational Compton amplitudes, the decomposition into separate gauge-
dependent diagrams is avoided. Secondly, the various statistical/combinatorial factors are
included automatically. Thirdly, because the intermediate states are on-shell, there is no
gravitational ghost contribution [16]. Finally, the evaluation of gravitational Compton
amplitudes allows the use of factorization, which ameliorates the need to include the triple
graviton coupling associated with the graviton pole diagram [17, 18]. The superposition of all
these effects allows a relatively simple and highly efficient algebraic calculation of both the
electromagnetic and gravitational scattering amplitudes. (One indication of the simplicity

1 Note that equation (2) follows from the Born approximation for the scattering amplitude

ò= =q p pV r V rAmp d e 1q r
f i

3 i( ) ⟨ ∣ ˆ∣ ⟩ ( ) ( )·

and nonrelativistic amplitudes are defined by taking the low energy limit and dividing the covariant forms by the
normalizing factor E E m m4 4A B A B.
2 It is interesting to note that this method is essentially the one used by Feynman in his seminal paper, wherein he
quantized gravity and realized the need for the introduction of ghosts [15].
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afforded by this method, in the gravitational case, is that between the seminal 1994 work of
Donoghue [5] and the 2003 papers by [9, 10], there were a number of reported Feynman
diagram calculations of gravitational scattering which contained errors [6–8].)

2. Electromagnetic scattering

We begin with the case of electromagnetic scattering of spinless particles of mass mA and mB

respectively. The t-channel Compton amplitude (i.e., the amplitude for two spinless particles
of charge e and mass mA to annihilate into a pair of photons) is well known [19]

⎛
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⎞
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* * * *
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It is convenient to use the helicity formalism [20], where helicity is defined as the projection
of the photon spin on its momentum axis. The helicity amplitudes for t-channel spin-0-spin-0
Compton annihilation are found, in the center of mass frame, to have the form [21]
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where  pm E, ,A A A are the mass, energy, momentum of the spinless particles and qA the angle
of the outgoing photon with respect to the incoming target particle— q = p kcos A Â · ˆ. It was
shown by Feinberg and Sucher that the annihilation amplitudes g g+ ¢  +A A 1 2 and
g g+  + ¢B B1 2 needed in the unitarity relation, equation (4), can be generated by making
an analytic continuation to imaginary momentum xp pmii i i î, where x = -1i

t

m
2

4 i
2 with

=i A B, and = + ¢t p pA A
2( ) is the t-channel Mandelstam variable [3]. Then

t
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where we have defined t x= t m2i i i, = p kxi i 1ˆ · ˆ , and t= +d xi i i
2 2. Equivalently

equation (7) can be represented succinctly via

* * =A ab e2 , 8i em
i
jk
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2
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where
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1
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jk

i
i
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j

i
k( ˆ ˆ ) ( )

Substituting in equation (4), we determine the discontinuity of the scattering amplitude of
spinless particles having masses m m,A B across the t-channel two-photon cut in the CM
frame3

3 Note that we have divided the scattering amplitude by the normalizing factor m m4 A B since it will be used in the
nonrelativistic limit.
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represents the sum over photon polarizations and
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defines the solid-angle average. Performing the indicated polarization sums, we find
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the required angular integrals I I,00 11 have been given by Feinberg and Sucher [22], and higher
order forms can be found by use of the identities t= - =x d i A B, ,i i i
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where = -
+
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0( ) is the center of mass momentum for the spinless scattering process

and = +m m m m mr A B A B( ) is the reduced mass. Since
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where we have defined = -L tlog( ) and p= -S t2 . The imaginary component of
equation (18) represents the Coulomb phase, or equivalently the contribution of the second
Born approximation, which must be subtracted in order to define a proper higher-order
potential. Using [23]
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what remains is the higher order electromagnetic amplitude we are seeking, leading to the
effective potential
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is the fine structure constant, in agreement with the form calculated by
Feynman diagram methods [4].

One can also calculate the interaction of a charged and a neutral polarizable spinless
system. For the neutral system we use the Hamiltonian
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where a b,E M are the electric, magnetic dipole polarizabilities and mnF is the electromagnetic
field tensor, which yields the contact helicity amplitude for emission of a photon pair

* * p=N t 22A
ab

A
ij

i
a

j
b

1 2 ( )

4 Note that in making the transition from equation (16) to (18) it may appear that we are assuming the existence of an
unsubtracted dispersion relation. However, if one or more subtractions were to be employed the result would be that
equation (16) is only changed by a polynomial = + + ¼P t a bt( ) . Since the polynomial is analytic in t, it would
lead only, after Fourier transforming, to a change in the very short-distance form of the effective potential, not to the
long-range power law fall-off that arises from nonanalytic terms.
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in agreement with well-known forms [24, 25].
Finally, we can examine the interaction of two spinless systems, both of which are

characterized by polarizabilities [26]. Defining the angular averaged quantities =K x xnm A
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and the effective potential
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which has the familiar Casimir–Polder form [27, 28].

3. Gravitational scattering

These electromagnetic results were first obtained using related methods by Feinberg and
Sucher [3, 25]. The real power and simplicity of the on-shell methods, however, is found in
the gravitational scattering case, where what is needed is the amplitude for the annihilation of
a spinless pair of particles of mass mA and mB connected by a two-graviton intermediate state.
A major simplification in this regard is provided by factorization, which avers that the tree
level gravitational Compton scattering amplitude is given in terms of the product of ordinary
tree level Compton scattering amplitudes multiplied by a simple kinematic factor [17, 18].
That is, defining
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Using equation (31), the two-graviton helicity amplitudes can be written in the factorized form

* * * *   

   

 

 

k x

k x

=

=

B ij
m d

B ij
m d

4
,

4
.

32

A A A A
A
rs

r
i

s
j

A
uv

u
i

v
j

A B B B
r
i

s
j

B
rs

u
i

v
j

B
uv

0
grav

2 2 2

0
grav

2 2 2

( )

( )
( )

We can then write the unitarity relation for the gravitational scattering of spinless particles of
mass m m,A B as
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Performing the polarization sum, we find
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so that the gravitational scattering amplitude is
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As in the electromagnetic case, the imaginary piece is associated with the gravitational
scattering phase, or equivalently the Born iteration, which must be subtracted in order to
generate a properly defined second order potential
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The result is the well-defined second order gravitational potential
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which agrees with the result calculated via Feynman diagram methods by Khriplovich and
Kirilin and Bjerrum-Bohr et al in [9, 10].

We can also deal with a polarizable gravitational system by use of the effective Hamiltonian
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where aG is the quadrupole polarizability and ab gdR ; is the Riemann curvature tensor, which
leads to the contact helicity amplitude for emission of a graviton pair
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Setting =t q2 and taking the Fourier transform, we find the effective potential
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which is, we believe, a new result.
Finally, in the case of the long-range interaction of a pair of polarizable systems, we have
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Taking the Fourier transform, we find the effective potential
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which agrees precisely with the retarded form given in [29, 30], when we take into account
the difference in the definition of polarizability used in our paper (aG) and theirs a S1( )—

a p a a p aº ºG G16 and 16 . 49G
A

S G
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These methods are also easily adapted to the case that one of the scattering particles is
massless, as considered in a recent paper on the bending of light as it passes the rim of the Sun
[31]. An important difference is that we must use x  -mA A

t2 2
4
, t  iA and y i y∣ ∣ with
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y

s m

m t
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∣ ∣ . Writing - =s m m E2B B
2 , where E is the incident energy of the massless

particle in the laboratory frame, we work in the small angle scattering approximation
-E t so that y 1∣ ∣ , in which case, using appropriately modified values of I Inm nm

0( )5,

5 Note that here we have divided by the normalizing factor Em4 B.
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As t 0 the sum of the two terms in the top line of equation (51) becomes imaginary,
corresponding to a scattering phase,
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which must, as previously, be subtracted6. The resulting potential, written in terms of the
laboratory frame energy of the massless particle E, is
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and agrees with the form calculated in [31].

4. Conclusion

We have seen above how on-shell techniques can be used in order to treat higher order
contributions in an entire range of spinless scattering reactions, including the electromagnetic
scattering of charged systems, of charged and neutral (polarizable) systems, and of two
neutral systems. Similarly in the case of gravitational interactions the interactions of two
masses, of a mass and a polarizable system, and two polarizable systems can be dealt with. In

6 Using this condition, we also find that the BCJ relation is satisfied, which serves as an additional check on the
calculation [32].
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each case the calculation is found to agree with previously found forms but is accomplished
via an algebraic on-shell method which is considerably simpler to use than the corresponding
Feynman diagram procedure. This simplification arises due to the reordering of the Feynman
integration and diagram summations and, in the gravitational case, to the use of factorization,
which means that the required helicity amplitudes are given simply in terms of the product of
electromagnetic amplitudes. An additional bonus is the feature that, since we are on-shell,
there is no need to include ghost contributions. We also found that this method could be
adapted to the case that one of the scattering systems becomes massless. The result is a highly
efficient method to evaluate higher order electromagnetic and gravitational scattering
amplitudes. (Note that similar methods have been used by Bjerrum-Bohr et al [33, 34]. The
basic difference between their work and that described above is that these authors use cov-
ariant evaluation and then expand to yield the low energy forms, which requires somewhat
more work than the technique described above.) Work is underway to extend our results to
the case that both scattering systems are massless and to the situation that one or both of the
scattering systems carries spin.
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