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Abstract
We report the results of density-functional calculations of the structures, binding energies and
magnetic moments of the clusters MoN (N = 2–13), Mo12Fe, Mo12Co and Mo12Ni that were
performed using the SIESTA method within the generalized gradient approximation for
exchange and correlation. For pure MoN clusters, we obtain collinear magnetic structures in all
cases, even when the self-consistent calculations were started from non-collinear inputs. Our
results for these clusters show that both linear, planar and three-dimensional clusters have a
strong tendency to form dimers. In general, even-numbered clusters are more stable than their
neighbouring odd-numbered clusters because they can accommodate an integer number of
tightly bound dimers. As a consequence, the binding energies of pure MoN clusters, in their
lowest-energy states, exhibit an odd–even effect in all dimensionalities. Odd–even effects are
less noticeable in the magnetic moments than in the binding energies. When comparing our
results for pure Mo clusters with those obtained recently by other authors, we observe
similarities in some cases, but striking differences in others. In particular, the odd–even effect in
three-dimensional Mo clusters was not observed before, and our results for some clusters
(e.g. for planar Mo3 and Mo7 and for three-dimensional Mo7 and Mo13) differ from those
reported by other authors. For Mo12Fe and Mo12Ni, we obtain that the icosahedral
configuration with the impurity atom at the cluster surface is more stable than the configuration
with the impurity at the central site, while the opposite occurs in the case of Mo12Co. In
Mo12Co and Mo12Ni, the impurities exhibit a weak magnetic moment parallely coupled to the
total magnetic moment of the Mo atoms, whereas in Mo12Fe the impurity shows a high moment
with antiparallel coupling.

1. Introduction

The properties of clusters of transition metal (TM) atoms
have attracted much attention in recent years for both
merely scientific reasons (nanoscience) and their potential
technological applications as building blocks of nanostructured
materials, electronic devices, high-density magnetic data
storage materials, nanocatalysts, etc (nanotechnology) (see [1]
and references cited therein). Since most physical and
chemical properties of clusters are strongly linked to features

of their structural forms, the starting point for understanding
the properties of TM clusters is the determination of their
geometrical structure, which is a nontrivial task because
their atoms include both relatively localized d electrons and
relatively delocalized sp electrons.

Experimental information on the structures of TM clusters
can be acquired by several means, including the chemical
probe method [2–6], in which cluster structure is inferred
from the level of the adsorption of molecules such as N2 onto
the cluster surface. However, experimental determinations
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are not always unequivocal and, in these cases, elucidation
of the structures can be aided by computer simulations
based on appropriate theoretical models. These fall into
two broad classes: semiempirical methods involving many-
body potentials, such as those based on the embedded
atom model [7] or on the second-moment approximation of
the tight-binding method [8–10]; and ab initio calculations,
which are generally based on density-functional theory (DFT).
The accuracy of both semiempirical and DFT methods
naturally depends on the approximations they make, their
parametrization (in the case of semiempirical methods) or
basis sets, etc (in the case of DFT methods), and how they
are used. For example, Chang and Chou [11] have recently
investigated the structures of 13-atom clusters of all TMs in
the 4d series (and a selection of those belonging to the 3d
and 5d series) using the Vienna ab initio simulation package
(VASP) [12, 13], with a plane-wave basis, Vanderbilt-type
ultrasoft pseudopotentials [14, 15] and the spin-polarized
generalized gradient approximation (GGA) for exchange and
correlation [16, 17], to show that 13-atom clusters of early
4d TMs (Y13, Zr13, Nb13 and Mo13) prefer the icosahedral
structure, while those of late 4d TMs (Tc13, Ru13, Rh13, Pd13,
Ag13 and Cd13) prefer a ‘buckled biplanar’ (BBP) structure.
According to these results, the BBP structure seems to be
favoured when the d shell is more than half-filled. However,
in studies of Rh13 performed by Bae et al [18, 19] using the
same computational approach as Chang and Chou [11], and in
a recent investigation [20] of Pd13 using the numerical atomic
orbital DFT method SIESTA (Spanish initiative for electronic
simulations with thousands of atoms) [21], Troullier–Martins
pseudopotentials [22] and the GGA, it has been found that, at
least for these two late 4d TM clusters, there are structures
of lower energies than the BBP configuration. These results,
and others for 13-atom clusters of some late 3d and 5d TMs
that are discussed in [20], question the suggestion that 13-atom
clusters of TMs with more than half-filled d shells have BBP
ground structures. Mo being a borderline case among all 4d
TMs (the electronic structure of the free Mo atom in its ground
state, 4d55s1, corresponds to just a half-filled d shell), Mo13,
and in general clusters of Mo atoms, are a kind of cluster
that requires special attention. Moreover, Mo, isoelectronic
to Cr, has a large number of d holes, so that, apart from the
structural behaviour, interesting magnetic effects (including
possible non-collinear magnetic configurations [23, 24]) may
also be expected in Mo clusters. Besides its theoretical
interest, accurate information on the structures of clusters of
Mo is important for technological applications: commercial
catalysts based on Mo are used in the petrochemical process
known as hydrodesulfuration by which sulfur is removed from
organosulfur compounds that are present in petroleum-based
feedstocks [25].

The Mo dimer has been extensively investigated both
experimentally and theoretically (see [26] and references cited
therein). In addition to Mo2, some small clusters of Mo have
been studied by DFT calculations. The most extensive study in
this area has recently been performed by Zhang et al [26] who
investigated the properties of MoN clusters (N = 2–55) using
VASP with the GGA. Their results showed that linear (1D) and

planar (2D) Mo clusters, which have a strong tendency to form
dimers, exhibit an odd–even effect in binding energy, the even-
numbered clusters being more stable than their neighbouring
odd-numbered clusters. By contrast, the binding energy of
three-dimensional (3D) Mo clusters, which are their predicted
ground-state structures beyond N = 4, was found to increase
monotonically with cluster size. In the particular case of Mo13,
Zhang et al [26] investigated three different structures, none of
them the BBP structure analysed by Chang and Chou [11], to
find that the initial icosahedral structure was severely distorted
after relaxation. The ground-state Mo13 structure predicted
by Chang and Chou [11] also showed strong distortions from
the ideal icosahedral geometry after this latter was allowed to
relax, but its magnetic moment, 0.62 μB/atom, is different
from that of the ground-state structure predicted by Zhang et al,
0.15 μB/atom.

In the work described here we present a comprehensive
DFT study of the structural and magnetic properties of MoN

clusters (N = 2–13) using the fully unconstrained version
of the SIESTA [21, 27] method with the GGA. In addition,
we investigate the properties of the binary clusters Mo12Fe,
Mo12Co and Mo12Ni, i.e. clusters formed when one of the
Mo atoms of the Mo13 cluster is replaced by an ‘impurity’
atom of a ferromagnetic metal. This kind of study has proven
to be of interest in the case of other binary clusters (see,
e.g., [28–30]). In general, accurate predictions of how the
atoms are distributed in a binary cluster (in particular, which
atoms are segregated on the cluster surface) are of importance
for both theoretical and technological reasons due to the use of
this kind of cluster as a catalyst.

Details of the computational method used in this paper are
given in section 2. In section 3 we present and discuss our
results, and in section 4 we summarize our main conclusions.

2. Details of the computational procedure

We performed DFT calculations for MoN clusters (N = 2–13)
using the SIESTA [21, 27] method, which employs a linear
combination of pseudoatomic orbitals as basis sets. The
calculations were performed without assuming the same
spin-quantization axis for each Mo atom, thus allowing for
possible non-collinear spin configurations. The atomic Mo
core was replaced by a nonlocal norm-conserving Troullier–
Martins [22] pseudopotential that was factorized in the
Kleinman–Bylander form [31] and included nonlinear core
corrections to account for the significant overlap of the core
charge with the valence d orbitals. For the exchange and
correlation potential we used the GGA as parametrized by
Perdew et al [32]. The ionic Mo pseudopotential was generated
using the atomic configurations 4d5 5s1 5p0, with 1.67, 2.30
and 2.46 au cutoff radii, respectively. The core corrections
were included using a radius of 1.2 au. We tested that the
4d5 5s1 configuration reproduced accurately the eigenvalues
of different excited states of the isolated Mo atom. Using a
conjugate gradient algorithm [33], the atomic and electronic
degrees of freedom were allowed to relax simultaneously and
self-consistently without any symmetry or spin constraints
until interatomic forces were smaller than 0.005 eV Å
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Table 1. Binding energies, average magnetic moments, range of interaction distances (and the average value), number of short bonds, number
of total bonds and ratios of short to the total number of bonds for linear (1D) clusters. The bold numbers in the first column indicate that these
clusters are the global minima (or ground states) among all the clusters of the same size.

N EB (eV/atom) μ (μB/atom) Distances (Å) Short bonds Total bonds Ratio

2 2.225 0.00 1.65, 1.65 1 1 1.00
3 1.962 2.00 1.61–2.89, 2.25 1 2 0.50
4 2.709 0.00 1.59–2.95, 2.04 2 3 0.66
5 2.345 1.20 1.62–2.91, 2.27 2 4 0.50
6 2.921 0.00 1.55–2.98, 2.13 3 5 0.60
7 2.613 0.86 1.57–2.95, 2.26 3 6 0.50
8 3.034 0.00 1.56–2.98, 2.27 4 7 0.57

starting geometries we used a variety of configurations with
different symmetries and shapes (1D, 2D and 3D), and as
starting magnetic structures a variety of collinear and non-
collinear arrangements of the atomic spins.

In order to ensure the stability of our calculations, we
performed careful tests to check the basis sets employed
and the energy cutoff used to define the real space grid
for numerical calculations involving the electron density. In
general, we described the valence states of the Mo clusters
using triple-ζ doubly polarized (TZP) basis sets, i.e. basis that
contains three orbitals with different radial forms to describe
the 5s shell and three orbitals for each of the angular functions
of the 4d shell, the 5s shell being polarized by the inclusion
of a double set of p orbitals. We considered an electronic
temperature of 25 meV and used a 250 Ryd energy cutoff to
define the real space grid for numerical calculations involving
the electron density. For some Mo clusters, however, we also
used larger cutoffs, but the results were virtually the same.
Similar results were obtained by considering an electronic
temperature of 10 meV (the reduction did not produce any
effect on the total energies and on the occupancy of the 5p
states of the Mo atoms). The results were also hardly modified,
in general, when the TZP basis was replaced by a double-ζ
doubly polarized (DZP) basis.

The calculations for the binary clusters Mo12Fe, Mo12Co
and Mo12Ni were performed using only DZP basis sets in
view of the similar results obtained with DZP and TZP basis
for pure Mo clusters; calculations with TZP basis sets were
observed to be extremely demanding. Moreover, on the basis
also of the results obtained for pure Mn clusters, the study of
the binary clusters was performed by assuming collinear spin
arrangements. The ionic Fe pseudopotential was generated
using the valence configuration 3d74s1 because, although that
of the free Fe atom in its ground state is 3d64s2, studies of Fe
clusters [34, 35] suggest that in these structures the Fe atom
is mainly in the former configuration. The pseudopotentials
of Co and Ni were generated using the ground-state valence
configurations of the Co and Ni atoms, 3d74s2 and 3d94s1,
respectively. The core radii were 2 au for the s, p and d orbitals
of Fe and Co, and 2.05 au for the s, p and d orbitals of Ni.

3. Results and discussion

Tables 1–4 show the calculated binding energies, average
magnetic moments and structural data of the low-lying isomers
found for 1D, 2D and 3D MoN clusters, respectively; bold

Figure 1. Linear (1D) structures of MoN clusters (N = 2–8).

characters in the first columns of these tables mean that those
isomers are the global minima (or ground states) among the
clusters of the same size. The corresponding geometries are
shown in figures 1–4.

Due to the exact half-band filling of Mo, we obtain that the
formation of tightly bound dimers dominate the cluster growth
sequence, regardless of the dimensionality of the clusters, at
least up to the size considered here. This effect is illustrated
in figures 1–3, where two types of distances, short and long,
characterize the structures, particularly those of the even-
numbered clusters for which an integer number of tightly
bound dimers can be formed (in this paper, short bonds were
considered those whose interatomic distances were smaller
than 2.05 Å, i.e. 25% smaller than the bulk interatomic
distance, 2.73 Å, and long bonds those whose interatomic
distances were comprised between 2.05 Å and a distance 25%
larger than the bulk value). In tables 1–4, the ranges of
variation of the interatomic distances are provided together
with the number of short bonds relative to the total number of
bonds (named Ratio). An odd–even effect is obtained for this
Ratio as a function of cluster size, as a consequence of which
the binding energies, shown also in tables 1–4, reflect the same
odd–even trend. As a general rule, even-numbered clusters
are more stable than their neighbouring odd-numbered clusters
because they accommodate an integer number of tightly bound
dimers. These dimers are weakly bound among themselves

3
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Table 2. Binding energies, average magnetic moments, range of interaction distances (and the average value), number of short bonds, number
of total bonds and ratios of short to the total number of bonds of the lowest-lying isomers of planar (2D) or quasi-planar clusters. The bold
numbers in the first column indicate that these clusters are the global minima (or ground states) among all the clusters of the same size.

N EB (eV/atom) μ (μB/atom) Distances (Å) Short bonds Total bonds Ratio

3-1 1.710 0.67 1.93–2.35, 2.21 1 3 0.33
3-2 1.681 0.67 2.08–2.42, 2.19 2 3 0.66
4-1 2.554 0.50 1.64–2.97, 2.40 2 5 0.40

2.493 0.00
4-2 2.468 0.00 1.62–3.00, 2.31 2 4 0.50
5-1 2.499 0.80 1.68–2.88, 2.50 2 7 0.29

2.439 0.40
6-1 2.990 0.00 1.62–2.94, 2.28 3 6 0.50
6-2 2.756 0.00 1.65–2.98, 2.49 3 9 0.33
7-1 2.953 0.29 1.71–2.91, 2.49 3 12 0.25

2.922 0.00
8-1 3.123 0.00 1.58–2.98, 2.28 4 8 0.50
9-1 3.162 0.44 1.59–2.94, 2.59 4 16 0.25
10-1 3.202 0.00 1.58–3.00, 2.29 5 10 0.50

Table 3. Binding energies, average magnetic moments, range of interaction distances (and the average value), number of short bonds, number
of total bonds and ratios of short to the total number of bonds of the lowest-lying isomers of three-dimensional (3D) clusters.

N EB (eV/atom) μ (μB/atom) Distances (Å) Short bonds Total bonds Ratio

4-1 2.457 0.50 1.71–2.96, 2.54 2 6 0.33
2.417 0.00

5-1 2.426 0.40 1.67–3.08, 2.59 2 9 0.22
2.399 0.00

5-2 Rect. 2.300 0.40 1.90–3.00, 2.49 2 8 0.25
5-3 2.265 0.00 2.31–2.83, 2.48 9

2.246 0.40 9
5-4 Square 2.011 0.00 2.42, 2.42 8
6-1 2.918 0.00 1.65–2.98, 2.57 3 10 0.30
6-2 Trap. 2.661 0.00 1.75–3.254, 2.64 1 13 0.08
6-3 Rect. 2.480 0.33 2.02–3.23, 2.59 12

2.453 0.66
6-4 Square 2.299 0.00 2.50, 2.50 12
7-1 2.844 0.00 1.85–3.06, 2.65 3 16 0.19
7-2 2.775 0.29 1.96–3.36, 2.59 3 15 0.20

2.753 0.00

Table 4. Binding energies, average magnetic moments, range of interaction distances (and the average value), number of total bonds and
ratios of short to the total number of bonds of the lowest-lying isomers of three-dimensional (3D) clusters. The bold numbers in the first
column indicate that these clusters are the global minima (or ground states) among all the clusters of the same size.

N EB (eV/atom) μ (μB/atom) Distances (Å) Short bonds Total bonds Ratio

8-1 3.315 0.00 1.62–3.03, 2.68 4 18 0.22
3.230 0.25

8-2 2.834 0.00 2.45–2.49, 2.47 16
2.780 0.25

9-1 3.187 0.22 1.63–3.15, 2.68 3 21 0.14
9-2 3.059 0.00 1.67–2.97, 2.66 2 21 0.09
10-1 3.397 0.00 1.62–3.31, 2.72 5 25 0.20
10-2 3.100 0.80 2.35–2.87, 2.59 24
10-3 2.984 0.00 2.23–2.81, 2.52 20
11-1 3.361 0.18 1.66–3.20, 2.69 5 27 0.18
11-2 3.206 0.00 1.68–3.13, 2.72 3 30 0.10
12-1 3.579 0.17 1.68–2.93, 2.67 6 30 0.2
12-2 3.085 0.17 2.41–2.73, 2.54 28

3.073 0.00
13 ICO 3.561 0.00 1.59–3.61, 2.76 6 37/42 0.16/0.14

3.507 0.15 1.62–3.39, 2.76 6 38/42 0.16/0.14
3.334 0.62 1.71–3.79, 2.91 6 39/45 0.15/0.13

13 BBP 3.543 0.31 1.59–3.37, 2.74 6 32/36 0.19/0.16
13 Cubo 3.063 0.31 2.60, 2.60 36

4



Nanotechnology 19 (2008) 145704 F Aguilera-Granja et al

Figure 2. Planar (2D) and quasi-planar structures of MoN clusters (N = 3–10). Where several isomers were found, they are placed in
decreasing order of stability.

Figure 3. Three-dimensional (3D) structures of MoN clusters (N = 4–12). Where several isomers were found, they are placed in decreasing
order of stability.

since most of the valence electrons participate in the bonding
of the dimers (covalent bonds). Therefore, distances separating
the dimers, or separating a dimer from an atom in the
case of odd-numbered clusters, are noticeably larger than
the interatomic dimer distances. Of course, this odd–even
effect should decrease as increasing cluster size, when the
tendency to form more compact structures maximizing the total
number of bonds will dominate. It is, therefore, expected
that, when the dimensionality of the cluster is increased, the
average interatomic distance will reflect less odd–even effect.
This trend is clear in figure 5, which shows that for 3D

clusters the average interatomic distance increases much more
monotonically towards the bulk value, as compared to their 1D
and 2D counterparts.

Figure 6 shows the binding energies of the most stable
Mo clusters of each dimensionality. Two interesting trends
come out: (i) odd–even effects exist in all dimensionalities;
and (ii) a strong competition between low-dimensional and
3D structures takes place up to about 8 Mo atoms, which is
unusual in TM clusters. The odd–even effect in Mo clusters
has also been observed by Zhang et al [26], but only in 1D
and 2D structures. Moreover, Zhang et al found that the low-

5
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Figure 4. Starting configurations for determining the lowest-energy
state of Mo13: (a) ideal icosahedron, (b) buckled biplanar (BBP)
structure and (c) octahedron. The structures obtained by relaxing
these initial configurations using SIESTA are shown on the
right-hand side (in the case of the octahedron, the relaxation is
almost uniform).

Figure 5. Average interatomic distances of the lowest-energy
structures of 1D, 2D and 3D clusters.

dimensional structures do not compete with the 3D structures
for Mo clusters with more than four atoms. Our results are
consistent with the formation of tightly bound dimers during
the cluster growth in all dimensionalities. This dimerization
effect has also been obtained in clusters of Cr (isoelectronic
with Mo) with up to 11 atoms [36, 37].

Concerning the magnetic moments of the Mo clusters, we
obtain collinear magnetic structures in all cases, even when the
self-consistent calculations started from non-collinear inputs.
In general, the magnetic order is ferromagnetic, although there
is a weak antiferromagnetic character when the cluster skeleton
contains triangles or pentagons. The values of the average
magnetic moment per atom of the most stable clusters of
each dimensionality, shown in figure 7, are generally small
and decrease as the cluster size increases in a non-monotonic
fashion. An odd–even effect in the magnetic moment is
obtained in 1D clusters, for which odd-numbered clusters

Figure 6. Binding energies of the lowest-energy states of 1D, 2D and
3D clusters.

Figure 7. Average magnetic moments of the lowest-energy states of
1D, 2D and 3D clusters.

have total spin 6, whereas even-numbered clusters have total
spin 0. For 2D clusters, not all the even-numbered clusters
have spin 0 (Mo4 has spin 2), but those with spin 0 are even-
numbered clusters. Finally, for 3D clusters we find some odd-
numbered clusters with spin 0 (Mo7 and Mo13). Thus, our
results indicate that odd–even effects are less noticeable in the
magnetic moments than in the binding energies.

We now discuss in more detail the results obtained in
our calculations, comparing with available theoretical and
experimental data. For 1D clusters, the local magnetic
moments of odd-numbered clusters are very small and show
an antiparallel coupling, except in the atom that does not
form a tightly bound dimer, which has ≈5 μB due to its
having nearly half of the 4d electrons available to be spin-
polarized. This atom contributes with ≈5 μB to the value
of the total magnetic moment, 6 μB. The dimer Mo2 has
been theoretically studied by different methods, the predicted
bond lengths and binding energies being in the ranges 1.63–
1.98 Å and 1.36–2.67 eV/atom, respectively; the experimental
values are in the ranges 1.93–1.94 Å and 1.68–2.44 eV/atom
(see [26] and references therein). Our results, 1.65 Å and

6
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2.23 eV/atom (table 1), are in the ranges of other theoretical
calculations. On the other hand, although our computed bond
length is somewhat smaller than the experimental values (the
value obtained with SIESTA using a DZP basis was slightly
greater, 1.71 Å), our computed binding energy is in the range
of experimental data. The linear trimer has been studied by
several authors. Min et al [38] obtained a symmetric structure
with 2.16 Å and 1.75 eV/atom. Our calculation gives a non-
symmetric chain (1.61 Å and 2.89 Å with 1.96 eV/atom) with a
magnetic moment of 2 μB/atom, in agreement with the results
of Pis-Diez [39] (2.19 Å and 2.40 Å with 2.01 eV/atom) and
Zhang et al [26] (1.80 Å and 2.92 Å with 1.96 eV/atom).
For larger chains, our results (table 1) are similar to those of
Zhang et al [26] which are, to our knowledge, the only results
available in the literature.

With regard to 2D clusters, all theoretical calculations
for N = 3 found the most stable structure to be an obtuse
isosceles triangle with two short bonds and one long bond.
Specifically, Pis-Diez [39] obtained a structure with 2×2.19 Å,
2.40 Å and 2.01 eV/atom, Zhang et al [26] a structure with
2 × 2.04 Å, 2.34 Å and 2.25 eV/atom, and Bérces et al [40] a
structure with 2 × 2.20 Å and 2.42 Å. We also found an obtuse
isosceles triangle (2 × 2.08 Å, 2.42 Å and 1.68 eV/atom), but
as the second lowest-energy isomer, the lowest-energy state
being an acute isosceles triangle with 1.93 Å, 2 × 2.35 Å and
1.71 eV/atom (see table 2). It is worth noting that a similar
lowest-energy structure (with one short bond + two long
bonds) has been predicted for Cr3 [36, 37], and this structure
has been considered as the building block for Cr clusters of
larger sizes. In the case of N = 4, two geometries have
been predicted, the rectangular and the rhombic. Min et al
[38] obtained the rectangular geometry (2.12 Å, 2.48 Å and
2.93 eV/atom), whereas we obtained the rhombic structure
(2 × 1.64 Å, 2.78 Å, 2 × 2.97 Å and 2.55 eV/atom), in
agreement with the results of Zhang et al [26] (2 × 1.83 Å,
2.76 Å, 2 × 3.09 Å and 2.84 eV/atom). However, our rhombic
cluster is magnetic whereas Zhang et al’s is nonmagnetic. Both
calculations give, as a closer isomer, a nonmagnetic rectangular
cluster. For N = 5, we obtain a fan-like ground-state structure,
like in Zhang et al’s calculations [26]. For N = 6, the
ground-state structure is a closed ring with alternated short
(1.62 Å) and large (2.94 Å) bonds and 2.99 eV/atom. By
bending the linear chain to form a closed ring, the system gains
0.07 eV/atom. We also find an Mo6 isomer that corresponds
to Zhang et al’s lowest-energy state. Since the cluster stability
is mainly determined by the ratio of shorter to larger bonds,
the closed ring structure is more likely to be the real ground-
state structure of Mo6 than the fan-like structure. In the case
of N = 7, we found the ground state to have a centred
hexagonal geometry, as in Zhang et al’s calculations, although
our geometry is not completely planar (the shape is of clam-
like type). This effect suggests that a volumetric (3D) transition
is expected to take place around this size (see figure 6). It
is worth noting the high stability obtained in the closed ring
configurations (hexagonal, octagonal and decagonal), formed
with alternated short and long bonds, in comparison with
the respective linear chains. For 2D clusters with N � 7,
the structures maximize the ratio of shorter to longer bonds,

whereas those reported by Zhang et al do not follow this trend.
Apart from the results by Zhang et al, we did not find any result
for 2D Mo clusters with more than four atoms.

Concerning 3D clusters, for N = 4 we obtain a
tetrahedral-like structure (2 × 1.71 Å and 4 × 2.96 Å with
2.46 eV/atom). The tetrahedral symmetry has been generally
observed in other studies: Min et al [38] (2.63 Å, 2.75 Å and
4 × 2.31 Å with 2.99 eV/atom), Bérces et al [40] (2 × 3.02 Å
and 4×2.24 Å), Pis-Diez [39] (2×3.00 Å and 4×2.23 Å with
2.59 eV/atom)—all of them thus predicting two long bonds
and four short bonds—and Zhang et al [26] (2 × 1.86 Å and
4×2.89 Å with 2.83 eV/atom), thus predicting two short bonds
and four long bonds, in keeping with our results, although the
total spin predicted by Zhang et al was 0 instead of the value 2
obtained in our calculation. For N = 5, we obtain the lowest-
energy structure to be tetrahedron-like plus an additional atom
(1.67 Å, 1.93 Å, 2 × (2.74 Å, 3.0 Å and 3.08 Å), average
distance of 2.59 Å and binding energy 2.43 eV/atom), not
reported in any other previous calculation. The next isomer
has a rectangular pyramidal structure (2 × 1.90 Å, 2 × 3.00 Å
and 4 × 2.53 Å, with 2.30 eV/atom and magnetic moment
of 0.4 μB/atom), being followed by a triangular bipyramidal
isomer (3 × 2.83 Å and 6 × 2.31 Å, 2.27 eV/atom and no
net magnetic moment). The triangular bipyramidal structure of
Mo5 has been reported by Min et al [38] (3×2.84 Å, 6×2.33 Å
and 3.56 eV/atom) and by Zhang et al [26] (3 × 2.77 Å,
6 × 2.26 Å and 2.84 eV/atom with no net magnetic moment).
The rectangular pyramidal structure has been predicted, as a
close isomer, by Min et al (2 × 2.23 Å, 2 × 2.72 Å, 4 × 2.46 Å
and 3.37 eV/atom) and by Zhang et al (2×1.94 Å, 2×2.94 Å,
4 × 2.48 Å, 2.82 eV/atom and no net magnetic moment).

The most common 3D structures for N = 6 are the
octahedron and the deformed pentagonal pyramid. Min et al
[38] obtained a deformed octahedron (with non-flat square base
plane and 3.96 eV/atom), whereas our calculations, in keeping
with the results of Zhang et al [26], predict a nonmagnetic
deformed pentagonal pyramid, the octahedron being a close
isomer. We note that we obtain a noticeable deformation
associated with the dimerization effect, while Zhang et al’s
octahedron is more regular. Our calculation also gives a
regular rectangular octahedron and a square octahedron, but
both isomers are far in energy from the lowest-energy state.
For N = 7 our calculation predicts a pentagonal bipyramid to
be the lowest-energy structure (the bonds of the atoms in the
ring ranging from 2.01 to 3.46 Å and in the apex atoms from
2.01 to 2.95 Å, the binding energy being 2.84 eV/atom). The
same symmetry was predicted by Min et al [38] (the atoms in
the ring ranging from 2.33 to 2.42 Å and in the apex atoms
from 2.45 to 3.0 Å, with 4.12 eV/atom). In both calculations,
the capped octahedra is a close isomer. By contrast, in Zhang
et al’s calculations the lowest-energy structure is the capped
octahedral, while the pentagonal bipyramid is the closest
isomer. The magnetic character is similar in both calculations
(Zhang’s and ours). For N = 8, a twisted square prism and a
double capped octahedra are found. Min et al [38] predicted
the twisted square prism, with a top (bottom) bond length of
2.48 Å (2.44 Å) and a height of 2.08 Å, to be the lowest-energy
state. Our calculations, like those of Zhang et al, predict that
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Table 5. Binding energies, magnetic moments and bond distances of the binary icosahedral clusters Mo12Fe, Mo12Co and Mo12Ni, with the
impurity (I) atom at the centre (C) and at the surface (S). Bond distances correspond to I–Mo, Mo–Mo and total average distances.

Cluster EB (eV/atom) μI (μB) μMo (μB) Distances (Å)

Mo12Fe (C) 3.005 1.96 −0.96 2.66, 2.78, 2.74
Mo12Fe (S) 3.027 3.18 −1.18 2.71, 2.79, 2.78
Mo12Co (C) 3.043 0.09 0.91 2.63, 2.75, 2.72
Mo12Co (S) 3.029 1.91 1.09 2.68, 2.77, 2.76
Mo12Ni (C) 2.982 0.14 1.86 2.64, 2.76, 2.73
Mo12Ni (S) 3.010 0.49 1.51 2.66, 2.78, 2.77

the ground state is a nonmagnetic doubly capped octahedra,
although again we obtain a more noticeable deformation than
in Zhang et al’s study. Both calculations predict that the highly
symmetric twisted square prism is a close isomer. For 3D
clusters with N = 9–13, there are no results available in the
literature except those of Zhang et al [26] (the case N = 11
was not analysed by Zhang et al). In general, we obtain
similar structures except for N = 10, but, as in cases indicated
above, our geometries are more deformed. For N = 10, our
lowest-energy state is a nonmagnetic hollow amorphous-like
cluster with five short bonds. The next isomer, formed by two
twisted squares, corresponds to the ground state obtained by
Zhang et al. Fractions of icosahedral clusters are obtained
for N = 11, which has four short bonds, and for N = 12.
Ground-state Mo12 is the empty icosahedral cluster with strong
deformations.

The 3D cluster with N = 13 is a very special case,
as indicated in section 1. Our calculations predict that the
lowest-energy state has a deformed icosahedral structure with
no net magnetic moment (table 4). The next isomers, in
decreasing order of energy, are: a BBP structure with μ =
0.31 μB/atom (the second lowest-energy isomer identified
by Chang and Chou [11]), a deformed icosahedral cluster
with μ = 0.15 μB/atom (the lowest-energy state predicted
by Zhang et al [26]), a deformed icosahedral cluster with
μ = 0.62 μB/atom (the lowest-energy state obtained by
Chang and Chou [11]) and a cubo-octahedral cluster with μ =
0.31 μB/atom (Zhang et al predicted also a cubo-octahedral
cluster as one of the lowest-energy isomers of Mo13, but with a
large magnetic moment of 0.46 μB/atom).

We finally focus on the results obtained for the binary
clusters Mo12Fe, Mo12Co and Mo12Ni, i.e. clusters formed
when one of the Mo atoms in the icosahedral Mo13 cluster
is replaced by an ‘impurity’ atom of a ferromagnetic metal.
SIESTA relaxations for the two possible locations of the
impurity, one at the cluster centre and the other at the surface,
show that in both cases the final structure is strongly deformed.
This result is shown in figure 8 for the cluster Mo12Fe; the
other binary clusters behave similarly. The computed binding
energies, magnetic moments and bond distances are given in
table 5. For Mo12Fe and Mo12Ni, the configuration with the
single impurity atom at the cluster surface is more stable than
the configuration with the impurity at the central site, while
the opposite occurs in the case of Mo12Co. In principle, given
that the surface energies of Fe, Co and Ni are smaller than the
surface energy of Mo [41], the impurity atom is expected to
be placed at the cluster surface in all cases. However, it has

Figure 8. Geometrical structures of Mo12Fe with the Fe impurity at
the centre (a) and at the surface (b) (dark spheres correspond to the
impurity atom). To illustrate the deformations of the clusters, the
ideal icosahedral structure is also shown (c).

been shown that arguments based on macroscopic properties
such as the surfaces energies of the components are rather
questionable when applied to small clusters (see, e.g., [42]).
With regard to the magnetic behaviour, in general strong
antiferromagnetic order is observed among the Mo atoms. In
Mo12Co and Mo12Ni, the impurities exhibit weak magnetic
moments parallely coupled to the total magnetic moment of
the Mo atoms, whereas in Mo12Fe the impurity shows high
moment with antiparallel coupling. In the latter case, the
frustration is relieved, making zero the magnetic moments of
two neighbouring sites in the two pentagonal rings.

4. Summary and conclusions

In this paper, we used the DFT method SIESTA to investigate
the structures, binding energies and magnetic moments of the
clusters MoN (N = 2–13), Mo12Fe, Mo12Co and Mo12Ni. The
calculations for pure MoN clusters were performed without
assuming the same spin-quantization axis for each atom, thus
allowing for possible non-collinear magnetic configurations.
However, we obtained collinear magnetic structures in all
cases, even when self-consistent calculations were started from
non-collinear inputs. Our results for these clusters showed
that both linear, planar and three-dimensional clusters have a
strong tendency to form dimers. In general, even-numbered
clusters are more stable than their neighbouring odd-numbered
clusters because they can accommodate an integer number
of tightly bound dimers. As a consequence, the binding
energies of pure MoN clusters, in their lowest-energy states,
exhibit an odd–even effect in all dimensionalities. A strong
competition is found between low-dimensional and three-
dimensional structures up to about N = 8. Our results indicate
that odd–even effects are less noticeable in the magnetic
moments than in the binding energies.
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When comparing our results for pure Mo clusters with
those obtained recently by Zhang et al [26], we observe
similarities in some cases, but striking differences in others.
In particular, the odd–even effect in three-dimensional clusters
was not obtained by Zhang et al, and our results for some
clusters (e.g. planar Mo3 and Mo7 and three-dimensional Mo7

and Mo13) differ from those reported by these authors. For
Mo13, we found that the lowest-energy state has a deformed
icosahedral structure with no net magnetic moment, while
Zhang et al obtained a deformed icosahedral cluster with μ =
0.15 μB/atom. Our results for Mo13 confirm the conclusion by
Chang and Chou [11] that the BBP structure is less stable than
the (deformed) icosahedral structure, although the icosahedral
structure obtained by Chang and Chou had a magnetic moment
of μ = 0.62 μB/atom instead of 0.

Our calculations for the binary clusters Mo12Fe, Mo12Co
and Mo12Ni were performed by assuming collinear spin
arrangements. For Mo12Fe and Mo12Ni, we obtained that the
icosahedral configuration with the impurity atom at the cluster
surface is more stable than the configuration with the impurity
at the central site, while the opposite occurs in the case of
Mo12Co. In principle, since the surfaces energies of Fe, Co
and Ni are smaller than the surface energy of Mo [41], the
impurity atom is expected to be placed at the cluster surface
in all cases. However, it has been shown that arguments based
on macroscopic properties such as the surfaces energies of
the components are rather questionable when applied to small
clusters [42]. In Mo12Co and Mo12Ni, the impurities exhibit a
weak moment parallely coupled to the total magnetic moment
of the Mo atoms, whereas in Mo12Fe the impurity shows high
moments with antiparallel coupling.
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