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Abstract
In an attempt to improve the performance of vibration-based energy harvesters, many authors
suggest that nonlinearities can be exploited to increase the bandwidths of linear devices.
Nevertheless, the complex dependence of the response upon the input excitation has made a
realistic comparison of linear harvesters with nonlinear energy harvesters challenging. In a
previous work it has been demonstrated that for a given frequency of excitation, it is possible
to achieve the same maximum power for a nonlinear harvester as that for a linear harvester,
provided that the resistance and the linear stiffness of both are optimized. This work focuses
on the bandwidths of linear and nonlinear harvesters and shows which device is more suitable
for harvesting energy from vibrations. The work considers different levels of excitation as well
as different frequencies of excitation. In addition, the effect of the mechanical damping of the
oscillator on the power bandwidth is shown for both the linear and nonlinear cases.

Keywords: energy harvesting, nonlinear dynamics, optimization, continuation, electrical load,
bandwidth

(Some figures may appear in colour only in the online journal)

1. Introduction

Energy harvesting from vibrations has attracted much attention
in the literature for more than a decade. With this technology
it is possible to harvest energy from vibrating structures that
would otherwise be dissipated as heat. The literature provides
a great variety of devices featuring different designs and
different transduction mechanisms to allow for the conversion
of kinetic energy into electrical energy.

One of the most common techniques for harvesting of
energy from vibration uses resonating oscillators tuned to the
frequency of excitation, allowing the input vibration to be
amplified in the device and therefore more easily harvested
by a transducer. A key advantage of this technique is that it
can be easily adapted to different transduction mechanisms
(magnetic, piezoelectric and electrostatic); however, there are
also disadvantages.

The narrow bandwidth of a device designed following
this approach is of concern. Many methods of addressing
this limitation have been pursued. One is to control the
geometrical characteristics of the oscillator to change its
natural frequency [1, 2]. Another is to use external forces to
change the equivalent stiffness of the oscillator and therefore
its resonant frequency: Challa et al [3] suggest use of the force
between an oscillating cantilever beam and external magnets;
Roundy and Zhang [4] show how to achieve the same result
with a piezoelectric actuator. Although valid, there are some
drawbacks to consider in these approaches; for example, the
geometry of the oscillator cannot be adapted easily to the
frequency of excitation. Control of the natural frequency by
influencing external forces requires a substantial amount of
energy, potentially defeating the purpose of the device.

Another possibility to widen the frequency bandwidth of
a harvester involves the use of multiple degrees of freedom
oscillators. This idea has been investigated in many works,
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including [5], but harvesting of energy from several modes
efficiently is not easy: in [6] the use of several decoupled
oscillators, each tuned at a specific natural frequency, is
suggested.

A similar concept is electrical tuning of the harvester;
here, one extra degree of freedom is introduced in the electrical
circuitry. By manipulating the phase between the electric force
and the velocity of the moving mass by changing the reactance
of the electrical circuit, Cammarano et al [7] and Renno
et al [8] showed that it is possible to tune a harvester to the
frequency of excitation. Several works, aimed at implementing
this concept practically, have been published recently, for
example [9].

Alongside these methods to tune or extend the bandwidth
of a linear harvester, in the last decade the idea of exploiting
the effect of nonlinearities on the frequency responses of the
oscillator (see for example [10, 11]) has become popular.
In [12], Erturk et al show the possible advantages of the
bandwidth of a nonlinear harvester in comparison with a
linear harvester. In [13], using a configuration similar to that
in [4], the possibility of having both a hardening-like and a
softening-like response with one single device is discussed. A
similar device is presented in [14], where a strong nonlinearity
is obtained via the interaction of the oscillator with the
magnetic field. In this case the magnets are housed on the
armature and they move with respect to a ferromagnetic core
housed on the stator. This configuration is used primarily
to enhance the electromechanical coupling coefficient. The
resulting nonlinear system can be either hardening or bistable;
see [15] for a discussion of the latter.

In many works the nonlinearity of the device is presented
as a design characteristic [16–18], in others it is the result
of particular geometries or arrangement [3, 10]. Cammarano
et al [19] addressed the problem of how these compare with
linear devices and how to optimize the electrical load and the
mechanical characteristics.

The work presented here builds on the findings of [19].
In [19] it has been demonstrated that under optimal conditions
a nonlinear energy harvester can deliver as much power as a lin-
ear harvester to a purely resistive load. For this to be achieved
both the resistive load and the underlying linear frequency ωn
must be selected carefully. Although this result is promising,
it does not, on it own, justify the use of a nonlinear energy
harvester over a linear one. In the literature many authors have
claimed that the main motivation for using a energy harvester
featuring nonlinear components is that such a device exhibits
good performance over a wider frequency range than an
equivalent linear harvester. Although this motivation has been
discussed in several works [12, 13, 20], a comparison between
the performance of comparable linear and nonlinear devices
in which the load has been optimized for maximum power
harvested has not been reported. Other works have addressed
the problem of the bandwidth in nonlinear harvesters, but in
different contexts. Daqaq [21], for example, considered the
bandwidth of a harvester exited with a random input. He
concluded that for random excitations stiffening nonlinearities
should be avoided in the design of the device. In his work,
though, the electrical load is not optimized and the dissipation

Figure 1. 3-dB-bandwidth schematics: application of the definition
to the linear (a) and nonlinear (b) cases. The frequency axis in the
schematics has been normalized with respect to the linear natural
frequency ωn, whereas the power axis is normalized with respect to
the maximum power.

effects of the electrical load are included in the total damping
of the system.

In this work we consider how the bandwidth of a nonlinear
energy harvester compares with the bandwidth of a linear
harvester when both are optimized for maximum power
harvested at the frequency of excitation. Answering this
question, using the optimization technique developed in [19],
allows us to assess when the use of a nonlinear harvester is
potentially more beneficial than a linear one. In section 2 the
definition of linear and nonlinear bandwidth is provided and
the effect of the mechanical parameter of the harvester on the
bandwidth is shown. Then, in section 3.1, different definitions
of bandwidth are considered; this requires a careful analysis
of the linear harvester used for the comparison. In the same
section, the strategy used for a fair comparison is discussed
and the effects on the bandwidth are highlighted. Conclusions
are drawn in section 4.

2. Bandwidth assuming upper branch solutions

The definition of bandwidth is derived from signal processing,
where the bandwidth is commonly used as a tool to identify
the sampling frequency necessary to reconstruct a signal with
good accuracy [22]. More precisely, the bandwidth used in
this work is the 3-dB bandwidth, as we consider the frequency
range over which the spectrum of the power response is greater
than or equal to half of the maximum power achieved.

Figure 1 shows how the definition applies to the linear
(1(a)) and nonlinear (1(b)) cases. In contrast to a linear
harvester, which has a power response that is almost symmetric
around the peak, the maximum power of a nonlinear single
DOF device occurs in the proximity of an unstable region
(assuming that the energy level is sufficient for a region of
multiple solutions). For this reason, only one stable point exists
where the power is equal to half the maximum power and the
bandwidth is not symmetric about the maximum. Note that, for
a given frequency of excitation, more than one stable solution
exists. The power produced from low amplitude oscillations
is far lower and therefore a far less desirable solution. The
bandwidth of the nonlinear harvester, shown in figure 1(b),
does not take into account the existence of these low energy
oscillations but is based on the assumption that the harvester
is always operated on the high energy branch. The case where
this does not occur is discussed in section 3.1.
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2.1. Calculation of the harvester bandwidth

The power bandwidth for a linear energy harvester can be
easily derived using the relation between the quality factor Q,
the damping ratio ζ and the bandwidth 1ω

Q =
1

2 ζ
=
ωn

1ω
(1)

with ωn the natural frequency of the harvester. Equation (1) is
only valid when the damping is small (ζ <

√
2/2). In this case

the maximum power occurs in the proximity of the natural
frequency ωn.

The damping ratio has to be evaluated using the total
damping of the system (cT), i.e. the sum of the mechanical
and the electrical damping (cm and ce respectively). For
vibration-based magnetic energy harvesters, the electrical
damping can be written as

ce =
θ2

RL
(2)

where θ is the electromechanical coupling coefficient and RL is
the resistance of the electric load. In equation (2) the electrical
characteristics of the coil as well as the reactance of the load are
neglected. Note that the effects of those parameters have been
reported in previous works on linear energy harvesters (see, for
example, [3, 7]). These works show that the coil resistance can
be considered by augmenting the mechanical damping. The
reactive part of the electrical impedance is often very small at
the frequencies of interest, and hence negligible [7].

Using equation (1), 1ω can be written as

1ω= 2ωn ζ =
cm+ ce

m
(3)

where m is the moving mass of the oscillator in the harvester.
Equation (3) shows that the bandwidth of a linear harvester
depends only on the total damping of the system. In order
to deliver maximum power to the load, it was shown in [23]
that the electrical damping must be equal to the mechanical
damping.

The envelope of the maximum power that a linear energy
harvester can deliver via an optimized resistive load is

Popt =
1
8
�4

oY 2
o m2

cm
(4)

where Yo and�o are the amplitude and frequency of excitation,
respectively. Hence, the maximum power rapidly decreases
as the damping increases. Thus, for the linear case, when
neglecting the electrical load (and hence ce), there is a
compromise between bandwidth and maximum obtainable
power.

It is reported in the literature that one possible method to
increase the bandwidth without reducing the power harvested
is via nonlinearity. Here, we consider an energy harvester with
cubic stiffness described by

mẍ +
(

cm+
θ2

RL

)
ẋ + kx + knl x3

=−mÿ (5)

where m is the moving mass and k is the linear stiffness. The
ratio ωn =

√
k/m is the natural frequency associated with the

underlying linear system. As with the linear harvester, the total
damping is given by the sum of the mechanical damping cm
and the electrical damping θ2/RL. The equivalent elastic force
is k x + knlx3 and includes both the mechanical stiffness of the
system and the component of the magnetic force in phase with
the displacement, see for example [14].

With nonlinearity present, both the shape and the maxi-
mum of the power response are altered. Here, a comparison
between the bandwidths of linear and nonlinear harvesters
with cubic elastic characteristics is performed considering that
both the devices deliver the same power to a resistive load for
one desired frequency of excitation. In other words both the
linear and the nonlinear harvester are optimized at a specific
frequency of excitation �o.

Using the results developed in [19], it is possible to find
the optimal resistance

Ropt =
θ2

m

 2 (�2
o−ω

2
n)

�o Y0

√
3α

(
�2

o−ω
2
n
)
− 2 ζm ωn

(
�2

o−ω
2
n
)

(6)

and the optimal value of linear stiffness kopt

kopt =m�2
o

(
1−

3
16

Y 2
o m2α

c2
m

)
(7)

which allow the nonlinear harvester to produce the same
power Popt as a linear one at frequency �o. Since this can
be carried out for every �o, the envelope of all the maxima
leads to the same equation as obtained for the linear case,
that is equation (4). Note that equations (6) and (7) follow the
same nomenclature as that used in [19]: α = knl/m. Also note
that by evaluating the underling linear frequency ωn using the
expression of the optimal stiffness kopt provided in equation (7)
and substituting in equation (6), the expression for the optimal
resistance becomes

Ropt =
θ2

c
. (8)

This is the same expression as that of the optimal resistive load
to be used to maximize the power output of a linear energy
harvester. This implies that for a nonlinear device to achieve
the optimal power for a given excitation frequency�o only the
linear stiffness must be tuned, while the resistance can remain
unaltered.

To evaluate the frequency bandwidth, we have to evaluate
the frequency at which the nonlinear harvester produces
Popt/2. This can be carried out numerically from the equation
that relates the excitation frequency � to the power P

2
((
ω2

n −�
2
)
+

3
2
α RL P
θ2�2

)2 RL P
θ2�2

+ 2
(

c
m
+

θ2

RLm

)2 RL P
θ2 = F2 (9)
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Figure 2. Effect of the damping on the bandwidth: the black surface
is the bandwidth of the linear harvester whereas the red surface is
representative of the bandwidth of the nonlinear harvester.

Table 1. Mechanical and electrical parameters.

Linear stiffness 300 N m−1

Nonlinear stiffness 1.02× 108 N m−3

Mechanical damping 6 N s m−1

Seismic mass 80 g
Electromechanical coefficient 8.9 V s m−1

Base displacement 0.1 mm

substituting P with the value Popt/2 and solving for �. See
the discussion around equation (9) in [19] for the derivation of
this relationship and its use to derive the maximum power.

Here, the crucial step is that we use this equation to
consider the bandwidth rather than the maximum power.
In fact, the difference 1� = �Popt − �Popt/2 defines the
bandwidth of the nonlinear harvester (see figure 1(b)). The
procedure can be repeated by varying different parameters, so
that the influence of a given parameter on the 3-dB bandwidth
is highlighted.

We now examine the influence of various key parameters
on the bandwidth. To do this, we use parameters taken from
an experimental characterization of a real device [24], which
are listed in table 1. The parameters used in this work are
considered with no uncertainties. For the effect of uncertainties
in the physical parameters on the performance of the harvester
see [25]. The device considered has an underlying linear
frequency of approximately 62 rad s−1.

We then select optimal values for the linear stiffness and
the resistance according to (6) and (7) respectively and proceed
to examine the bandwidth.

2.2. Damping

First we consider the effect of mechanical damping on the
bandwidth. Figure 2 shows that for high values of damping
the bandwidth of the linear harvester is larger than that of the
nonlinear one.

As previously discussed, this condition is not particularly
desirable for energy harvesters, since high values of the

Figure 3. Effect of the amplitude of excitation on the bandwidth: the
black surface is the bandwidth of the linear harvester whereas the
red surface is the bandwidth of the nonlinear harvester.

damping are detrimental for the efficiency of the harvester.
Figure 2 shows that for small values of the damping, there
exists a region in which the bandwidth of the nonlinear device
is greater. This region is influenced by the frequency at which
the device has to be tuned. Even if the system is lightly
damped, at low frequency the bandwidth of the linear harvester
is larger than that of the nonlinear device. In fact, the excitation
considered has a fixed amplitude of displacement (0.1 mm).
At low frequency the energy input to the harvester is limited
and therefore the nonlinear behavior is hardly encountered.
As the tuning frequency increases more and more energy is
delivered to the harvester. This results in a greater bending of
the response peak and therefore in a broader bandwidth.

2.3. Amplitude of excitation

The amplitude of excitation has no effect on the bandwidth of
the linear harvester, but is highly influential on the response of
the nonlinear harvester, see figure 3. In fact the amplitude
of excitation determines the amplitude of the oscillation
and therefore the magnitude of the nonlinear forces loading
the oscillator. If the amplitude of excitation is very small,
the nonlinear harvester behaves as if it were linear since
the nonlinear component of the elastic force is small in
comparison with the linear component. The approximation
used in the optimization process does not allow calculation
of the optimum resistance if the nonlinear component of the
elastic force is very small, resulting in no region of multiple
solution in figure 1(a). For this reason it is not possible to
extend the surface in figure 3 to low amplitude of excitation.
However, this case is not of particular interest since at a
low level of excitation the linear and nonlinear harvesters
behave very similarly and hence the bandwidth surfaces would
converge.

In figure 3 the bandwidths of the linear and nonlinear
harvesters are evaluated as a function of the amplitude of
excitation and of the tuning frequency. All the other parameters
are kept constant, included the damping of the two systems
which is fixed to 6 N m s−1 and the nonlinear stiffness of the
nonlinear device (∼3× 109 N m−3).

4
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Figure 4. Effect of the nonlinear stiffness on the bandwidth: the
black surface is the bandwidth of the linear harvester whereas the red
surface is representative of the bandwidth of the nonlinear harvester.

2.4. Nonlinear stiffness

Finally, the influence of the nonlinear component of the
equivalent elastic force on the bandwidth is evaluated. This
is shown in figure 4 as a function of the tuning frequency.
The surfaces are evaluated for a fixed amplitude of excitation
(0.1 mm) and a constant damping coefficient of 6 N s m−1.
The surface representing the linear harvester (black) is parallel
to the xy plane since it is independent of the nonlinear
coefficient. For the nonlinear system (red), the higher the
nonlinear coefficient, the wider the bandwidth becomes. The
plot also shows that if the frequency of excitation is small, the
coefficient of the nonlinear term has to be higher to ensure that
the bandwidth of the response is larger than that of the linear
harvester.

In summary, we have seen that using this definition of
bandwidth and assuming that we remain on the upper solution
branch in regions where multiple solutions exist, there are
regions where the nonlinear device has larger bandwidth than
the linear device.

2.5. Numerical validation

The analytical solution used for the evaluation of the band-
width relies on the fact that the frequency response of the
nonlinear device goes through a fold bifurcation. When the
device is tuned so that its underlying linear natural frequency
is very low, the response of the system does not present any
folding points because the amplitude of the force transmitted
to the device decreases with the square of the excitation
frequency and the energy is not sufficient for the nonlinearity
to induce folding of the frequency response and therefore the
fold bifurcation to occur. To assess the region of validity of
the analytical method and to investigate the behavior of the
nonlinear harvester when the analytical method cannot be used
a numerical investigation of the bandwidth is now performed
via the following steps.

(1) A frequency �opt in the range 50–400 rad s−1 is chosen
as the frequency at which maximum power occurs.

(2) The value of ωn that allows maximum power to be
delivered at �opt is identified.

Figure 5. Comparison between the analytical and theoretical
bandwidths for different values of ωn: the bandwidths computed
numerically are represented by dots whereas the analytical results
are shown by solid lines. The linear bandwidth is shown in black and
the red curves are representative of the nonlinear bandwidth. The
red star shows the value of ωn for which the folding points coalesce.

(3) For the selected value of ωn the frequency response is
evaluated.

(4) The bandwidth of the frequency response is found follow-
ing the definition provided in section 2.1.

(5) A new value of�opt is selected and steps 1–4 are repeated.

The procedure has been applied to both the linear and the
nonlinear devices considering a constant damping coefficient
of 6 N s m−1. The results are shown in figure 5. As expected, for
high frequency there is a good matching between the analytical
and the numerical results, but as the frequency decreases the
folding points disappear (red star in figure). Even the formula
used for the linear bandwidth is not valid at low frequency.
This is because when excited with constant base displacement,
the amplitude of the force changes over the spectrum and
this influences the bandwidth of the oscillator. This influence
becomes less and less important as the resonant frequency
of the device moves toward higher frequencies. When the
frequency is particularly low, the bandwidths of the linear
and nonlinear devices converge. It can be seen that despite
the limit that a fold is required for the analytical technique to
work (a fold is observed for frequencies above∼110 rad s−1),
the analytical approach is able to identify correctly the regions
where the nonlinear harvester has a larger bandwidth than the
linear device, i.e. for frequencies higher than 190 rad s−1.
As the damping ratio increases, the amplitude of oscillation
decreases and the folding points in the frequency response
become closer to each other until they coalesce and vanish.
This means that the analytical approach does not work for
high values of damping. A similar numerical technique to the
one used for the frequency is used to check the validity of
the analytical approach as the damping changes. Here, the
underlying natural frequency of the harvester has been kept

5
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Figure 6. Comparison between the analytical and theoretical
bandwidths at different values of the damping coefficient: the
bandwidths computed numerically are represented by dots whereas
the analytical results are shown by solid lines. The linear bandwidth
is shown in black and the red curves are representative of the
nonlinear bandwidth. The red star shows the value of c for which the
folding points coalesce.

constant at 300 rad s−1. The results are shown in figure 6.
As expected, for low values of damping, the numerical and
analytical results show good agreement, until the folding points
coalesce (red star). For higher values of damping, the analytical
approach is not able to predict the bandwidth of the nonlinear
device. The nonlinear harvester behaves almost linearly and
its bandwidth tends to the bandwidth of the linear device.

3. Bandwidth and multiple solution response

3.1. Further definitions of nonlinear bandwidth

All the results shown so far are based on the definition of
nonlinear bandwidth provided in section 2, which differs from
the classical definition for a linear device in two main ways:

• at some frequencies, within the bandwidth, the response
has multiple stable solutions;
• the bandwidth is not centered about the maximum point,

instead maximum power occurs at one of its extremes.

The first point is arguably of greater concern. At the
frequencies where multiple solutions exist, the higher ampli-
tude oscillations have a finite basin of attraction. Therefore
it is possible that the system is attracted to a low energy
solution. If this occurs, then the bandwidth calculated using the
definition shown in figure 1(b) is misleading. A conservative
definition for the bandwidth which guarantees that the response
is on a high energy branch is to limit the bandwidth to
frequencies at which only one branch exists. The maximum
power achievable using this definition will be referred to as
the maximum power/unique solution (MPUS). For oscillators
with cubic elastic characteristics this frequency corresponds

Figure 7. Schematic comparison of 3-dB-bandwidth definitions:
bandwidth based on maximum power (a) and bandwidth based on
the MPUS (b). Note from (a) that the folding points (black dots)
coincide with a local maximum and minimum of the function �(P).

to the frequency at which the frequency response exhibits
the first fold. This point separates the region where only
one solution exists from the region with multiple solutions.
Figure 7 shows the difference between the bandwidth defined
in section 2 (panel (a)) and the bandwidth obtained following
this definition (panel (b)).

To evaluate the bandwidth according this new definition
the following steps are necessary.

• Find the frequency at which the lower fold occurs. This
can be achieved by considering that the multiple solution
region extends in between the fold points and that these
coincide with the minimum and the maximum of the
function �(P) (see figure 7(a)).
• Evaluate the power corresponding to the only stable

solution at this frequency4.
• Find the frequency at which half of the power previously

evaluated is delivered to the load.
• Evaluate the bandwidth.

The advantage of this definition is that the harvester does
not require any control to ensure that high amplitude (and
therefore high power) oscillations are maintained. Neverthe-
less, there are also disadvantages: the harvester does not deliver
the maximum power to the load, and hence a linear device is
able to harvest more energy.

3.2. Comparison with the linear harvester

The introduction of the MPUS-bandwidth raises questions
about the correct comparison of this bandwidth with the linear
bandwidth. In the first comparison both the harvesters produce,
for a given tuning frequency, the same maximum power. In the
MPUS-bandwidth the maximum power is determined by the
point where the fold occurs and it is always less than (or
at the best equal to) the peak power. In order to achieve a
fairer comparison between the two devices, several cases have
been considered. Figure 8 provides a graphical aid for the
comparisons taken into account.

4 At the frequency where the folds occurs, there are two possible
solutions, one corresponding to the fold and the other exhibiting a
higher amplitude of oscillation. The solution corresponding to the
fold is not stable and, therefore, if the harvester is excited at this
frequency it responds with high amplitude oscillations.

6
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Figure 8. Schematic comparison between linear and nonlinear
bandwidths. Panel (a) shows the bandwidth used in the previous
analysis: the maximum power for both the linear (black star) and the
nonlinear (red dot) devices is the same as well as the amount of
mechanical damping. The nonlinear (NL) and linear (L) bandwidths
are highlighted with lines and shading respectively. Panel (b) shows
the case in which the linear bandwidth (L) is compared with the
maximum power unique solution bandwidth (MPUS). The
comparison is made with a linear device having the same
mechanical damping and tuned so that the maximum power occurs
at the same frequency for both devices. Panels (c) and (d) show
comparisons of the MPUS-bandwidth with the bandwidths of linear
devices harvesting the same maximum power as the nonlinear
device. The peak power of the linear device has been decreased by
increasing the electrical damping. In panel (c) both the linear and
the nonlinear device generate the maximum power at the same
frequency whereas in panel (d) the linear device is tuned so that its
peak power point occurs at the center of the MPUS-bandwidth.

For convenience, figure 8(a) shows the linear and nonlin-
ear bandwidths built around the maximum achievable power
(the definition considered in section 2). Figure 8(b) shows the
power obtained when the linear harvester is tuned at �MPUS.
The comparison in figure 8(b) is rather unfair, since the maxi-
mum powers achieved in the bandwidths of the two devices are
different. A fairer comparison is shown in figure 8(c). Here,
the damping of the linear harvester is increased so that its
maximum power equals PMPUS. Consequently the bandwidth
of the linear harvester increases.

Although the MPUS-bandwidth addresses the problem of
the multiple solutions, the bandwidth is not centered around
the frequency at which maximum power occurs. Given the
shape of the frequency response, this problem cannot be
avoided. Nevertheless, the power and the bandwidth of the
nonlinear harvester can be compared with a linear harvester
tuned at the central frequency of the MPUS-bandwidth.
In figure 8(d), the linear harvester has been tuned to the
central frequency and the damping is such that the maximum
power of the linear harvester is the same as the maximum
power in the MPUS-bandwidth. The bandwidth in this case
is approximately the same as the bandwidth obtained in

Figure 9. Comparison between linear and nonlinear bandwidth
MPUS: the linear bandwidth is evaluated following the definition
shown in figure 8(b). In panel (a) the values of linear and
MPUS-bandwidth are shown. For each tuning frequency, the
maximum power delivered to the load in the linear (black) and
nonlinear (red) cases is shown in panel (b).

figure 8(c), but unlike that shown in figure 8(c), the linear
and the nonlinear harvester achieve the same maximum power
at different frequencies.

3.3. Bandwidth based on the MPUS definition

From the previous section it can be seen that the MPUS-
bandwidth definition is not particularly favorable for the
nonlinear energy harvester. In fact, following this definition,
either the nonlinear harvester produces less power than the
linear one, or the damping of the linear harvester has to be
increased to reduce its power output. The latter results in an
increase in the linear bandwidth which consequently might
remove any advantage of using a nonlinear device. Both these
cases, relating to the definitions shown in figure 8 (panels (b)
and (c), respectively), are analyzed in this section.

If the mechanical damping coefficient is the same in both
the linear and the nonlinear harvesters, than the linear device
produces more power at �MPUS than the nonlinear one. In
fact, whereas the load of the linear harvester is optimized at
this frequency, it is not in the nonlinear harvester. For the
nonlinear harvester the optimized load for maximum power is
in the region where multiple solutions exist, a region that, by
definition, is not considered in the MPUS case. Since at�MPUS
different levels of power are achieved, a direct comparison of
the bandwidth alone would be unfair. A fairer comparison has
to take into account the difference in power output. For this
reason, in figures 9(a) and (b) both the bandwidth and the
power achieved with the linear (black) and nonlinear (red)
devices are shown. The linear solutions are computed using
the formula presented in [4]. The nonlinear solutions are found
using the procedure described step by step in section 3.1.

In the figure the linear stiffness is changed to obtain
maximum power at the tuning frequency. The results follow
from the comparison criterion shown in figure 8(b), i.e.
the linear harvester is tuned so that it achieves maximum
power at �MPUS. The damping is equal for both the linear
and the nonlinear device. From figure 9(a) it can be seen
that the bandwidth of the nonlinear harvester increases with
the tuning frequency. However, the bandwidth of the linear
harvester, depending only on the mechanical damping, remains
unchanged. For this configuration, the MPUS-bandwidth is
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Figure 10. Comparison between the linear and nonlinear bandwidth
MPUSs following the comparison criterion shown in figure 8(c).
The maximum power delivered to the load in the linear (black) and
nonlinear (red) cases is the same.

greater than that of the linear device for tuning frequencies
higher than ∼43 Hz. Nevertheless, as the tuning frequency
increases, the power of the linear harvester increases faster
than the power harvested by the nonlinear device. Therefore,
although the nonlinear harvester has a wider bandwidth above
∼43 Hz, the maximum power it is able to harvest in the MPUS
region is much lower—see figure 9(b).

If the damping of the linear device is changed so that
at �MPUS both the linear and the nonlinear device produce
the same amount of power, adopting the definition shown in
figure 8(c), the linear harvester always has a broader bandwidth
than the nonlinear one, as shown in figure 10. This is due to
the fact that the increase of damping in the linear device leads
to an increase in its bandwidth.

This shows that it is necessary to ensure that a nonlinear
harvester can operate in the multiple solution region (on the
upper solution branch) for the bandwidth to be comparable,
and in some cases larger, than that for the equivalent power of
the linear device.

4. Conclusions

This work provides a comparison between the bandwidths
of linear and nonlinear optimized energy harvesters. After
the definitions of linear and nonlinear bandwidth have been
provided a study of the bandwidth as a function of the design
parameters and the input excitation is presented. The results
demonstrate that there are some regions in which the nonlinear
harvester has a larger bandwidth than that for the linear one,
as suggested by many authors in the literature. However, this
finding is based on a bandwidth definition that assumes that
the device remains on the upper solution branch in the region
where multiple solutions exist.

Definition of a different bandwidth which avoids opera-
tion in the multiple solution region, i.e. effectively assuming
that the lower branch is always observed, has been considered
as a more conservative definition of bandwidth. Using this
definition, if the bandwidth comparison is made with a linear
system having its maximum power at �MPUS and the same
mechanical damping as the nonlinear device, then for some
set of parameters the bandwidth of the nonlinear harvester is
wider. However, in this case the comparison is biased, as the
maximum power of the linear system is always significantly
higher.

In order to maintain the same maximum power for both
the linear and the nonlinear system, the damping of the linear
device has to be increased. The result of this is that the
bandwidth of the linear device increases and it is shown that
the bandwidth of the nonlinear device is always narrower than
that of the linear device.

Finally, a comparison between the nonlinear bandwidth
and the bandwidth of a linear harvester exhibiting maximum
power at the central frequency of the nonlinear bandwidth has
been shown. To have the maximum power the same for both
the devices the damping of the linear harvester must be almost
equal to the previous case, and therefore the bandwidth of
the linear harvester is, again, always wider than that of the
nonlinear one.

In conclusion, the nonlinear harvester exhibits a wider
bandwidth only if it operates on the upper branch in the
multiple solution region. To ensure that this occurs, a controller
which constrains the system to oscillate at high amplitude is
needed. This is beyond the scope of this work but will be
addressed in the future.

Note that, even in the case where the multiple solution
region can be exploited, the nonlinear device exhibits wider
bandwidth only when the damping is small enough and the
nonlinearity is sufficiently high. Also, the bandwidth, as well as
the solution of a nonlinear harvester, depends on the amplitude
of excitation, and therefore a careful investigation of the
operational conditions is highly recommended.
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