Synthesis and Magnetic Properties of NiSe, NiTe, CoSe, and CoTe

, , , , , , , and

Published 23 April 2012 Copyright (c) 2012 The Japan Society of Applied Physics
, , Citation Norio Umeyama et al 2012 Jpn. J. Appl. Phys. 51 053001 DOI 10.1143/JJAP.51.053001

1347-4065/51/5R/053001

Abstract

Polycrystalline NiSe, NiTe, CoSe, and CoTe have been synthesized by two methods, i.e., (1) the solid-state reaction in an evacuated quartz ampoule (QA) and (2) the high-pressure (HP) technique (HP) in a Au capsule using a cubic anvil cell. All the obtained samples have the nickel arsenide-type hexagonal crystal structure, except CoTe (HP), and their estimated lattice parameters, a and c, show almost the same values within 0.8% in comparison between samples prepared by the QA method and those by the HP method. On the other hand, a distinct difference between samples prepared by QA and HP processes is found in the magnetization of NiSe and NiTe. In particular, for NiTe, the temperature dependence of magnetization indicates two transition temperatures at about 20 and 130 K in samples prepared by the HP process. However, samples of NiTex (x = 0.5, 0.66, 0.82, 1, 1.22, and 2) and NiTe containing Au prepared by QA process do not show similar magnetic orders in the temperature range between 2 and 300 K. Also, samples of NiSe (HP) show magnetic transition at ∼20 K, while those of NiSe (QA) show a magnetic inflection point at ∼10 K. To the best of our knowledge the remarkable difference in magnetic properties caused by the method of synthesis has not been reported. In this paper, we present comparative experimental results of magnetic, electric, and specific heat measurements of samples prepared by the two methods. A possible explanation for such a substantial difference in magnetic interaction will be discussed.

Export citation and abstract BibTeX RIS