

### SELECTED TOPICS IN APPLIED PHYSICS

# Epitaxial growth and electric properties of $\gamma$ -Al<sub>2</sub>O<sub>3</sub>(110) films on $\beta$ -Ga<sub>2</sub>O<sub>3</sub>(010) substrates

To cite this article: Mai Hattori et al 2016 Jpn. J. Appl. Phys. 55 1202B6

View the article online for updates and enhancements.

## You may also like

- Influence of Metal Oxide Coatings on the Microstructural and Electrochemical Properties of Different Carbon Materials Jesse J. Wouters, M. Isabel Tejedor-Tejedor, Julio J. Lado et al.
- Influence of Metal Oxide Coatings, Carbon Materials and Potentials on Ion Removal in Capacitive Deionization Jesse J. Wouters, M. Isabel Tejedor-Tejedor, Julio J. Lado et al.
- Epitaxially grown crystalline Al<sub>2</sub>O<sub>3</sub> interlayer on -Ga<sub>2</sub>O<sub>3</sub>(010) and its suppressed interface state density Takafumi Kamimura, Daivasigamani Krishnamurthy, Akito Kuramata et al.

# Epitaxial growth and electric properties of $\gamma$ -Al<sub>2</sub>O<sub>3</sub>(110) films on $\beta$ -Ga<sub>2</sub>O<sub>3</sub>(010) substrates

Mai Hattori<sup>1</sup>, Takayoshi Oshima<sup>1\*†</sup>, Ryo Wakabayashi<sup>1</sup>, Kohei Yoshimatsu<sup>1</sup>, Kohei Sasaki<sup>2</sup>, Takekazu Masui<sup>2</sup>, Akito Kuramata<sup>2</sup>, Shigenobu Yamakoshi<sup>2</sup>, Koji Horiba<sup>3,4</sup>, Hiroshi Kumigashira<sup>3,4</sup>, and Akira Ohtomo<sup>1,4</sup>

<sup>1</sup>Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8552, Japan <sup>2</sup>Tomura Compartian Solveng, Soltema 250, 1228, Japan

<sup>2</sup>Tamura Corporation, Sayama, Saitama 350-1328, Japan

<sup>3</sup>Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan <sup>4</sup>Materials Research Center for Element Strategy (MCES), Tokyo Institute of Technology, Yokohama 226-8503, Japan

\*E-mail: oshima@cc.saga-u.ac.jp

<sup>†</sup>Present address: Department of Electrical and Electronic Engineering, Saga University, Saga 840-8502, Japan

Received April 28, 2016; revised May 24, 2016; accepted June 5, 2016; published online October 21, 2016

Epitaxial growth and electrical properties of  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> films on  $\beta$ -Ga<sub>2</sub>O<sub>3</sub>(010) substrates were investigated regarding the prospect of a gate oxide in a  $\beta$ -Ga<sub>2</sub>O<sub>3</sub>-based MOSFET. The  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> films grew along the [110] direction and inherited the oxygen sublattice from  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> resulting in the unique in-plane epitaxial relationship of  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>[10] ||  $\beta$ -Ga<sub>2</sub>O<sub>3</sub>(001]. We found that the  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> layer had a band gap of 7.0 eV and a type-I band alignment with  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> with conduction- and valence-band offsets of 1.9 and 0.5 eV, respectively. A relatively high trap density ( $\cong 2 \times 10^{12}$  cm<sup>-2</sup> eV<sup>-1</sup>) was found from the voltage shift of photoassisted capacitance–voltage curves measured for a Au/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub>/ $\beta$ -Ga<sub>2</sub>O<sub>3</sub> MOS capacitor. These results indicate good structural and electric properties and some limitations hindering the better understanding of the role of the gate dielectrics (a  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> interface layer naturally crystallized from amorphous Al<sub>2</sub>O<sub>3</sub>) in the  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> MOSFET. ( $\bigcirc$  2016 The Japan Society of Applied Physics

#### 1. Introduction

Recently,  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> has been attracting attention as a candidate for future power electronics applications.<sup>1–3)</sup> Owing to its wide band gap  $(E_g = 4.4-4.6 \text{ eV})^{4-7}$  the breakdown electric field is expected to be as high as 8 MV/cm, which would lead to more than three times larger Baliga's figure of merit than those of 4H-SiC and GaN.<sup>8)</sup> This is a tremendous advantage over its rivals from the viewpoint of practical use. Another advantage of  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> is the compatibility with current fabrication processes of semiconductor devices. Large and high-quality single crystals ( $\geq 2$  in. in diameter) can be synthesized by melt growth methods such as Czochralski,<sup>9)</sup> floating-zone,<sup>10)</sup> and edge-defined film-fed growth.<sup>11)</sup> Consequently, high-quality  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> homoepitaxial films can be grown by molecular beam epitaxy<sup>12,13)</sup> and halide vapor phase epitaxy.<sup>14)</sup> Moreover, the electron density of the epitaxial films can be tuned by impurity levels by controlling the dose of ion implantation<sup>15)</sup> as well as the source materials.<sup>2,13)</sup> Using these and other conventional semiconductor-fabrication processes, metal-oxide-semiconductor field-effect transistors (MOSFETs) with a breakdown electric field as high as 755 V have been demonstrated.<sup>16)</sup>

The quality of the interface between a gate dielectric and  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> is a critical factor for the performance of  $\beta$ -Ga<sub>2</sub>O<sub>3</sub>based MOSFETs. In the aforementioned MOSFETs, atomiclayer-deposited amorphous-Al<sub>2</sub>O<sub>3</sub> layers are used as gate dielectrics, and transistor channels are formed at the  $\beta$ -Ga<sub>2</sub>O<sub>3</sub>(010) surface.<sup>16,17)</sup> By transmission electron microscopy, it has recently been revealed that a metastable  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> layer with nanometer thickness exists at the interface.<sup>18)</sup> Interestingly, the density of interface trap states correlates with the thickness of the  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> layer. This finding suggests that a metastable  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> layer formed in contact with the  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> surface plays an important role in the device performance. However, the crystallization takes place naturally during device processing, and in such a case, the individual roles of  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> and amorphous-Al<sub>2</sub>O<sub>3</sub> will be discussed only empirically. Moreover, the details of the crystal structure and physical properties of the  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>/ $\beta$ -Ga<sub>2</sub>O<sub>3</sub> interface remain unclear. The preparation and characterization of a single-phase  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> epitaxial film on  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> is a direct approach to obtaining useful information for modeling this interface.

In this study, we fabricated  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> epitaxial films on  $\beta$ -Ga<sub>2</sub>O<sub>3</sub>(010) substrates by pulsed-laser deposition (PLD) and characterized the epitaxial relationship and the band alignment at the interface. We also investigated photoassisted capacitance–voltage (*C*–*V*) characteristics for MOS capacitors with contact metals.

The Al<sub>2</sub>O<sub>3</sub> films were grown on unintentionally doped n-type  $\beta$ -Ga<sub>2</sub>O<sub>3</sub>(010) substrates by oxygen-radical-assisted PLD.<sup>19)</sup> An Al<sub>2</sub>O<sub>3</sub> ceramic target (99.99% purity) was ablated by focused KrF excimer laser pulses at a repetition rate of 10 Hz and a fluence of 0.3 J cm<sup>-2</sup>. The ablated species were deposited on substrates heated at 500 °C and the oxygen radicals were supplied from a RF plasma cell operated at a RF power of 300 W and an O<sub>2</sub> gas flow rate of 0.70 sccm. The typical growth rate was 0.7–0.9 nm min<sup>-1</sup>.

#### 2. Experimental methods

The techniques and methods used to characterize the samples are as follows. The film thickness and epitaxial structure were evaluated using X-ray reflection and X-ray diffraction (XRD), respectively, with Cu K $\alpha_1$  radiation (1.540562 Å). X-ray photoemission spectroscopy (XPS) measurements were performed using a VG-Scienta R3000 analyzer with a monochromatized Al K $\alpha$  X-ray source (1486.6 eV). The C 1s line of the adventitious carbon contamination (284.8 eV) was used to calibrate the binding energy. All spectra were acquired at room temperature with a total energy resolution of 400 meV. The  $E_g$  values were estimated by reflection electron energy loss spectroscopy (REELS) at a primary energy of 1 keV as well as from the O 1s loss structure in the XPS spectra. The photoassisted *C–V* measurement was conducted at a frequency of 1 MHz with the illumination



Gallium oxide and related semiconductors



**Fig. 1.** (Color online) (a) Out-of-plane XRD pattern of the  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> film grown on  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> substrate. S indicates a reflection from the sample stage. (b) Reciprocal space map around  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 444 and  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> 420 diffraction spots. The coordinates of  $Q_X$  and  $Q_Z$  are orthogonal to the (100) and (010) surfaces of  $\beta$ -Ga<sub>2</sub>O<sub>3</sub>, respectively. A cross indicates  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 444, corresponding to lattice parameters of bulk. (c)  $\phi$ -scan profiles of asymmetric reflections from the  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> film and the  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> substrate.

of a Xe lamp (500 W) through a deep-UV optical fiber. The irradiated photon energies (up to 6.2 eV) were sufficient to excite the trapped electrons existing in the entire gap of  $\beta$ -Ga<sub>2</sub>O<sub>3</sub>. To excite all the trapped electrons, light illumination was continued until the photocapacitance saturated (the duration was about 2 min). For this measurement, ohmic contact was prepared prior to the  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> growth. A piece of indium metal put on the back of the  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> substrates was partially transferred to an ohmic contact layer through rapid thermal annealing in N<sub>2</sub> at 1000 °C for 2 min.<sup>20)</sup> After the growth, 10-nm-thick transparent Au electrodes with a diameter of 200 µm were vacuum-deposited through a stencil metal mask. A reference *C*–*V* curve was taken for a Schottky barrier diode fabricated by the same procedures. All the experiments were carried out at room temperature.

#### 3. Results and discussion

Figure 1(a) shows the out-of-plane XRD pattern of a 28-nmthick Al<sub>2</sub>O<sub>3</sub> film grown on the  $\beta$ -Ga<sub>2</sub>O<sub>3</sub>(010) substrate. Only the 440 reflection of  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> was observed, indicating that the metastable  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> phase was formed under a constraint from the surface lattice of  $\beta$ -Ga<sub>2</sub>O<sub>3</sub>(010). The full width at half maximum of the  $\omega$ -rocking curve of this peak was 0.16°. Figure 1(b) shows a reciprocal space map of the sample, in which the coordinates of  $Q_X$  and  $Q_Z$  are orthogonal to the (100) and (010) surfaces of  $\beta$ -Ga<sub>2</sub>O<sub>3</sub>, respectively. The diffraction spots from the 420 reflection of  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> and the 444 reflection of  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> were clearly observed. Taking



**Fig. 2.** (Color online) Schematic drawings of oxygen atoms on  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>(110) and  $\beta$ -Ga<sub>2</sub>O<sub>3</sub>(010), representing the observed in-plane epitaxial relationship. Double-headed arrows indicate spacings between each atomic row and  $d_{a^*}$  and  $d_c$  are their averages along  $a^*$  and c of  $\beta$ -Ga<sub>2</sub>O<sub>3</sub>, respectively.

this finding and the out-of-plane epitaxial relationship of  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>(110) ||  $\beta$ -Ga<sub>2</sub>O<sub>3</sub>(010) into account, the in-plane epitaxial relationship is  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>[ $\bar{1}$ 10] ||  $\beta$ -Ga<sub>2</sub>O<sub>3</sub>[001]. Furthermore, these two diffractions from  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> 444 and  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> 420 exhibited similar  $\phi$ -scan profiles with a twofold rotational symmetry [see Fig. 1(c)]. This result indicates that a single-crystalline  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> film was epitaxially grown on the  $\beta$ -Ga<sub>2</sub>O<sub>3</sub>(010) substrate.

Despite different symmetries of the unit cells (cubic  $\gamma$ -Al<sub>2</sub>O<sub>3</sub><sup>21)</sup> and monoclinic  $\beta$ -Ga<sub>2</sub>O<sub>3</sub><sup>22)</sup>), no other rotational domain was found, and thus the film consisted of only a single domain. This unique epitaxial relationship can be understood by taking the arrangements of oxygen sublattices at the film/substrate interface into account. We note that the crystal structures of  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> (as well as  $\gamma$ -Ga<sub>2</sub>O<sub>3</sub>) and  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> resemble each other and both are derived from a spinel-type structure (the former is often referred to as the defect spinel-type structure).<sup>23)</sup> Both of them have cubicclose-packed oxygen sublattices and cations occupy tetrahedral and octahedral sites. Figure 2 illustrates the observed epitaxial relationship with an emphasis on the oxygen sublattices on  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>(110) and  $\beta$ -Ga<sub>2</sub>O<sub>3</sub>(010). Apparently, they are almost identical to each other. The mismatches of appropriate length in oxygen sublattices ( $L_{a^*}$  and  $L_c$  along the two orthogonal directions of  $a^*$  and c of  $\beta$ -Ga<sub>2</sub>O<sub>3</sub>, respectively) can be defined by the following equations using lattice parameters of  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> (a' = 7.911 Å)<sup>21)</sup> and  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> (a =12.23, b = 3.04, c = 5.80 Å, and  $\beta = 103.7^{\circ}$ ).<sup>22)</sup>

$$L_{a^*} = \frac{d_{a^*}^{\text{Al}_2\text{O}_3} - d_{a^*}^{\text{Ga}_2\text{O}_3}}{d_{a^*}^{\text{Ga}_2\text{O}_3}} = \frac{\frac{\sqrt{2}}{4}a' - \frac{1}{2}c}{\frac{1}{2}c}$$
  

$$\approx -0.036$$
  

$$L_c = \frac{d_c^{\text{Al}_2\text{O}_3} - d_c^{\text{Ga}_2\text{O}_3}}{d_c^{\text{Ga}_2\text{O}_3}} = \frac{\frac{1}{2}a' - \frac{1}{3}a\sin\beta}{\frac{1}{3}a\sin\beta}$$
  

$$\approx -0.0013$$

Here,  $d_{a^*}^{Al_2O_3}$ ,  $d_c^{Al_2O_3}$ ,  $d_{a^*}^{Ga_2O_3}$ , and  $d_c^{Ga_2O_3}$  are average spacings between atomic rows for  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> and  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> along the two directions of  $a^*$  and c of  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> (see Fig. 2 for details). We note a very small mismatch along the c-direction, which reduces the interface energy and promotes the oxygen



**Fig. 3.** (Color online) XPS spectra of (a) Ga  $3p_{3/2}$  and a valence-band edge for the  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> substrate, (b) Al 2p and a valence-band edge for the 22-nm-thick  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> film, and (c) Ga  $3p_{3/2}$  and Al 2p for the 2-nm-thick  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> film on the  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> substrate.

sublattices to connect across the interface with preferential orientation.

The band alignment at  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>/ $\beta$ -Ga<sub>2</sub>O<sub>3</sub> was investigated by a standard procedure using XPS.<sup>24</sup>) We used three samples, i.e., a pristine  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> substrate, a 22-nm-thick  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> film, and a 2-nm-thick  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> film grown on  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> substrates, to analyze signals independently generated from  $\beta$ -Ga<sub>2</sub>O<sub>3</sub>,  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>, and their interface, respectively.

We first determined a valence-band offset  $(\Delta E_V)$  at the  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>/ $\beta$ -Ga<sub>2</sub>O<sub>3</sub> interface. Figures 3(a)–3(c) show XPS spectra for the three samples. In these spectra, peak energies of core levels were determined by fitting to a Gaussian function, while valence band maximums (VBMs) were estimated by the linear extrapolation of the valence-band edge. By comparing energy differences between the core levels and the VBMs for three spectra,  $\Delta E_V$  can be extracted as

$$\Delta E_{\rm V} = (E_{\rm Ga3p_{3/2}}^{\rm Ga_2O_3} - E_{\rm VBM}^{\rm Ga_2O_3}) - (E_{\rm Al2p}^{\rm Al_2O_3} - E_{\rm VBM}^{\rm Al_2O_3}) - (E_{\rm Ga3p_{3/2}}^{\rm Al_2O_3} - E_{\rm Al2p}^{\rm Al_2O_3})$$
$$= (E_{\rm Ga3p_{3/2}}^{\rm Interface} - E_{\rm Al2p}^{\rm Interface})$$
$$\cong 0.5 \, {\rm eV},$$

where  $E_{\text{Ga2}O_3}^{\text{Ga2}O_3}$  and  $E_{\text{VBM}}^{\text{Ga2}O_3}$  are the peak energies of Ga  $3p_{3/2}$ and VBM for  $\beta$ -Ga<sub>2</sub>O<sub>3</sub>, respectively,  $E_{\text{Al2}O}^{\text{Al2}O_3}$  and  $E_{\text{VBM}}^{\text{Al2}O_3}$  are the peak energies of Al 2p and VBM for  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>, respectively, and  $E_{\text{Ga3}p_{3/2}}^{\text{Interface}}$  are the peak energies of Ga  $3p_{3/2}$ and Al 2p at the interface, respectively.



**Fig. 4.** (Color online) XPS O 1s loss spectra for (a) the  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> substrate and (b) the 22-nm-thick  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> film, respectively. (c) and (d) are REELS spectra for the same samples as (a) and (b), respectively.

Next, we evaluated  $E_{\rm g}$  to determine the conduction-band offset ( $\Delta E_{\rm C}$ ). We obtained two sets of XPS and REELS spectra to independently determine the  $E_g$  of  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> and  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>. Figures 4(a) and 4(b) show XPS spectra near O 1s core levels for the  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> substrate and 22-nm-thick  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> film, respectively. In these spectra, the energy difference between the onset of the loss spectrum and the peak energy of the core level corresponds to  $E_g$ ;  $E_g$  values for  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> ( $E_g^{Ga_2O_3}$ ) and  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> ( $E_g^{Al_2O_3}$ ) were determined to be 4.6 and 7.0 eV, respectively. We paid attention to the poor signal-to-noise (S/N) ratios, which possibly cause statistical error for an estimate of  $E_{g}$ , in both XPS spectra. Therefore,  $E_{g}$ was also evaluated by REELS, a technique often employed to evaluate the  $E_g$  of gate dielectrics.<sup>25)</sup> Figures 4(c) and 4(d) show REELS spectra of the  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> substrate and  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> film, respectively. The energy difference between a primary peak and the onset energy of the loss spectrum corresponds to the minimum energy of the electronic transition from the valence band to the conduction band, that is,  $E_{g}$ . In this case, S/N ratios of the spectra were sufficiently large to analyze characteristic energies.  $E_{a}^{Ga_2O_3}$  and  $E_{a}^{Al_2O_3}$  were also determined to be 4.6 and 7.0 eV, respectively, which coincide with the values determined from XPS spectra. The obtained  $E_{g}^{Ga_{2}O_{3}}$ and  $E_{\sigma}^{Al_2O_3}$  showed good agreement with the reported values of 4.4–4.6<sup>4–7)</sup> and 7.1 eV,<sup>26)</sup> respectively. Having determined  $\Delta E_{\rm V}$ ,  $E_{\rm g}^{\rm Ga_2O_3}$ , and  $E_{\rm g}^{\rm Al_2O_3}$ , we calculated  $\Delta E_{\rm C}$  using

$$\Delta E_{\rm C} = (E_{\rm g}^{\rm Al_2O_3}) - (E_{\rm g}^{\rm Ga_2O_3}) - \Delta E_{\rm V}$$
  

$$\approx 1.9 \,\text{eV}.$$

The band alignment at the  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>/ $\beta$ -Ga<sub>2</sub>O<sub>3</sub> interface was thereby revealed to be type-I with  $\Delta E_{\rm C} = 1.9 \,\text{eV}$  and  $\Delta E_{\rm V} = 0.5 \,\text{eV}$ , which are comparable to those at the amorphous-



**Fig. 5.** (Color online) Photoassisted *C*–*V* curves measured at 1 MHz for (a)  $Au/\gamma$ -Al<sub>2</sub>O<sub>3</sub>/ $\beta$ -Ga<sub>2</sub>O<sub>3</sub> MOS capacitor and (b)  $Au/\beta$ -Ga<sub>2</sub>O<sub>3</sub> Schottky barrier diode. Insets show schematic cross sections of the sample structures.

Al<sub>2</sub>O<sub>3</sub>/ $\beta$ -Ga<sub>2</sub>O<sub>3</sub> interface [ $\Delta E_{\rm C} = (1.5-1.6) \pm 0.2 \,\text{eV}, \, \Delta E_{\rm V} = 0.7 \pm 0.2 \,\text{eV}$ ].<sup>27)</sup>

Finally, we describe the electrical properties of the  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>/ $\beta$ -Ga<sub>2</sub>O<sub>3</sub> interface. Figure 5(a) shows a photoassisted C-V curve measured for a Au/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub>/ $\beta$ -Ga<sub>2</sub>O<sub>3</sub> MOS capacitor. First, the carrier accumulation and deep depletion behaviors were clearly observed at positive and negative biases, respectively, which are common features of wide-band-gap-semiconductor-based MOS capacitors. From the saturation value at a positive bias, which corresponds to the capacitance of the  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> layer ( $C_{ox}$ ), the relative dielectric constant of  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> was calculated to be 6.9 ± 0.2. This value is comparable to the reported value of 7.<sup>28)</sup> Next, we compared two curves measured with voltage swept down voltage 5 to -15 V in the dark and up to 5 V in the dark after all the trapped electrons were eliminated under illumination at -15 V. In this case, charging and discharging of the average trap states appear in a voltage shift  $(\Delta V)$ .<sup>29)</sup> Considering the relatively small  $\Delta V \sim 1 V$  observed for the Schottky barrier diodes [see Fig. 5(b)], the  $\Delta V \sim 8 V$  for the MOS capacitors is attributed not to the bulk  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> but rather to the  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>/ $\beta$ -Ga<sub>2</sub>O<sub>3</sub> interface and/or  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>. Assuming that the majority of trap states exists at the interface, as is the case for SiO<sub>2</sub>/SiC<sup>29)</sup> and AlN/GaN,<sup>30)</sup> the average density of trap states  $(D_{trap})$  can be estimated using<sup>29)</sup>

$$D_{\text{trap}} = \frac{C_{\text{ox}}\Delta V}{qE_{\text{g}}^{\text{Ga}_2\text{O}_3}}$$
$$\cong 2 \times 10^{12} \text{ cm}^{-2} \text{ eV}^{-1},$$

where *q* is the electron charge. The estimated  $D_{\text{trap}}$  is much larger than those of SiO<sub>2</sub>/SiC ( $1.42 \times 10^{11} \text{ cm}^{-2} \text{ eV}^{-1}$ )<sup>29)</sup> and AlN/GaN ( $9.5 \times 10^{10}$ – $1.4 \times 10^{11} \text{ cm}^{-2} \text{ eV}^{-1}$ ).<sup>30)</sup> The relatively large  $D_{\text{trap}}$  for  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>/ $\beta$ -Ga<sub>2</sub>O<sub>3</sub> may be attributed to different crystal structures (namely, relatively large mismatch along the *a*\*-axis) and/or surface damage due to high-energy precursors during PLD.

#### 4. Conclusions

We fabricated single-phase crystalline  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> epitaxial films on  $\beta$ -Ga<sub>2</sub>O<sub>3</sub>(010) substrates to investigate the electric properties of the  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>/ $\beta$ -Ga<sub>2</sub>O<sub>3</sub> interface as a model of  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> MOSFETs. The epitaxial relationship between  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> and  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> was clarified, where we observed similar arrangements of oxygen sublattices between  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>(110) and  $\beta$ -Ga<sub>2</sub>O<sub>3</sub>(010) surfaces. The  $\Delta E_V$  and  $\Delta E_C$  of the  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>/ $\beta$ -Ga<sub>2</sub>O<sub>3</sub> interface were revealed to be comparable to those of the amorphous-Al<sub>2</sub>O<sub>3</sub>/ $\beta$ -Ga<sub>2</sub>O<sub>3</sub> interface. Despite good structural and electric properties, trap states ( $\cong 2 \times 10^{12} \text{ cm}^{-2} \text{ eV}^{-1}$ ) were detected by photoassisted *C*-*V* measurement. Whether this behavior is intrinsic to the present epitaxial structure or arises from the fabrication process employed in this study remains an open question.

#### Acknowledgments

The authors thank M. Tada of Center for Advanced Materials Analysis for assistance with REELS, and M. Higashiwaki and T. Kamimura of National Institute of Information and Communications Technology for valuable discussions. This work was supported by a Grant-in-Aid for Scientific Research (No. 26709020) from the Japan Society for the Promotion of Science Foundation, MEXT, the Element Strategy Initiative Project to Form Core Research Center, and a research grant from the Murata Science Foundation.

- 1) S. Fujita, Jpn. J. Appl. Phys. 54, 030101 (2015).
- M. Higashiwaki, K. Sasaki, H. Murakami, Y. Kumagai, A. Koukitu, A. Kuramata, T. Masui, and S. Yamakoshi, Semicond. Sci. Technol. 31, 034001 (2016).
- S. I. Stepanov, V. I. Nikolaev, V. E. Bougrov, and A. E. Romanov, Rev. Adv. Mater. Sci. 44, 63 (2016).
- Y. Jia, K. Zeng, J. S. Wallace, J. A. Gardella, and U. Singisetti, Appl. Phys. Lett. 106, 102107 (2015).
- T. Onuma, S. Saito, K. Sasaki, T. Masui, T. Yamaguchi, T. Honda, and M. Higashiwaki, Jpn. J. Appl. Phys. 54, 112601 (2015).
- N. Ueda, H. Hosono, R. Waseda, and H. Kawazoe, Appl. Phys. Lett. 71, 933 (1997).
- 7) T. Matsumoto, M. Aoki, A. Kinoshita, and T. Aono, Jpn. J. Appl. Phys. 13, 1578 (1974).
- M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, Appl. Phys. Lett. 100, 013504 (2012).
- 9) Z. Galazka, K. Irmscher, R. Uecker, R. Bertram, M. Pietsch, A. Kwasniewski, M. Naumann, T. Schulz, R. Schewski, D. Klimm, and M. Bickermann, J. Cryst. Growth 404, 184 (2014).
- E. G. Víllora, K. Shimamura, Y. Yoshikawa, K. Aoki, and N. Ichinose, J. Cryst. Growth 270, 420 (2004).
- H. Aida, K. Nishiguchi, H. Takeda, N. Aota, K. Sunakawa, and Y. Yaguchi, Jpn. J. Appl. Phys. 47, 8506 (2008).
- 12) T. Oshima, N. Arai, N. Suzuki, S. Ohira, and S. Fujita, Thin Solid Films 516, 5768 (2008).
- 13) K. Sasaki, A. Kuramata, T. Masui, E. G. Víllora, K. Shimamura, and S. Yamakoshi, Appl. Phys. Express 5, 035502 (2012).
- 14) H. Murakami, K. Nomura, K. Goto, K. Sasaki, K. Kawata, Q. T. Thieu, R. Togashi, Y. Kumagai, M. Higashiwaki, A. Kuramata, S. Yamakoshi, B. Monemar, and A. Koukitu, Appl. Phys. Express 8, 015503 (2015).
- 15) K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, Appl. Phys. Express 6, 086502 (2013).
- 16) M. H. Wong, K. Sasaki, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, IEEE Electron Device Lett. 37, 212 (2016).
- 17) M. Higashiwaki, K. Sasaki, T. Kamimura, M. H. Wong, D. Krishnamurthy, A. Kuramata, T. Masui, and S. Yamakoshi, Appl. Phys. Lett. **103**, 123511 (2013).
- 18) T. Kamimura, D. Krishnamurthy, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, Jpn. J. Appl. Phys. 55, 1202B5 (2016).
- 19) R. Wakabayashi, T. Oshima, M. Hattori, K. Sasaki, T. Masui, A. Kuramata,

S. Yamakoshi, K. Yoshimatsu, and A. Ohtomo, J. Cryst. Growth **424**, 77 (2015).

- 20) T. Oshima, K. Kaminaga, H. Mashiko, A. Mukai, K. Sasaki, T. Masui, A. Kuramata, S. Yamakoshi, and A. Ohtomo, Jpn. J. Appl. Phys. 52, 111102 (2013).
- 21) R. S. Zhou and R. L. Snyder, Acta Crystallogr., Sect. B 47, 617 (1991).
- 22) S. Geller, J. Chem. Phys. 33, 676 (1960).
- 23) H. Y. Playford, A. C. Hannon, M. G. Tucker, D. M. Dawson, S. E. Ashbrook, R. J. Kastiban, J. Sloan, and R. I. Walton, J. Phys. Chem. C 118, 16188 (2014).
- 24) E. A. Kraut, R. W. Grant, J. R. Waldrop, and S. P. Kowalczyk, Phys. Rev. Lett. 44, 1620 (1980).
- 25) Y. Kamimuta, M. Koike, T. Ino, M. Suzuki, M. Koyama, Y. Tsunashima,

and A. Nishiyama, Jpn. J. Appl. Phys. 44, 1301 (2005).

- 26) D. Tahir, H. L. Kwon, H. C. Shin, S. K. Oh, H. J. Kang, S. Heo, J. G. Chung, J. C. Lee, and S. Tougaard, J. Phys. D 43, 255301 (2010).
- 27) T. Kamimura, K. Sasaki, M. H. Wong, D. Krishnamurthy, A. Kuramata, T. Masui, S. Yamakoshi, and M. Higashiwaki, Appl. Phys. Lett. 104, 192104 (2014).
- 28) L. Tan, J. Wang, Q. Wang, Y. Yu, and L. Lin, Int. J. Mod. Phys. B 16, 4302 (2002).
- 29) J. Tan, M. K. Das, J. A. Cooper, Jr., and M. R. Melloch, Appl. Phys. Lett. 70, 2280 (1997).
- 30) T. Hashizume, E. Alekseev, D. Pavlidis, K. S. Boutros, and J. Redwing, J. Appl. Phys. 88, 1983 (2000).