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There are two current approaches in odor sensing systems. One is an odor biosensor using actual olfactory receptors. Although there have been
many artificial odor sensors proposed over the past three decades, there is still room for improvements in terms of sensitivity, selectivity and
stability. A biomimetic approach using olfactory receptors of a living body is expected to enhance capability. The second is a deep learning
technique to predict odor impressions. The mapping of mass spectra onto sensory test data based on the semantic differential method was
performed. A method of using two autoencoders for both independent- and dependent-variable spaces together with ordinal multi-layer
perceptrons was proposed. Its classification accuracy was better than that of the conventional regression method. Moreover, several cost functions
were applied to the autoencoder and evaluated. It was found that the Itakura–Saito cost function was superior to others for reproducing small
peaks in the mass spectrum. The author believes these are key technologies for realizing a sophisticated olfactory sensor.

© 2019 The Japan Society of Applied Physics

1. Introduction

In our olfactory system, an output pattern of various types of
olfactory receptor neurons with partially overlapping specifi-
cities is recognized by an olfactory neuron system.1) Thus, a
biomimetic approach to realizing an artificial sensing system
using an array of sensors followed by pattern recognition has
been proposed.2,3) This type of odor sensing system is called
an electronic nose.4) Many applications such as food,
beverage, cosmetics, health care, and environmental testing
are expected if a sensing system with sufficient performance
is available.
A variety of sensors, such as metal oxide gas sensors,5)

MOSFET gas sensors,6) conducting polymer sensors,7) surface
acoustic wave sensors,8) cantilever sensors,9) quartz crystal
microbalance sensors,10) optical gas sensors,11) electrochemical
gas sensors12) etc., have been studied for three decades.
However, sensitivity, selectivity and stability need to be further
improved. Since a living body has excellent olfactory cap-
ability, a biologically-inspired approach is very promising.13–15)

High capability of olfaction is expected when an OR (Olfactory
Receptor) can be used as a sensor element. Thus, we introduce
a biomimetic odor sensing system using cells expressing plural
types of olfactory receptors.16)

Next, a deep learning technique17) to predict odor impres-
sion was studied.18) Although many researchers have studied
odor classification and sometimes odor quantification, there
are just a few works related to the prediction of odor
impression. The prediction of odor impression is a relatively
new area. Rich expression like in humans is expected if a
machine can say whether a sample smells sweet, fresh, fruity
etc. This is important when we realize human olfactory
interfaces.
In our system, mass spectrum data were mapped onto the

results of sensory testing using a large-scale neural network.
The mass spectrum is used here since its stability and
reproducibility are high enough to form the mapping func-
tion. Moreover, a neural network to predict a wide range of
data was studied since small peaks in a mass spectrum have
much to contribute to predictions.19) Recent results relating to
the odor sensing system are explained in this review paper.
This paper is an extension of the abstract from Solid State

Devices and Materials 2018,20) which describes the methods
of this new odor sensing system.

2. Odor biosensor

The principle of odor recognition in the living body is shown
in Fig. 1. Three ORs respond to specific stereo-chemical
structures such as the rectangle, triangle and circle as
represented in this example. Although each OR responds to
multiple odorants, its output pattern from an array of ORs is
unique. Thus, odorants are recognized using a pattern
recognition technique. Although this technique is also used
for artificial sensing systems, the selectivity is still not
sufficient even if a combination of sensor array and pattern
recognition is used. Thus, we study odor biosensors.
We use insect ORs because of their simple structures and

mechanism. Sf21 cells expressing Drosophila ORs were used
here. Since fluorescent protein such as GCaMP6s inside the
cell is sensitive to calcium ions, the increase in calcium ion
concentration inside the cell caused by the ion channel
opening due to odorant reception changes the intensity of
fluorescent light.21) In the case of GCaMP6s, the fluorescent
light is green (488 nm), whereas excitation light from a laser
diode is blue (510 nm). Figures 2(a) and 2(b) show the
fluorescent image of an Sf21 cell expressing OR56a before
and after geosmin injection. Geosmin has a typical moldy
smell and its detection is important for drinking water and
food. The fluorescent intensity increased after geosmin
injection as OR56a captures geosmin. Thus, the change of
fluorescent light intensity is used as a sensor output.
Fluorescent images of the cells were taken by CMOS

camera though a dichroic mirror as shown in Fig. 3. A sample
flow system was used to switch the sample solution and
linger solution using a three-way solenoid valve, repeatedly.
Either the sample or linger solution was supplied to the cell in
a sensor chamber. An image sensor (OV-7740, Omni Vision)
was used to capture fluorescent images. Since the fluorescent
light is weak, it takes some time to accumulate the light
signal. Thus, the frame rate of the image was 10 frames per
second. The image was transferred to Field Programmable
Gate Array (5ASTFD5K3F40I3, Altera).
In our measurement system, a lock-in technique was used

to detect fluorescent light synchronous with the modulated
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light from a laser diode.22,23) A schematic of lock-in
measurement is shown in Fig. 4. The ambient light asyn-
chronous with the modulated excitation light can be removed.
Moreover, the signal to noise ratio can be raised using this
technique. Since the fluorescent light is very weak, the lock-
in technique is useful. The digital lock-in amplifier was
implemented into FPGA as mentioned above. It consists of a
BPF (Band Pass Filter), PSD (Phase Sensitive Detector) and
LPF (Low Pass Filter). Since the modulation frequency was
1 Hz, the center frequency of the BPF was also 1 Hz. The
cutoff frequency of the LPF was 0.1 Hz since the current
response time was relatively slow at about 20–30 s.

These circuits were designed using Matlab/Simulink
(Mathwork) and were then converted into Hardware
Description Language.24) The lock-in amplifiers work in
parallel. Although one lock-in amplifier per pixel is ideal,
the amount of circuit required is too large. Thus, 100 lock-in
amplifiers were implemented into FPGA. The image was
divided into 100 areas and the intensity in each area was
integrated so that it could be input to the lock-in amplifier.
After the experiment on a single OR, the cells with two

types of OR were randomly distributed in a chamber.
Although the cell patterning technique was not required in
our method, the image recognition technique was used to

Fig. 1. Principle of odor recognition.

(a) (b)

Fig. 2. (Color online) Fluorescent images of Sf21 cell expressing OR56a before geosmin injection (a) and after its injection (b).

Fig. 3. (Color online) Experimental setup for the odor biosensor.
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classify odors. When the cells were exposed to the odor
several times, the sensor response gradually decreased,
probably due to photo breaching. However, two types of
moldy smell, such as geosmin and 1-octen-3-ol, were
separated in spite of large fluctuations of the sensor responses
just using Principal Component Analysis (PCA).24) The
pattern separation was achieved because of excellent sensor
selectivities originating from OR characteristics.

3. A deep learning technique to predict odor
impression

3.1. Prediction of odor impression using a neural
network with two autoencoders
The odor impression obtained from sensory testing was
predicted using mass spectrum data and a deep learning
technique.18) The mass spectrum is used here since a large-
scale database is available and it has large dimensional data
including plenty of information. An example mass spectrum
is shown in Fig. 5. In addition to a molecular ion peak, many
fragment ion peaks appear as m/z (mass to charge ratio)
changes. Since each m/z works as a sensor element in a
sensor array, a few hundred dimensional data are available.

We chose the range of m/z from 51 to 262 since an m/z lower
than 51 includes the peaks of solvent and odorless com-
pounds and the region of m/z above 262 is very sparse.
Sensory test data based upon the semantic differential

method, and conducted by Dravnieks, were used here.25) An
example of sensory test data is illustrated in Fig. 6. In that
database, 144 descriptors including adjectives such as floral,
sweet, bitter etc. have scores from zero to five for 121
odorants. Although we would like to have a database that is
as large as possible, it includes at most 100 or 200 samples in
the field of olfaction. It is difficult to obtain many sensory
results under the same conditions when we perform sensory
tests of olfaction, whereas a huge quantity of data is available
for the visual or auditory senses. The problem of the data size
is a critical issue to be solved in olfaction.
A schematic diagram of odor-impression prediction is

illustrated in Fig. 7. Its strategy was inspired by the PLS
(Partial Least Squares) method.26) PLS is currently a gold
standard of regression, which is known to be superior to
multiple linear regression,27) in the field of chemometrics.28)

In both independent-variable space and dependent-variable
space, their features are separately extracted. Then, regression

Fig. 4. (Color online) Principle of the lock-in technique.

Fig. 5. (Color online) Example of a mass spectrum (trans-2-hexenyl acetate) using the electron ionization method.
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between features of independent variables and those of
dependent variables are performed. These feature extractions
suppress the influence of noise effectively.
The deep learning neural network used here includes two

five-layer autoencoders,29,30) one for input data space (mass
spectrum) and the other for output space (sensory data), to
extract the features as shown in Fig. 7. Then, the feature
vector of the mass spectrum was mapped onto the feature
vector of sensory data using a five-layer perceptron (Multi-
Layer Perceptron, MLP).31) The sensory data were recon-
structed using the autoencoder at the output space.
The autoencoder is one kind of MLP, where the number of

input-layer neurons is the same as that of output-layer
neurons. Since the target signals of output-layer neurons
are the same as those of inputs, it works as an unsupervised
neural network even if the MLP is a supervised one. Since
the number of neurons in the middle hidden layer is kept
small, the feature of the input data appears on that layer.
The structure in Fig. 7 is similar to that of the PLS.

However, we can perform nonlinear feature extraction and
nonlinear mapping in our proposed method even though PLS
is a linear technique.
The dimensions of feature vectors for mass spectrum and

sensory data were 45 and 30, respectively, after optimization.
The structure of the five-layer autoencoders for mass
spectrum and sensory data were 212-85-45-85-212 and
144-65-30-65-144, respectively. The structure of the MLP
between two autoencoders was 45-50-55-50-30. An L1-norm
regularization term was added to the cost function to suppress
overlearning. In the prediction after training, a nine-layer
neural network was used in total.

First, the reconstruction error of the autoencoder was
evaluated. Figure 8 shows the relationship between the
feature-vector dimension of the mass spectrum and the
reconstruction error for both autoencoder and PCA. PCA is
a typical linear technique of feature extraction. It was found
from the figure that the reconstruction error of the auto-
encoder was much smaller than that of PCA due to its
nonlinear characteristic.
The results of odor-impression prediction are shown in

Fig. 9(a) and the results obtained using PLS are shown in
Fig. 9(b). The number of latent variables in PLS was 45 after
optimization. Both data matrices, the sensory evaluation data
and the mass spectra data, were randomly separated into six
subsets, five of which (100 samples) were used for training
the whole model and the hold-out set (21 samples) was used
for evaluation of the generalization error. We repeat this
k-fold cross validation 10 times for different random split-
tings. The true values in the figures come from the database.25)

The plots approach the diagonal line if the accuracy is high. It
was found that the correlation coefficient of the proposed
method (≅0.76) was higher than that of a conventional method
such as PLS (≅0.61). Further improvement is expected if more
data are available.
Moreover, there are several tiny peaks at the high m/z

region of the mass spectrum. Although the contributions of
those small peaks to the whole mass spectrum tend to be
ignored, those peaks can contribute to the sensory result
since a compound with large molecular weight is detectable
even in low concentrations. Thus, a cost function such as the
Itakura–Saito divergence to detect small peak change is
useful.19) The topic of predicting odor impression is
becoming a hot topic and publications on the subject are
increasing.32)

3.2. Autoencoder with Itakura–Saito cost function
Thus, we studied an autoencoder based upon IS cost function.
IS divergence has previously been used for non-negative
matrix factorization for music data.33) The dynamic range of
mass spectrum signals is large enough to have a 3–6 order of
magnitude. The autoencoder with IS cost function is com-
pared with those of the Euclidean and cross entropy distances
to show the improvement in reproduction of small values in a
target dataset.
Three cost functions are expressed in the following

equations,

Fig. 6. Example of sensory data.

Fig. 7. Schematic diagram of odor-impression prediction.
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EIS is the IS-based cost function, EMSE is the MSE (Mean
Squared Error) and ECE is the CE (Cross Entropy). y is a
target signal, an element of the original mass spectrum given
to an autoencoder, and f (z) is an output of sigmoid function
on input value z. This is a one-dimensional case for
simplicity. It is calculated for each dimension, followed by
summing all dimensions for the multi-dimensional case. The
IS-based cost function changes drastically when values are
near zero, as compared with the other cost functions.
Since an autoencoder is a kind of MLP, a back-propaga-

tion algorithm was used to train it. Gradients of a cost
function with respect to the weights and the biases in the
network are calculated in the back-propagation algorithm.
The weights and biases are repeatedly updated according to
the gradients so that the cost function can be minimized.
Thus, the method to minimize the cost function is called the
gradient descent method. The gradients should be iteratively
calculated layer by layer so that the gradient descent method
can optimize the weights in the entire network. The deriva-
tion of the equation for updating weights and biases is
described in Ref. 19.

To compare the performances of neural networks based on
three different cost functions, a preliminary experiment on a
simple perceptron with a single neuron, shown in Fig. 10,
was performed. This is the simplest network to observe the
fundamental capability of cost functions. The perceptron was
iteratively trained to output a small value close to zero when
the input was one. The learning speed and errors of
perceptrons with different cost functions were evaluated in
this experiment.
The target signal was chosen from 0.1 to 0.0001 and

the error between the target signal and the output after
300 learning epochs was calculated in order to understand
how the cost function influenced the error. Two sets of
initial weight and bias were used since the training speed
is highly sensitive to the initial values of weights and
biases.
Figure 11 shows the results at each condition. The smaller

a target value was, the larger the errors of the perceptron with
MSE and CE cost functions became, in both cases. On the
other hand, the output of the perceptron with IS cost function
was much closer to the target value than other perceptrons’
outputs at both initial conditions. In particular, the MSE
autoencoder shows slower convergence.
These undesirable errors of MSE and CE are caused by a

slowdown in learning speed. When both the output and the
target values are small, this slowdown is inevitable as the
subtraction of two values, - ( )y f z , governs perceptrons’
gradients. However, when using IS divergence as a cost
function, the ratio of y to ( )f z governs the gradient when

Fig. 8. (Color online) Reconstruction error of the mass spectrum with respect to the feature dimension number.18)
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both values are small. This resulted in the improvement of
learning speed of the perceptron. Therefore, as we expected,
the IS-based perceptron has a much higher accuracy of
outputting small values close to zero.

The results of earlier experiments showed that a perceptron
with IS divergence as its cost function is promising. Our next
target is to expand this perceptron to a deep autoencoder so
that it can be applied to a large-scale dataset such as a set of

(a)

(b)

Fig. 9. (Color online) Result of odor-impression prediction. (a) Proposed method and (b) PLS method.18) Score is normalized between zero and one.

Fig. 10. Structure of a simple perceptron with a single neuron. (Copyright Elsevier 2017 with permission).19)
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mass spectra of chemical compounds. The five-layer sand-
glass-shaped autoencoder was used for the experiment of
dimensionality reduction of mass spectra.
Mass spectrum data used in this study were obtained from

the Chemistry WebBook provided by the National Institute
of Standards and Technology.34) This database has more than
100 000 mass spectra acquired using the electron ionization
method with an energy of 70 eV. Each peak in the entire
database was normalized to a range between zero and one,
and then 5000 samples were randomly picked and divided
into two sets, a training set of 3000 samples and a testing set
of 2000 samples. Although most of the mass spectra are
sparse and include a lot of zero values, all the zero values in
the dataset were replaced with a small value (=0.01). Since a
chemical compound with a molecular weight higher than 300
is typically non-volatile, intensities with m/z values between
1–300 were used in the experiment.
An average error relative to target signal was calculated

after the computational experiment. Relative error was
calculated as:

å=
-∣ ( )∣ [ ] ( )

s

y f z

y
Relative Error

1
% , 4

where s is the number of samples. To evaluate the reproduc-
tion capabilities of small values, relative error was calculated
for two groups of peaks which are split from the viewpoint of
dynamic range, namely peaks of large value (from 3% to
100% of full dynamic range) and peaks of small value (below
3% of full dynamic range). The maximum value in the
dataset was normalized to have unity value. The peaks
between 0.03–1.0 correspond to the former group and the
peaks between 0.01–0.03 correspond to the latter group. The
error ratio of each peak group is summarized in Table I. The
autoencoder with IS cost function achieved the smallest
relative error for the group of small peaks, whereas the CE
autoencoder did for the group of large peaks. When the
threshold value was changed from 3% to 1% or 5%, similar

results were obtained. Thus, IS divergence is found to be the
most appropriate cost function on this dataset in terms of the
reproduction accuracy for small target inputs. The error
relative to target signal in Table I was calculated for the
validation dataset. The experiment on the validation dataset
reveals that the improvement effect on small values using IS
cost function was not disturbed by over-fitting, and that the
IS-based autoencoder was well generalized in unknown
samples.
Thus, the IS-based autoencoder showed a significant

improvement in its approximation capabilities for small
values, which resulted in improvement in the approximation
of the entire mass spectra dataset, while slightly sacrificing its
approximation capabilities for large values.

4. Conclusion

The odor biosensor and the deep learning for odor-impres-
sion prediction were separately explained here, although it
will be possible to combine them in the future. In the former
part, it is possible to classify odors using randomly dis-
tributed cells expressing different ORs. The study of odor
biosensors should be further extended so that more compli-
cated information such as mixture composition can be
extracted. The latter part is the prediction of odor impression
using mass spectra and deep learning. Although there is still
room for improvement in prediction accuracy, it might be
enhanced if we obtain huge quantities of data, especially
sensory data. Moreover, the relationship between odor
descriptors is obtained from natural language processing.35)

Fig. 11. (Color online) Plots of output value versus target value (from 0.1 to 0.0001) after 300 training epochs. Each autoencoder is trained under the initial
condition of w = b = 0.5 (left) and w = b = 2.0 (right). (Copyright Elsevier 2017 with permission).19)

Table I. Averaged error relative to target signal in the test dataset.
(Copyright Elsevier 2017 with permission).19)

Cost
function

Relative error for
large signals [%]

Relative error for
small signals [%]

Relative error for
all signals [%]

MSE 36.86 70.60 68.52
CE 35.43 57.44 56.10
IS 41.55 38.01 38.23

© 2019 The Japan Society of Applied PhysicsSB0804-7
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Furthermore, it is feasible to expand these techniques to
odor reproduction using odor components.36,37) Other work
such as odor recording and olfactory displays described
elsewhere38,39) can be introduced at the next opportunity.
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