Abstract
We show how to create long-range interactions between alkali atoms in different hyperfine ground states, with the goal of coherent quantum transport. The scheme uses off-resonant dressing with atomic Rydberg states. We demonstrate coherent migration of electronic excitation through dressed dipole–dipole interaction by full solutions of models with four essential states per atom and give the structure of the spectrum of dressed states for a dimer. In addition, we present an effective (perturbative) Hamiltonian for the ground-state manifold and show that it correctly describes the full multi-state dynamics. We discuss excitation transport in detail for a chain of five atoms. In the presented scheme, the actual population in the Rydberg state is kept small. Dressing offers many advantages over the direct use of Rydberg levels: it reduces ionization probabilities and provides an additional tuning parameter for lifetimes and interaction strengths.