Brought to you by:
The following article is Open access

Challenges of laser-cooling molecular ions

, , , , and

Published 13 June 2011 Published under licence by IOP Publishing Ltd
, , Citation Jason H V Nguyen et al 2011 New J. Phys. 13 063023 DOI 10.1088/1367-2630/13/6/063023

1367-2630/13/6/063023

Abstract

The direct laser cooling of neutral diatomic molecules in molecular beams suggests that trapped molecular ions can also be laser cooled. The long storage time and spatial localization of trapped molecular ions provides an opportunity for multi-step cooling strategies, but also requires careful consideration of rare molecular transitions. We briefly summarize the requirements that a diatomic molecule must meet for laser cooling, and we identify a few potential molecular ion candidates. We then carry out a detailed computational study of the candidates BH+ and AlH+, including improved ab initio calculations of the electronic state potential energy surfaces and transition rates for rare dissociation events. On the basis of an analysis of the population dynamics, we determine which transitions must be addressed for laser cooling, and compare experimental schemes using continuous-wave and pulsed lasers.

Export citation and abstract BibTeX RIS

Please wait… references are loading.