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Abstract
In this brief paper, we compare two frameworks for characterizing possible operations in quantum
thermodynamics. One framework considers thermal operations—unitaries which conserve energy.
The other framework considers allmapswhich preserve theGibbs state at a given temperature.
Thermal operations preserve theGibbs state; hence a natural questionwhich arises is whether the two
frameworks are equivalent. Classically, this is true—Gibbs-preservingmaps are nomore powerful
than thermal operations. Here, we show that this no longer holds in the quantum regime: aGibbs-
preservingmap can generate coherent superpositions of energy levels while thermal operations
cannot. This gap has an impact on clarifying amathematical framework for quantum
thermodynamics.

Thefield of thermodynamics has recently seen a surge of activity [1–21], in large part because of the application
of techniques from information theory to the subject. One of the key contributions has been amore precise
definition of what thermodynamics is, and this has allowed us to derivemore rigorous quantitative statements
about the laws of thermodynamics. Traditionally, a number of processes such as isothermal expansion or
adiabatic processes were considered allowable thermodynamical operations, but the precise nature of whatwas
allowedwas never defined. Thermodynamics was considered to consist of crude control of systems, but as
experimental control has improved, what constitutes a thermal process andwhat is considered to be disallowed
was unclear.

However, oncewe define the allowable processes that constitute the field of thermodynamics, we can explore
the implications.What’smore, we can explore what happens in regimeswhich had previously been difficult to
study, in particular, we can gain a better understanding of thermodynamics at the quantum level. In recent
approaches to thermodynamics, one defineswhat thermodynamics is by specifying a set of state transformations
which an experimenter is allowed to perform ‘for free’, i.e. at nowork cost—such a framework is called a
resource theory.However, there ismore than one possible way to formulate the resource theory and it is crucial
that we understandwhich ones are appropriate and underwhich circumstances. Among the various
mathematical frameworks proposed tomodel thermodynamical operations, two have proven particularly
useful, namely the resource theory of thermal operations and theGibbs-preservingmaps. Classically, these two
frameworks are equivalent. If a transition between initial and final states block diagonal in their energy
eigenbasis is possible byGibbs-preservingmaps, then it is also possible via thermal operations [11]. Onemight
suppose that this equivalence holds for arbitrary quantum states. In this short paper, we show that this is not the
case: Gibbs-preservingmaps can perform transitions which thermal operations are incapable of.

Thermal operations.The resource theory of thermal operations has been extensively exploited to understand
thermodynamics at the quantum level [3, 9, 11, 22, 23]. One is allowed to perform any arbitrary joint unitary
operation, on a system and a heat bath at a given temperatureT, which conserves the total energy on the joint
state of the system and the bath. Thermal operations also include bringing in arbitrary systemswhich are in the
Gibbs state at temperatureT (with arbitraryHamiltonians). Finally, thermal operations allow subsystems to be
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discarded for free, regardless of their state. Observe that thermal operations cannot change theGibbs state into
any other state [9, 11, 22].What’smore, theGibbs state is the only state which has this property [17]. Gibbs states
are thus the only state which can be allowed for free—if any other state were allowed, arbitrary state
transformationswould be possible.

Crucially, thermal operations are not capable of generating coherent superpositions of energy levels: a
thermal operationmust, by definition, commutewith the totalHamiltonian, and thus cannot generate such a
superposition starting froman energy eigenstate.

Gibbs-preservingmaps. In the framework ofGibbs-preservingmaps, one is allowed to carry out any
completely positive, trace-preservingmap on a systemwhich preserves theGibbs state at a given temperatureT
(or ‘Gibbs-preservingmap’, for short). Thesemaps are a natural quantum-mechanical generalization of the
stochasticmatrices used to characterize the so-called d-majorization ormixing character [21, 24–27].
Technically, these operations are convenient toworkwith as being aGibbs-preservingmap is a semidefinite
constraint. Also, in any reasonable thermodynamical framework, amap that does not preserve theGibbs state
must cost work; this factmakesGibbs-preservingmaps a conservative choice of framework for proving
fundamental limits.

Since a thermal operation preserves theGibbs state, the state transformations possible with thermal
operations are necessarily included in those achievable withGibbs-preservingmaps. Is the converse true? It is in
the classical case, i.e. for states which are block diagonal in their energy eigenbasis. This can be seen as follows. A
necessary and sufficient condition for transitions via thermal operations is thermo-majorization [11], a partial
orderwhich is a generalization ofmajorization [27–30].More precisely, transformations are completely
characterized in terms of thermo-majorization of the initial andfinal states’ spectrumwith respect to theGibbs
state. Now given the existence of aGibbs-preservingmap, classic results aboutmajorization ensure that the
initial state’s eigenvalues thermo-majorize the final state’s ones,meaning there exists also a thermal operation
performing the transformation4.

We now address the question of whetherGibbs-preservingmaps are strictlymore powerful than thermal
operations, on arbitrary, quantum, input states.We show that this is the case, by exhibiting an example of a
Gibbs-preservingmap that performs a transformation forbidden by thermal operations.

The Example.Consider a two-level systemwith an energy gap ΔE.We denote the ground state by ∣ 〉0 and the
excited state by ∣ 〉1 . Consider now the transformation:

ρ→1 , (1)

where ρ is any pure ormixed state. Depending on ρ, (in particular, in case ρ∣ 〉 = ∣ + 〉 ≔ ∣ 〉 + ∣ 〉[ 0 1 ]1

2
as

depicted infigure 1), this transformation needs to ‘build’ coherence between the energy levels, which, as noted
above, cannot be achievedwith thermal operations.We now argue that, for any ρ, there exists nevertheless a
Gibbs-preservingmap performing this transition. Let β be afixed inverse temperature, and denote theGibbs
state on the systemby γ = ∣ 〉〈 ∣ + ∣ 〉〈 ∣p p0 0 1 10 1 with =p Z10 , = βΔ−p Ze E

1 and = + βΔ−Z 1 e E. LetΦ be
defined as

Φ σ ρ= +(· ) 0 · 0 1 · 1 , (2)

for some state σ whichwe have not yetfixed. Note that Φ is completely positive and trace-preserving.We also
have Φ ρ∣ 〉〈 ∣ =( 1 1 ) by construction. The condition thatΦ beGibbs-preserving, Φ γ γ=( ) , gives us

Figure 1.Problematic state transformation: if a qubit system is in a pure excited energy eigenstate ∣ 〉1 , onewould expect it is possible to
bring it into any other state at nowork cost, in particular in the coherent superposition of energy eigenstates ∣+〉 = ∣ 〉 + ∣ 〉[ 0 1 ]1

2
.

This is indeed possible withGibbs-preservingmaps, however thermal operations forbid this transition because it requires nontrivial
time control.

4
On a side note, this does not imply thatGibbs-preservingmaps are equivalent to thermal operations as channels evenwhen acting on block

diagonal states. Rather, they are only equivalent in terms of state transitions. In otherwords, while the same pair input state output state( , )
can be achieved in both frameworks for block-diagonal states, the actual logical processes, i.e. trace-preserving completely positivemaps or
channels, that one can perform, differ. Note also that even for a givenfixed input state the actual channel performed is in general relevant,
and not only the input and output state, as the full information about the channel can be obtained by keeping a purification of the input [13].
Additionally, a classic example (for the trivial HamiltonianH=0) of amap preserving the fullymixed state butwhich is not a thermal
operation is theChoi–Jamiolkowskimap of the two-party reduced state of the Aharonov [31, note [9]] or determinant state
∣ 〉 = ∣ 〉 + ∣ 〉 + ∣ 〉 − ∣ 〉 − ∣ 〉 − ∣ 〉 [ 012 120 201 210 102 021 ]ABC

1

6
, which is up to a local unitary the same example as in [32].
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σ ρ γ+ =p p ,0 1

which implies

σ γ ρ= −− ( )p p . (3)0
1

1

This choice of σ has unit trace, and is positive semidefinite; indeed, as γ ⩾ p1 (since p1 is the smallest eigenvalue
of γ) and ρ ⩽ , we have γ ρ− ⩾p 01 . Thismeans that, with this choice of σ,Φ is precisely a completely positive,
trace-preserving, Gibbs-preserving channel whichmaps ∣ 〉1 to ρ. Thismap is forbidden by thermal operations if
ρ contains a coherent superposition over energy levels, andwe have the desired counter-example.

This example can easily be generalized to a systemof n arbitrary energy levels: if ∣ 〉n , of energy En, is such that
no other state has higher energy, aGibbs-preservingmapΦ transforming ∣ 〉n into any ρ is given by

Φ σ ρ= − + n n n n( · ) tr [( )( · )] tr[ ( · )] , (4)

where σ γ ρ= − −( ) ( )p p1n n andwhere theGibbs state is γ = ∑ ∣ 〉〈 ∣p i ii with = β−p Zei
Ei and = ∑ β−Z e .Ei

Discussion.The observation of a gap between these two classes of operations leaves open the questionwhich
of the two captures the actual physical situation. TheGibbs-preservingmaps are useful as themost permissive
framework that is nontrivial; there is however no known explicitmicroscopicmodel which corresponds to these
operations. Furthermore, to observe any coherence between energy levels one needs a time reference frame [33–
36], whichmight cost work to produce and eventually get degraded. Allowing the use of such a resource
catalytically enables operations that were otherwise forbidden [9, 16–18], yet if the catalystmay be returned only
approximately in its original state, thenwork can be embezzled and all transformations are possible, rendering
the framework trivial [16–18]. Also, one usually expects from a physical theory that one can ignore very unlikely
events; this is by definition not possible in the framework of exact catalysis. It is still an open questionwhether
transformations achievable byGibbs-preservingmaps coincidewith thermal operations combinedwith some
formof time reference. On the other hand, if no such resource is available, additional constraints related to time
covariance are required [19].

Our result, however, does not yet conclusively show that theGibbs-preservingmaps are physically
irrelevant. Intuitively, one could have argued from the start that the transition equation (1) should have been
possible for any ρ: indeed, the initial state has bothmaximal purity and highest possible energy. In fact, it is not
uncommon to assume that some formof coherence is available, for example in the context of quantum
computation, or,more generally, whenever a quantum system interacts with amacroscopic system such as a
detector or a laser field; the latter are usuallymodelled in a coherent state.

Finally, it is worth noting that for thermal operations, there exists a set of conditions which act as second
laws, restricting which state transformations are allowed [17]. These take the formof a distancemeasure to the
Gibbs state, and are thus also a set of restrictions forGibbs-preservingmaps (due to the data processing
inequality for the Rényi relative entropies). Aswe now see that the two frameworks are inequivalent, this implies
that a complete set of second lawswill necessarily involve functionswhich cannot be expressed in such a form.
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