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Abstract
Lattice gauge theory has provided a crucial non-perturbativemethod in studying canonicalmodels in
high-energy physics such as quantum chromodynamics. Among othermodels of lattice gauge theory,
the lattice gauge–Higgsmodel is a quite important one because it describes a wide variety of
phenomena/models related to the Anderson–Higgsmechanism, such as superconductivity, the
standardmodel of particle physics, and the inflation process of the early Universe. In this paper, we
first show that atomic description of the lattice gaugemodel allows us to explore real-time dynamics of
the gauge variables by using theGross–Pitaevskii equations. Numerical simulations of the time
development of an electricflux reveal some interesting characteristics of the dynamic aspect of the
model and determine its phase diagram.Next, to realize a quantum simulator of theU(1) lattice
gauge–Higgsmodel on an optical latticefilled by cold atoms, we propose two feasiblemethods: (i)
Wannier states in the excited bands and (ii) dipolar atoms in amultilayer optical lattice.We pay
attention to the constraint of Gaussʼs law and avoid nonlocal gauge interactions.

1. Introduction

Cold atoms in an optical lattice have been used as versatile quantum simulators for variousmany-body quantum
systems, and some important results were obtained [1]. Recently, there appeared several proposals to simulate
models of lattice gauge theory (LGT) [2–4]. Since its introduction, LGThas been an indispensable tool for
studying the non-perturbative aspect of quantummodels in high-energy physics (HEP), such as confinement of
quarks, the spontaneous chiral-symmetry breaking, etc. Atomic simulations, if realized, shall certainly clarify the
dynamics, i.e, the time evolution of lattice gaugemodels, which is far beyond the present theoretical standard.

At present, the proposals are classified into two approaches. In thefirst approach [5–11], atomswith spin
degrees of freedom are put on links of the optical lattice. Such a lattice gaugemodel is called the ‘quantum link
model’ or ‘gaugemagnet’ [12–14]. AlthoughGaussʼs law (divergence of the electric field is just the charge
density ofmatterfields) [15] is assured as the conservation of ‘angularmomentum’ [16], theHilbert space of this
model itself truncates the fullHilbert space of the original U(1) LGT studied inHEP.

In the second approach [17], one considers the Bose–Einstein condensate (BEC) of atoms put on each link of
the two-or three-dimensional optical lattice. TheU(1) phase variable of the complex amplitude of BECplays a
role in the dynamical gaugefield on the links, and its density fluctuation corresponds to the electric field, the
conjugate variable of the gaugefield [17, 18]. Adopting the phase variable of the atomic field as the gaugefield
assures us that we deal with aU(1) field as inHEP in contrast with the first approach.However, to keepGaussʼs
law and the short-range gauge interactions simultaneously, a complex design of the system and afine-tuning of
interaction parameters are generally needed in the experimental setups [17, 18].

Recently, we proposed a perspective to overcome the difficulty with respect to the local gauge invariance in
the second approach [19].Namely, the cold atomic simulator of the LGTwithout exact local gauge invariance
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due to untuned interaction parameters (Gaussʼs law is not satisfied) can be a simulator for a lattice ‘gauge–Higgs’
(GH)model [20]with exact local gauge invariance, where the unwelcome interactions that violateGaussʼs law
are viewed as gauge-invariant couplings of the gaugefield to aHiggsfield.

Needless to say, theGHmodel is a canonicalmodel of the Anderson–Higgsmechanism and plays a very
important role in various fields ofmodern physics. Its list includesmass generation in the standardmodel of
HEP, phase transition and the vortex dynamics [21] in superconductivity, time evolution of the earlyUniverse
such as the dynamics ofHiggs phase transition and the related problems of topological defects, uniformity, etc
[22, 23]. Atomic quantum simulation of thismodel is certainly welcome because it simulates the real-time
evolution of the previouslymentioned exciting phenomena.

Inwhat follows, we consider the second approach to discuss the atomic quantum simulator of theU(1)
latticeGHmodel by using cold atoms in a two-dimensional (2D) optical lattice. Our target GHmodel has a
nontrivial phase structure, i.e., existence of the phase boundary between confinement andHiggs phases, and this
phase boundary is to be observed by cold-atom experiments. In the experiments, each phase could be generally
studied through the non-equilibriumdynamics of the system,which are detected by, e.g., the density
distribution of the time-of-flight imaging after the system is perturbed. As a reference to such experiments, we
make numerical simulations of the time-dependent Gross–Pitaevskii (GP) equation and observe the real-time
dynamics of the atomic simulators. In particular, we study the dynamic stability of a single electric flux
connecting two charges with opposite signs, corresponding to a density hump and dip for the atomic simulators.
We stress that this dynamic simulation in an interacting atomic system gives a new theoretical tool for the
analysis of lattice gaugemodels far beyond the present standards of the theoretical study on the LGTusing the
‘classical’MonteCarlo simulations, the strong coupling expansion, etc. The obtained phase boundary is
discussed and comparedwith that of theMonte Carlo simulations. Next, we propose two realistic experimental
setups for the quantum simulators. To respect the constraint of Gaussʼs law and avoid nonlocal gauge
interactions, it is necessary to tune suitably the intersite density-density interaction of the hamiltonian.We give
two ideas: (i) usingWannier states in the excited bands and (ii) using dipolar atoms in amultilayer optical lattice,
both of which are reachable under current experimental techniques.

The paper is organized as follows. In section 2, we introduce our target hamiltonian of theU(1) lattice GH
model starting from the extended Bose–Hubbard (BH)model with the intersite density-density interaction. The
exact correspondence of the atomic system to the LGThas been discussed in [19]. In section 3, we present the
results of the dynamic simulations bymeans of theGP equation, which is obtained under the saddle-point
approximation of the real-time path integral of the two quantumhamiltonians, i.e., the original BHmodel and
the target GHmodel. The obtained dynamic phase diagram is comparedwith the result of theMonte Carlo
simulations.We give two proposals for experiments to construct realistic atomic simulators for the lattice GH
model in section 4.MethodA in section 4.1 relies on extended orbits of theWannier functions in excited bands
of an optical lattice.Method Butilizes the long-range interaction between atoms in different layers of 2D optical
lattices. Bothmethodsmay be used to tune the intersite density-density interactions in the 2DBH system for our
purpose. Section 5 is devoted to our conclusion and an outlook on future directions.

2. FromBose–Hubbardmodel to the gauge–Higgsmodel

Corresponding to the simplest realistic experimental situation of the quantum simulator, we focus on the boson
systemdefined on a 2D square lattice.We start from a generalized BHhamiltonian [1]

∑ ∑ ∑ψ ψ ρ ρ ρ ρ= − + − +
≠ ≠

( )H J
V Vˆ ˆ ˆ
4

ˆ ˆ 1
2

ˆ ˆ , (1)
k a b

ab a b
k a

a a
k a b

ab
a b

,

† 0

, ,

which describes the bosons in a single band of a 2Doptical lattice. The bosonic atomicfields ψ θ ρ= iˆ exp( ˆ ) ˆa a a

are put on the site a of the square optical lattice. The summation is taken over the unit cell k (yellow region in
figure 1) and, in each unit cell, over the the site ∈a b( ) 1–6.We confine ourselves to the nearest-neighbor (NN)
and next-nearest-neighbor (NNN) couplings for the site pairs a b( , ) in thefirst and third terms. The parameters

=J J( )ab ba ,V0, and =V V( )ab ba are the coefficients of the hopping, the on-site interaction, and the intersite
interaction, respectively, and are calculable by using theWannier functions in a certain band. The intersite terms
Vabmay arise when the atoms have a long-range dipole-dipole interaction (DDI) [25], or when the atoms are
populated in the excited bands of the optical lattice [26].

Tomap the BHmodel onto the hamiltonian of LGT, we consider the diagonal lattice whose sites =r r r( , )1 2

are positioned on the centers of the colored squares infigure 1. Then, the original sites can be viewed as links of
the diagonal lattice. The links are labeled as r i( , )with the direction index =i 1, 2. To derive the hamiltonian of
the target GHmodel, we consider the case such that Jab andVab take values according to the following three
groups (i)–(iii) for pairs a b( , )of sites as shown in table 1 [17, 19].We note that table 1 breaks the translational
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symmetry of atomic interactions, e.g., ≠V 024 while =V 015 . Next, we assume that the equilibrium atomic
density is uniform and sufficiently large ρ ρ≡ 〈 〉 ≫ˆ 1r a0 , . Then, we expand the density operator as
ρ ρ η= +ˆ ˆr i r i, 0 , , and keep terms up to ηO ( ˆ )2 to obtain

∑ ∑ ∑

∑ ∑ ∑
γ

η η η

ρ θ θ ρ θ θ ρ θ θ

≃ + +
′

− − − ′ − − ″ −
δ

δ

−

− −

( )

( ) ( ) ( )

H
V

J J J

ˆ 1

2
ˆ ˆ

2
ˆ

cos ˆ ˆ 2 cos ˆ ˆ 2 cos ˆ ˆ , (2)

r i
r i r i i

r i
r i

r i

r i r

r i

r i r i i

r i

r i r i i

2 , ,

2

0

,
,
2

0
, ,

, , 0
,

, , 0
,

, ¯,

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

where γ′ ≡ − >−V V 2 00 0
2 , δr( , ) represents theNN links of r i( , ), and ≡1̄ 2, ≡2̄ 1. Thefirst-order term ηO ( ˆ)

is absent due to the stability condition for ρ μ γ= + + ′ + ″ ′ + −J J J V[ 4 2( )] ( 8 )0 0
2 with the chemical potential

μ. In the atomic simulators of LGT, the phase θ̂r i, plays a role of a gauge variable on the link r i( , ) and its

conjugatemomentum η̂r i, is the electric field −Êr i, [17–19]. By replacing η η→ −ˆ ( ) ˆr i
r

r i, , and θ θ→ −ˆ ( ) ˆ
r i

r
r i, , with

− ≡ − +( ) ( )r r r1 2, the first term in the rhs of equation (2) describes ‘Gaussʼs law’ as
∑ ∑ ∑γ η η γ− ≃−

−
−  E(2 ) [ ( ˆ ˆ )] (2 ) ( · )

r i r i r i i r
2 1

, ,
2 2 1 2. The two conditions γ= = −V V ( )(i) (ii)

2 and =V 0(iii) in

table 1 are necessary to generate the  E( · )2 termwithout non-local interaction among Er i, . If these conditions

are not fulfilled, a product ′ ′E Eˆ ˆ
r i r i, , over the different links appears additionally, and it gives rise to long-range

interactions among the gaugefield θr i, in the target GHmodel. Although such amodel still respects gauge
symmetry, we reject it here because all LGTs relevant toHEP are generallymodels with local interaction.

In [19], it was shown that the partition function β= −Z HTrexp( ˆ )of the atomicmodel of equation (2) is
equivalent to that of theGHmodel. TheGHmodel is theU(1) lattice gaugemodel on the (2+1)D lattice, and its

Figure 1.Relation between two 2D lattices. The dashed red lines indicate the 2Doptical lattice with the square geometry, and cold
atoms reside on its sites denoted by black crosses. Its unit cell consists of a pair of white and blue squares (yellow region). The filled
black lines indicate the 2D gauge lattice onwhich theU(1) lattice GHmodel is defined. Then the cold atoms are viewed to sit on each
link of the gauge lattice to play the role of the gauge field. The relevant sites of the original lattice (links among the site r of the gauge
lattice) in table 1 are numbered as = ∼a 1 6, as = =a r1 ( , 1), = −r2 ( 2, 2), = −r3 ( 1, 1), = r4 ( , 2), = +r5 ( 2, 1),

= +r6 ( 1, 2), where (r, i) represents the link of the gauge lattice emanating from the site r into the positive =i ( 1, 2) th direction.
The gauge lattice plays an important role also in the study of the BHmodel with =V 0ab in a different context [24].

Table 1.Atomic parameters Jab andVab in equation (1). Those not shown
below are set to zero to avoid double counting ((1, 6), etc.) or due to longer-
ranges ((3, 5), etc).

Group Range (a, b) Jab Vab

(i) NN (1, 2), (2, 3),

(3, 4), (1, 4)

J γ−2

(ii) 1st half ofNNN (1, 3), (2, 4) J′ γ−2

(iii) 2nd half ofNNN (1, 5), (4, 6) J″ 0
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partition function is given by

∫
∑

∑

∑

∑ ∑
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Here, =x x r r( , , )0 1 2 is the site index of the (2+1)D latticewith the discrete imaginary time
τ Δτ Δτ β= × = ⋯ = ≡ −x x N N k T[ 0, , , ( ) ]0 0 0 0 B

1 and the 2D spatial coordinate r r,1 2. μ and ν =( 0, 1, 2)
are direction indices. TheU(1) gauge variables θ≡μ μU iexp( )x x, , are defined on the link μx( , ). θ μ =μ ( 1, 2)x,

corresponds to the eigenvalue of the phase of atomic operator ψ̂r a, through θ θ=μ ˆ
x r i, , . The complexfield ϕx

defined on site x is a bosonicmatterfield, referred to as ‘Higgsfield’ in the London limit, taking the form
ϕ φ= iexp( )x x with frozen radial fluctuations. The integration ∫ ϕdU d[ ][ ] is over the angles θ φ π∈μ, [0, 2 )x x, .
The coefficients ∼c c1 5 are real dimensionless parameters for interactions among gaugefields. Each termof the
action, hence the action itself, and the integrationmeasure are invariant under the local U(1) gauge
transformation, θ θ λ λ φ φ λ→ + − → +μ μ μ+ ,x x x x x x x, , .

According to [19], the atomic simulator of theGHmodel in a 2D system corresponds to the following case of
parameters for μ μνc c,1 2 :

= = =
= = =

c c c c

c c c c

, 0,

, 0. (4)
10 1 11 12

201 202 2 212

In terms of the atomic system, the c1 and c2 terms describe the sumof the self-coupling and the neighboring
correlations of densities of atoms, and the c3 and c4,5 terms describe theNNand theNNNhopping terms,
respectively. The relations among the parameters of equations (2) and (3) are

γ
Δτ Δτ

ρ Δτ ρ Δτ ρ Δτ= =
′

= = ′ = ″c c
V

c J c J c J,
1

, 2 , 2 , 2 , (5)1

2

2
0

3 0 4 0 5 0

In experiments, we expect lowT(≲10 nK set by the parameters of Ĥ ), and the quantumphase transitionsmay be
explored in amulti-dimensional space parameterized by the dimensionless and Δτ-independent combinations
such as γ ρ= ′ = ′c c V c c J V, 2 ,1 2

2
0 3 2 0 0 etc.

3. Real-time dynamics of simulators: stability of an electricflux

In actual experiments observing the non-equilibrium time evolution of a quantum simulator, the results
globally reflect the phase structure of the targetmodel. The (2+1)DGHmodel supports the confinement phase
and theHiggs phase (see appendix A). The confinement phase is characterized by the strong phase fluctuation;
when static two-point charges, such as density defects created by the focused potentials, are put on, they are
connected by an almost straight electricflux (linearly rising confinement potential). In contrast, theHiggs phase
possesses the phase coherence over the system and the system can be regarded as a superfluid phase; the density
wave can propagate around the charges [19].

To get some insight into the time evolution of the system,we study the dynamic features of the simulators
through numerical simulations under themean-field approximation of the two quantumhamiltonians: the base
BHmodel equation (1) and the target GHmodel equation (2). The time-dependent equations can be derived
from the real-time path-integral formulation under the saddle-point approximation (we put ℏ = 1). The
operators of the original hamiltonian are replaced by the c-number fields.We confine ourselves to themodels
with onlyNNhopping ≠J 0 and ′ = ″ =J J 0 for simplicity.We note in advance that themean-field equations
necessarily underestimate quantumfluctuations, and their results should be taken as a guide to practical and
future experiments, which are expected to reveal the real dynamics of quantum systems.
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The equation ofmotion forψ in the BHmodel of equation (1) can be derived from the Lagrangian

∑ ∑ ψ ψ= − −=L i d dt H( )
r i r i r i1,2 ,

*
, . It is the discretized version of theGP equation called the discrete

nonlinear Schorödinger equation [27] and given by

ψ
ψ ψ ψ ψ

γ
ψ

γ
ψ ψ

ψ ψ ψ ψ ψ

∂

∂
= − + + +

+ ′ + + +

+ + + +

− + + −

−

+ + − − +

(
)

( )i
t

J

V
2 1

, (6)

r i
r i r i i r i i r i i i

r i r i r i i

r i i r i i i r i i r i i r i

,
,¯ ¯,¯ ,¯ ¯,¯

0 2 ,

2

2 ,¯
2

¯,¯
2

,¯
2

¯,¯
2

,

2

,

2

,

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

where =i 1, 2 and ≡ ≡1̄ 2, 2̄ 1. The uniform stationary solution can be obtained by substituting
ψ ψ= μ−er i

i t
, 0 as ψ μ γ∣ ∣ = + ′ + −J V( 4 ) ( 8 )0

2
0

2 , where μ is the chemical potential. Since an important quantity

to observe the dynamics of electric fluxes is the density fluctuation, we give the equilibriumdensity ψ ρ∣ ∣ =0
2

0 by

controlling the chemical potential as μ ρ γ= ′ + −−V J( 8 ) 40 0
2 and see the evolution of the density fluctuation

η ρ ρ= − 0.
The time-dependent equation ofmotion for η and θ in theGHmodel of equation (2) is derived in the similar

way from ∑ η θ= − −L d dt H( )
r i r i r i, , , as

∑
η

ρ θ θ= −( )
d

dt
J2 sin , (7)

r i

j

r i r j
,

0 , ,

θ
η

γ
η η η η

γ
η η η η= − ′ − + + + − + + +− − + + + −( ) ( )

d

dt
V

1 1
. (8)

r i
r i r i r i i r i r i i r i i r i r i i r i i i

,
0 , 2 , , ,¯ ¯,¯ 2 , , ,¯ ¯,¯

In terms of the optical lattice, the summation over j of equation (7) implies the takeover of the four atomic sites,
which areNN to the atomic site r i( , ) ( =i 1, 2). In terms of the gauge lattice, given an atomic link r i( , ), r j( , )
takes − + + −r i r i i r i i r i i i( , ¯), ( ¯, ¯), ( , ¯), ( ¯, ¯). Equations (7) and (8) can be also derived by linearizing
equation (6)with respect to the density ρ ρ η= +t t( ) ( )r i r i, 0 , . The constraint of Gaussʼs law requires the

replacement η η→ −( 1)r i
r

r i, , and θ θ→ −( 1)r i
r

r i, , .Wemake a dimensionless formof equations (6)–(8) by using
the energy scale ′V0. In solving both sets of equations ofmotion, we use the ×200 200 discretized space and the
time step Δ = −t 10 4.

As an explicit example to apply the dynamic equations, we consider the dynamic stability of a single straight
flux connecting two external charges, which is prepared as an initial condition. In the confinement phase, a set
flux string should be stable. To see the stability of the flux configuration, we put the densitymodulation
η ρ= −( ) 0.1r

r
,1 0 for − ⩽ ⩽ −R r R 11 in the background initial density ψ = 10 , inwhich the length of the flux is

R=10. The presence of point charges is taken into account byfixing η ρ= 0.1R,1 0 and η ρ= −− 0.1R 1,1 0 through

the time evolution. The free parameters of this system are γ ′V J( , , )2
0 , related to c c c( , , )1 2 3 . By using the Δτ

-independent parameters, we expect the confinement (Higgs) phase for small (large) values of γ= ′c c V1 2
2

0 and
ρ= ′c c J V23 2 0 0 (see appendix A).

Figures 2(b) and (c) represent the time evolution of the density distribution η2 calculated by the previous
twomodels. For a certain value of J, bothmodels show similar behaviors for small values of γ2, where the placed
density flux is stable and does not spread out. This captures the characteristics of the confinement phasewith
strong phasefluctuation, where the density fluctuation can be localized by themechanism similar to the self-
trapping effects as observed in a cold atom experiment [28]. However, the underlying physics are slightly
different because the system in [28] possesses only on-site interaction, without a long-range one.With
increasing γ2, i.e., theHiggs coupling, the structure of the density flux is gradually lost by emitting the density
waves from the charge. This emission is a characteristic of the superfluid phase, i.e, Higgs phase, where the phase
coherence can generate a long-wavelength phonon. The density waves are generated in a different way:
successively in the BHmodel and intermittently in theGHmodel, propagating concentrically around the point
charges with the sound velocity ρ∼ ′J V0 0 for γ ≫ 12 .

To judgewhether the system is in confinement orHiggs regime by dynamic simulations, we calculate the
remnants of theflux σ t( )defined by

∑σ η η= −
ℓ

ℓ ℓ
∈

t t( ) ( ) (0) , (9)
initial flux line

2 2 2⎡⎣ ⎤⎦

where the sum is taken over the sites onwhich the density flux line is set initially. Theflux is stable when σ is kept
small during the time evolution. Figure 2(a) shows the dynamical phase diagramobtained by the behavior of σ
shown infigures 2(d) and (e). The rapid oscillation of σ reflects the periodic vanish-revival cycle of the density
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flux. In the BHmodel, we calculate the time average σ〈 〉t and determine the phase boundary by finding the point
at which σ〈 〉t almost vanishes (below 0.001; see figure 2(d)). In theGHmodel, the boundary is determined by
the appearance of rapid growth of σ t( )due to the intermittent density-wave emission as seen infigure 2(e).

It is important to note that our dynamic approach can give a newmethod to explore the phase structure of
the LGT. The validity of our approach exactly stems from the correspondence of the LGT to the theoretical
description of the atomic systems in section 2. Although the dynamic results are obtained under themeanfield
approximation and are only applicable to theGHmodel with the unitary gauge of theHiggs field [19], the
dynamic phase boundaries of bothmodels are qualitatively in good agreementwith the result of theMonte Carlo
simulations of the full GHmodel of equation (3). (See figure 5 and appendix A.)

The dynamic difference of the BH andGHmodels can be observed in the amplitude fluctuation of the
simulating gaugefield. Because theGHmodel is obtained by expanding ρ ρ η= +0 around the constant
density ρ ≫ 10 , the BHmodel can approximately reproduce theGHmodel when the Thomas–Fermi limit is
satisfied; note that the boundary of the BHmodel infigure 2(a) is obtained for the particular value ρ = 10 . In
addition, near the situation μ = 0 represented by a dotted curve infigure 2(a), the density fluctuation is

accidentally frozen because the development of the homogeneouswave function is driven as ψ μ−e i t
0 . Then, the

dynamics of the BHmodel are similar to theGHmodel. This is a reason of the decrease of σ〈 〉t around

γ ′ =V 2.52
0 . Another point is that the amplitude fluctuation in the BHmodel can give rise to a similar effect of the

fluctuation of theHiggs coupling.When theHiggsfieldmoves away from the London limit, theHiggs-
confinement transitionmay becomefirst order and its boundary can be sharp [29]. Since ourGHmodel
corresponds to the London limit, inwhich the amplitude fluctuation of theHiggsfield is absent, the phase
boundary becomes less clear because the two phases connect with each other through crossover. The significant
amplitude fluctuation in the BHmodel can lead to the stabilization of theHiggs phase as seen infigure 2(a).

Figure 2.Results of the dynamic simulations. (a) The dynamic phase diagramwith respect to the Δτ-independent parameters (γ ′V2
0)-

( ρ ′J V2 0 0) in the BH andGHmodels. In terms of theGHmodel equation (3), the horizontal and vertical axes correspond to c c1 2 and
c c3 2, respectively. The twomodels give the different phase boundaries, whereHiggs (confinement) like behavior can be observed at the
right (left) of each boundary. The phase boundary of the BHmodel is calculated for fixed ρ = 10 . The dotted curve gives a μ = 0
curve for ρ = 10 , where the amplitude dynamics of the BHmodel is frozen so that the overall dynamics can coincidewith that of the

GHmodel. The upper-right inset shows the initial configuration of the squared density η ρ ρ= −( )2
0

2 in the simulation.Weput the
densitymodulation η ρ= −( ) 0.1r

r
,1 0 for − ⩽ ⩽ −R r R 11 withR=10. (b) Time development of the density fluctuation η2 for the BH

model. The parameters are given as γ ′ ′ =V J V( , 2 )2
0 0 (0.625,2.0) (b-1, upper panels) and (1.25, 2.0) (b-2, lower panels),

corresponding to the confinement andHiggs regime, respectively (the parameters are also shown in (a) by crosses). The unit of time is
chosen as  ′V0, which is∼0.7 msec for the typical energy scale ′ ∼V 100 nK.Aflux keeps its initial configuration in the confinement
phase (b-1), while it disappears due to the density fluctuation in theHiggs phase (b-2). (c) The same in (b) for theGHmodel with the
parameter γ ρ′ ′ =V J V( , 2 )2

0 0 0 (2.4, 2.0) of theHiggs regime. The large amplitude density wave is generated at the point charges, being
emitted intermittently. In the confinement phase, the dynamics are similar to figure (b-1). (d) Plot of the time average of the remnant
of flux σ of equation (9) for the BHmodel. The shown results are obtained for ρ = 10 and ρ ′ =J V2 20 0 and some values of γ ′V2

0. The
vertical dashed line gives the boundary between the confinement (left) andHiggs (right) regime. The inset shows the time evolution of
σ t( ) for (b-1) (red curve) and (b-2) (blue curve). (e) Plot shows the evolution of σ t( ) for theGHmodel with ρ ′ =J V2 20 0 and several
values of γ in the legend. The left inset is the enlarged view during ∈t [25, 30], where σ grows intermittently.
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4. Implementationwith cold atoms

In this sectionwe present twomethods to realizeVab as shown in table 1. Amajorway to prepare intersite
interactions in BH systems is to useDDI between atoms ormolecules [25, 30, 31]. In usual experiments, dipoles
of an atomic cloud are uniformly polarized along a certain direction, and onemay easily check that uniformly
oriented dipoles generateVab different from the configuration ofVab in table 1. This is partly becausewe consider
a square lattice, and the similar requirement forVab is satisfied on the triangular or Kagome lattice [18].
Although an individual control of the polarization of a dipole at each sitemay achieveVab in table 1, its actual
fulfillment is difficult (some discussions can be seen in the systemof polarmolecules [32]), and, importantly, the
hopping process between sites with different dipole orientations are prohibited or reduced due to the
conservation of the atomic spin.We note that the bipartite structures of the nanoscale ferromagnetic islands
have been proposed for realizing the rightGauss law constraint using dipolar interactions [33]. Recently, there is
an interesting proposal to realizeVab in table 1 by using the Rydberg p-states of cold atoms [34].

In section 4.1, we discuss the possibility of realizing the values ofVab in table 1 by using the excited bands of
an optical lattice, which is an alternative route to get intersite interactions [26]. In section 4.2, we discuss a system
ofmulti-layer 2D optical lattices [35] to realize tunableDDI between atoms. The difference from the proposal in
[33] is that the long-range interaction of dipoles between different layers is controlled by tuning the height of the
two layers and the length of dipoles in [33], while in our case, the long-range interaction in the same layer is
controlled through themediation of atomic interaction in different layers. These proposals arewithin reach in
current experimental techniques.

4.1.MethodA: using excited bands of an optical lattice
TheWannier functions in excited bands have extended anisotropic orbitals comparedwith the lowest s-orbital
band. Thus, we expect the significant intersite density-density interactionwithout introducingDDI between
atoms [26]. To implement this scheme, we assume the following optical lattice potential:

= + + − + + ⩾( )V V kx ky V k x y k x y V Vcos cos cos ( ) cos ( ) , , 0, (10)OL A
2 2

B
2 2

A B
⎡⎣ ⎤⎦

which can be created in a current experimental setup. For >V V 0.5B A , the potential forms a checkerboard
lattice (line graph of a square lattice [24]) and itsminima are characterized by an anisotropic harmonic form as
shown infigure 3(a). This anisotropy is necessary to prevent the intrabandmixing dynamics. Excitation to
higher orbitals can be achieved by stimulated Raman transition [36] or nonadiabatic control of the optical
lattice [37, 38].

The intersite density-density interaction is proportional to the overlap integral ∫= ∣ ∣ ∣ ∣O d w wrab a b
2 2, where

wa is theWannier function at the link r a( , ) andwe assume a negligibly small DDI. For the horizontal links, by
approximating aminimumof the optical lattice as a quadratic form ω α +m x y( ) 2ho

2 2 2 2 ,wa can be represented

by the harmonic oscillator basis Φ r( )n , where ωℏ = +E V V2 ( 2 )Rho A B with the recoil energy = ℏE k m2R
2 2

of the optical lattice and α = − +V V V V(2 ) (2 )B A B A . The band index takes =n (0, 0), (1, 0), and (2, 0) for
the s-, p-, and d-orbitals. For the vertical links, the role of x y( , ) is just exchanged by y x( , ).

The conditions in table 1 read ≈ ≫O O O12 13 15. Figures 3(b)–(d) represent the parameter domain
satisfying this conditionwith respect toVA andV VB A, where the amplitudesVA andVB of the optical lattice are
precisely tunable parameters. Because of the characteristics of the potential equation (10), we can have
significant overlap of theWannier functions even for the high potential height such as =V E100 RA,B for

⩾V V 0.5B A ; see appendix B formore details. For the s orbitals the domain is limited to a narrow region
( ∼V V0.55B A) of the parameter space. Using the p- or d-orbitals allows us to get the condition of table 1more
easily in the experimentally feasible condition.When the excited orbitals are used, we have significant hopping
amplitudes Jab not only for theNN (J) but also thefirst half ofNNN ′J( ); the second half ofNNN (J″) is small
because of the higher potential height between the link of group (iii) as seen infigure 3(a).

Finally, we admit that for actual parameter estimation, one should also try othermore realisticWannier
functions such as ∼ − ∣ ∣x h xexp( )c [39], although the qualitative feature captured here needs nomodifications.

4.2.MethodB: using dipolar atoms in amultilayer optical lattice
The idea for the secondmethod is to introduce new subsidiary 2D lattices and treat theDDI between atoms in
the original 2D lattice and atoms in the subsidiary lattices by the second-order perturbation theory to obtainVab

effectively. For illustrative purposes we explicitly describe the idea by using a triple-layer system consisting of
three 2D square optical lattices (layer LA, LB, LC) as seen infigure 4(a). Here, we neglect the contribution of
short-range interaction for the intersite interaction. The schememay be reduced to a double-layer systemby
approaching the distance between two layers, e.g., LA and LB, to zero, which is discussed for realistic parameter
estimation at the end of appendix C.
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The boson systemon the layer LA (we call themA-bosons) is a playground of the (2+1)DU(1)GHmodel,
which is sandwiched by B-bosons on LB andC-bosons on LC. The B- andC-bosons are trapped in deep optical
lattices with negligible hopping. Each layer has different basis vectors of the lattice structure as shown in
figures 4(b) and (c). Each species of bosons is assumed to have a dipole perpendicular to the plane of the layer. By
treating theDDI betweenA-bosons andB-bosons as a perturbation, the second-order perturbation theory
generates an effective intersite interaction between the A-bosons. So is theDDI betweenA- andC-bosons, which
generates another intersite interaction between theA-bosons. These two kinds of interactionsmay be tuned to
realizeVab as given in table 1.We omit theDDI between the B- andC-bosons because of the large separation.

Let us focus onfigure 4(d).When one projects the sites of LB onto LA, their image is located in the center of
each plaquette of the LA lattice. Similarly, the image of sites of LC is located in themiddle ofNNpairs of the LA

sites. In LA, the A-bosons at different sites have the repulsiveDDI. Furthermore, the A- andB(C)-bosons are
coupled through theNNattractiveDDI given by

∑

∑

ρ

ρ

=

=
δ

δ

δ
δ

+

+

H V n

H V n

,

, (11)

k
A k B k

l
l l

AB AB

,
, ,

AC AC

, ˜
A, ˜ C,

where ρ kA, and n kB(C), are boson densities at the site k and <V 0AB(C) is theDDI, which is tunable by controlling
the interlayer separation.Our strategy is to trace out B- andC-bosons to get the effective attractive intersite
interactions between the A-bosons themselves. According to the usual second-order perturbation theorywith
HAB(C) as perturbation, the effective attractive interaction betweenA-bosonsmay be estimated as

Figure 3.MethodA to realize the value ofVab in table 1 using excited bands of an optical lattice. (a) The profile of the optical lattice of
equation (10) for =V VA B. Theminima of the lattice are located at = +x y R m m( , ) ( , 1 2)x y0 for the horizontal links and

= +x y R m m( , ) ( 1 2, )x y0 for the vertical links (mx y, : integers), where π=R k0 is the lattice constant. The panels (b)–(d) show the
domains (colored region) that satisfy the approximated condition for the overlap integral < <O O0.95 1.0512 13 and ⩽O O 0.115 12

in the V ERA -V VB A plane for s-, p-, and d-orbitals, respectively. For p-, and d-orbitals, the domains bifurcate due to the radial peak
structure of theWannier function (see appendix B).
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∑ ρ ρ∼ − δ δ δ δ′ + + ′V
k k kAB

2
, , A, A, and ∑ ρ ρ− δ δ δ+ −V

l l lAC
2

, ˜ A, ˜ A, ˜. They are due to density fluctuations of B- and

C-bosons, respectively. The former term contributes a constant toVab for (a, b) of the groups (i, iii) of table 1,
while the latter contributes a constant only for the group (i). Then onemay fulfill the condition ofVab in table 1.
The detailed calculation of the effective interaction and the experimental feasibility are described in appendix C.
Although there is a small contribution of long-range interaction beyond theNNN links due to the power-law tail
of r3, this correctionmay suppress the density fluctuation and result in the enhancement of the confinement
phase.

5. Conclusion and outlook

In conclusion, realization of the quantum simulator of theU(1) lattice GHmodel provides a significant
innovation to tackle unresolved problems such as the inflationUniverse, being able to be constructed by the cold
atomic architecture. The phase structure of the atomic simulatorsmay be explored by the non-equilibrium
dynamics, where the electric flux dynamics can be observed from the behavior of the density fluctuation.We
proposed two experimentally feasible schemes (Methods A andB) to respect the constraint of Gaussʼs law and
locality of the gauge interaction in the atomic simulators.

Manyworks have been devoted to the dynamic properties of phase defects, namely quantized vortices, by
analyzing theGP equation [40]. In terms of the gauge theory, these phase defects correspond to themagnetic
fluxes. Ourwork focuses on the density fluxes, corresponding to electricfluxes, whose dynamics are under
constraint byGaussʼs law. Such a density flux in theGPmodel has not been discussed before, and this point of
view could open the door for a new avenue of theGP dynamics, such as dynamic features of various
configurations of an electric flux ormany fluxes. These non-equilibriumdynamics are interesting themselves,
although they could also give references as a guide not only to the atomic simulator experiments, but also to the
LGT. The dynamic equations can be derived and give some insights for variousmodels of the LGT.

The other problems for future study include the clarification of the global phase diagramof equation (3) for
the general sets of parameters and of how to implement the general terms in equation (3) experimentally. It has
been proposed in [19] that theHiggs coupling (c i1 -term) in the spatial dimension can be implemented by using
an idea of [41]. An idea to generate the spatial plaquette (c ij2 -) term is discussed in [42]. There is still insufficient
discussion on how to combine these schemes toward the quantum simulation of the full GHmodel, which is a
subject for future study. Fine-tuning of the intersite density-density interaction is also an important task, andwe
believe that themethod in section 4.1 is themost feasible scheme in actual experiments. Ourmethod in

Figure 4. (a) The structure of a triple-layer 2Doptical lattice. The LGT is simulated on the lattice of black solid lines. The layers are
separated by distance ℓAB and ℓAC . The panels (b) and (c) show the projectivemapping of L A (red lines) and LB (blue lines), and LA

and LC (orange lines), respectively. The panel (d) shows the unit cell of the projectivemapping of all layers. The site labels of LA and
LC are denoted as k and l, respectively. For the layers LB and LA, we take theNNDDI between atoms on the sites k in LB and

δ δ±k ( )x y in LA into account. For LC and LA, we take theNNDDI between atoms on the sites l in LC and δ δ+ + −l ˜ ( ˜ ) in LA into
account.
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section 4.2 provides a new scheme for tuning the intersite atom-atom interactions, andmore elaborate
discussion using concrete atomic species, optical lattice structures, etc, remains to be studied. All of these issues
will be reported in future publications.
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AppendixA. Phase structure of theU(1)GHmodel

Let us explain the phase structure of theGHmodel defined by equation (3)with asymmetric couplings μ μνc c,1 2

given by equation (4). First, we note that the (2+1)D version of the standard 4DU(1)GH theory [20], which is
considered inHEP and has the symmetric couplings ( = ⩾ = ⩾ =μ μνc c c c c0, 0, 01 1 2 2 3,4,5 in equation (3)), is
always in the confinement phase [43], inwhich the phase θ μx, is unstable by strongfluctuation. In ourmodel,
inclusion of sufficient c3 in addition to the asymmetric couplings μc1 and μνc2 lets the system enter into the
‘Higgs’ phase, where both θ μx, and φx are stable (see figure 5).

To identify the location of the transitions, wemeasure the internal energy = 〈 〉U A and the specific heat
= 〈 〉 − 〈 〉C A A2 2 by using the standardMetropolis algorithm inMonte Carlo (MC) simulationwith the

periodic boundary condition for the cubic lattice of size =V L3 with L up to 40. The typical number of sweeps is
+ ×100000 10000 10, where the first number is for thermalization and the second one is formeasurement. The

errors ofU andC are estimated by the standard deviation over 10 samples. Acceptance ratios in updating
variables are controlled to be ∼0.6 0.8.

Explicitly, we confine ourselves to the case = =c c 04 5 and obtain the phase diagram in the −c c1 3 plane for
several values of c2. The result is presented infigure 5. There are two phases: theHiggs phase in the large c3 region
(upper region) and the confinement phase in the small c3 region (lower region). The confinement-Higgs
transition here should correspond to various phase transitions such as the superconducting transition, themass
generation in the standardmodel, and the one believed to take place in the early Universe [22, 23]. In contrast to

Figure 5.Phase diagramof the (2+1)DU(1) latticeGHmodel of equation (3)with asymmetric couplings μc1 and μνc2 given by
equation (4) and = =c c 04 5 . (a) Three curves connect transition points in the c1–c3 plane for =c 0.4, 1.2, 2.42 from above, which
separate theHiggs phase (above) and the confinement phase (below). The transition points are located at the peak ofC as a function of
c3 for fixed c1. They are (i) second-order (nomarks) where the peak ofC develops as the size L increases andU exhibits no hysteresis or
(ii) cross-over or Kosterlitz–Thouless (KT) transition (bothmarkedwith co)where the peak does not develop. (b) The transition
points on (a) are arranged in the −c c c c( ) ( · )1 2 3 2 plane (γ ρ′ − ′V J V22

0 0 0 plane). They almost sit on a single curve (gray line) (see the
comment right after equation (5)).
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the phase diagramof the (3+1)Dmodel for = = =c c c c0,4 5 1 3, and ⩾c 02 [19], the Coulombphase ismissing
due to the lowdimensionality.

To understand figure 5, let us consider some limiting cases. First, after choosing the unitary gauge ϕ = 1x , let
us consider the limit → ∞c1 . Then the c1 termmakes θ = 0x,0 [mod(2π)], and the action becomes

∑∑

∑

θ θ

θ θ θ θ

θ θ θ θ

= −

+ − + +

+ − + +

=∞
=

+

+

+ + +

( )

( ) ( )

( ) ( )

A c

c

cos

cos cos

cos cos , (A.1)

x i

x i x i

x

x x x x

x x x x

c 2

1

2

0, ,

3 ,1 ,2 ,1 1,2

1,2 2,1 ,2 2,1

1

⎡⎣
⎤⎦

up to constant. This is viewed as a 3DXY spinmodel with asymmetric couplings, where θ =i( 1, 2)x i, on the

link +x x i( , ) is theXY spin angle θ̃x̃ . In fact, the c3 term is their NN coupling in the 12 plane and the c2 term is
theirNN coupling along the μ = 0 axis. The region of sufficiently large c2 and c3 is the ordered phase of this XY
spin and corresponds to theHiggs phase with small gauge-field (θ μx, )fluctuations. As a check offigure 5, let us
consider the case =c c2 3 of equation (A.1), which reduces to the symmetric 3DXY spinmodel of

∑ θ θ= −μ μ+A c cos( ˜ ˜ )
x x x3DXY XY ˜, ˜ ˜ . It is known to have a genuine second-order phase transition at ≃c 0.45XY .

Therefore the transition line infigure 5(b) should approach to → ≃c c· 0.45 0.202 3
2 as → ∞c c1 2 as it shows.

Next, let us consider the case =c 02 . Then, each variable θx,0 appears only through the c1 termwithout
couplings to other variables (we take the unitary gauge as before). Then the dynamics is controlled by the c3 term.
Again, this term is viewed as the energy of the XY spins θ =i( 1, 2)xi . However, they have no coupling along the
μ = 0 direction, and therefore the system is a collection of decoupled 2DXY spinmodels. The 2DXY spin
model is known to exhibit KT transition, which is infinitely continuous. Thus, although it is not drawn in
figure 5, there should be added a horizontal line (independent of c1) for =c 02 consisting of a collections of KT
transitions at around ∼c 0.963 .We understand that the crossover points appearing in the smaller c1 part in each
curve for three c2 drawn infigure 5 are the remnants of these KT transitions. They have a chance to be a genuine
KT transition, althoughwe called them crossover here. Another support of this interpretation is to consider the
case =c 01 . Then there is no source term for θx,0 and θx,0 should determine their dynamics only through the c2
term. Thus, even θx i, could be set constant with nofluctuations, θx,0 has theNNcoupling in each 12 plane.
However, two dimensions is not enough to stabilize θx,0. In turn, the c2 term is not enough to sustain the
coupling between θx i, along the μ = 0 direction. The dynamics of θx i, is essentially from the c3 term,which is the
2DXYmodel as explained. Therefore, the transition, if any, for =c 01 may be aKT transition.No genuine
second-order one is possible.

The last case is = ∞c2 . Then θ μx, is frozen to be a pure gauge configuration, θ λ λ= −μ μ+x x x, . By plugging
this into the c1 and c3 term,we obtain

∑ ∑λ λ λ λ λ λ= − + − + −=∞ + + + + +( ) ( ) ( )A c ccos 2 cos cos , (A.2)
x

x x

x

x x x xc 1 3 3 1 2 1 22
⎡⎣ ⎤⎦

which belongs again to the class of 3DXY spinmodels, where λx is theXY spin angles on the site x. Sowe should
have a second-order transition at = ∞c2 as long as both c1 and c3 are nonvanishing. This is consistent with
figure 5.

Let usfinally comment on the transition line offigure 5(b) and the boundaries offigure 2(a) calculated by
dynamical simulation in section 3. Their behaviors in the c c( )1 2 – c c( · )3 2 plane are qualitatively consistent but
different in quantitative comparison.We understand that there is no inconsistency in these results because the
twomethods,MC andGP, are different in nature:MC is static andGP is dynamic, they treat fluctuations in
contrastingmanners, and especially, the dynamic simulations necessarily exhibit various properties of the
system according to their setup and probes, etc This certainlymotivates exact quantumand dynamic simulation
of the BHmodel in experiments.

Appendix B. Calculation of overlap integrals

In this section, we describe the calculation of the overlap integrals discussed in section 3.1. For the horizontal
links of the potentialVOL of equation (10), theminimum is approximated by the harmonic oscillator

ω α= +V m x y( ) 2hx ho
2 2 2 2 . The basis function ofVhx is given by

Φ α α= α− +x y A H
x

a
H

y

a
e( , ) , (B.1)n n

x y a
n n

ho ho

( ) 2
x y

2 2
ho
2⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
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whereHn is theHermite polynomial, An the normalization factor, and ω= ℏa mho ho the harmonic oscillator
length.

The s, p, and d orbitals for these links correspond to = =n nn ( , ) (0, 0)x y , (1, 0), and (2, 0). As the

Wannier function w r( )a at the link r a( , ), we use Φn with x y( , )measured from the center of the link. For the

vertical links, theminimum is also approximated as ω α= +V m x y( ) 2hy ho
2 2 2 2 and the basis function is

Φ α α= α− +x y A H x a H y a e( , ) ( ) ( )n n n
x y a

n ho ho
( ) 2

x y

2 2
ho
2
. The s, p, and d orbitals for these links correspond to

= =n nn ( , ) (0, 0)x y , (0, 1), and (0, 2). Then, theWannier functions w r( )a relevant to the following
calculations are given as follows:

Φ α
Φ α
Φ α
Φ α

= −
= +
= +
= − −

w R x R y

w R x R y

w R x R y

w R x R y

r

r

r

r

( ) ( ( ˜ 1 2), ˜),

( ) ( ˜, ( ˜ 1 2)),

( ) ( ( ˜ 1 2), ˜),

( ) ( ( ˜ 1 2), ( ˜ 1), (B.2)

n

n

n

n

1 0 0

2 0 0

3 0 0

5 0 0

whereR0 represents the lattice spacing andwe shift the origin of the coordinate to R R( 2, 2)0 0 of figure 3(a).
The length scale of the coordinate is normalized byR0 and the dimensionless coordinates are denoted by putting
tildes.

The intersite interaction strengthVab is proportional to the overlap integrals ∫= ∣ ∣ ∣ ∣O d w wrab a b
2 2.

It is sufficient to calculate only the integrals for the link pairs =a b( , ) (1, 2), (1, 3), and (1, 5), because
= = =O O O O12 23 34 41, =O O13 24, and =O O15 26 due to the lattice symmetry.
The typical results of the overlap integrals for the three orbitals are shown infigure B1 for =V V 0.6B A as a

function ofVA.We also show the integral for the on-site contribution ∫= ∣ ∣O d wr a11
4 and the hopping

integrals ∫= −ℏ +J d w m V wr ( 2 )1
2 2

OL 2, ∫′ = −ℏ +J d w m V wr ( 2 )1
2 2

OL 3, and

∫″ = −ℏ +J d w m V wr ( 2 )1
2 2

OL 5. In any case, O11 ismonotonically increasedwithVA, and J″ and O15 (not
seen infigure B1) are negligibly small. In the case of the s-orbital, O12 and O13 are alsomonotonically decreasing
functions, so that the range satisfying ≈O O12 13 is only limited by a narrow range or a point with respect toVA.
On the other hand, for the p- and d-orbitals O12 and O13 change non-monotonically because of the node
structure and the extended amplitude profile of thewave functions. This fact extends the range of ≈O O12 13 as
seen infigures B1(b) and (c).

Note that the hopping integrals J and J′ are of  (1) even for =V E100 RA . This is because the energy barrier
between links of groups (i) and (ii) in table 1 is the sub-maximumwith the height −V V2 B A at R R( 2, 2)0 0 in
figure 3(a). Since the value of ′J J( ) is bigger than that of O12(13) by two orders ofmagnitude, one needs to
increase considerably the s-wave scattering length via a Feshbach resonance to get the exact Gaussʼs law
constraint, namely, ≫V Jab .

AppendixC. Effective intersite interaction in the triple-layer systemof section 4.2

In this section, we apply the second-order perturbation theory to the triple-layer system in section 4.2 to derive
the effective intersite interaction of A-bosons, and estimate the possible values of involved parameters to realize
Vab of table 1. After that, we briefly explain a double-layer system inwhichmagnitude of the intersite interaction
of A-bosons is controlled in a similar way.

Wefirst confine ourselves to the subsystemof the A- andB-bosons (two layers LA and LB), which has the
NNDDI, HAB of equation (11). It implies that the B-boson on the site k interacts with the fourNNA-bosons on
the sites δ±k x y( ) as seen infigure 4(d).VAB in HAB is expressed as

∫

π
ℓ

= ′ ′ ′

′ =
− ′

−
− ′

V d d U w w

U
C

r r r r r r

r r
r r r r

( , ) ( ) ( ) ,

( , )
4

1
3

, (C.1)
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2
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2

2

⎛
⎝⎜

⎞
⎠⎟

where ′r r( ) is the position of A(B)-boson, w r( )A(B) is theirWannier function, and μ μ μ=C ˜ ˜0 A B; μ0 is the
magnetic permeability of the vacuum and μ̃A(B) is themagneticmoment of A(B)-atoms.

We assume that the B-bosons of LB have a chemical potential μB(>0), a negligibly small NNhopping
amplitude due to a deep trapping potential, an on-site repulsion >U ( 0)B , and theNNDDIwith A-bosonsVAB.
Onemay forget theDDI between B-bosons, because it is a constant due to negligibleNNhopping. Then, the
Hamiltonian ĤB and the partition function β= −Z HTrexp( ˆ )B B for the subsystemof B-bosons arewritten by
using the B-boson density operator n̂k at the site k as
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By assuming μ ≫U V,B B AB, we expand z kB, up to O V( )AB
2 ,

∑= − + ⋯
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β

=

∞
−z e nW n W
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F
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Figure B1.Overlap integralOab and hopping integrals J, J′, and J″ as a function of V ERA for =V V 0.6B A . The panels (a), (b), and (c)
correspond to the cases of s-, p- , and d-wave orbitals. UsingOab, the density-density interaction is written by π=V E a l O(8 )ab R z ab

with the s-wave scattering length a and the typical length scale lz along the z-direction. The hopping is also normalized by ER and its
negative value is plotted by the absolute value. In the p-orbital case, =J J( )12 and = ′J J( )13 become negative, but there is no frustration
because of >J J, 023 41 and <J J, 034 24 .
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Thefirst-order terms ∝ Wk are renormalized to the chemical potential of A-bosons, and the second-order

terms define the effective density-density interactionHamiltonian ĤABA of A-bosons induced by B-boson

density fluctuation Δn( )2,

∑∑β Δ ρ ρ= −
δ δ

δ δ
′

′H n Vˆ
2

( ) ˆ ˆ . (C.5)
k

k kABA
2

AB
2

,
, ,

TheDDI betweenA-atoms andC-atoms can be analyzed in the sameway, andwe obtain another effective
density-density interaction for the A-bosons, ∑β Δ ρ ρ= − ′ δ δ δ δ′ + + ′H n Vˆ ( 2)( ) ˆ ˆ ,

l l lACA
2

AC
2

, ¯, ¯ ¯ ¯ where Δ ′n( )2 is
obtained by replacing μ U,B B by μ U,C C in Δn( )2.

The sum +H Hˆ ˆ
ABA ACA contributes to the coefficientsVab of the intersite density-density interactions for

A-bosons as follows:

β Δ β Δ= − − ′V V n V n V

For NN links (group (i) in table 1),

( ) ( ) ,ab
2

AB
2 2

AC
2

β Δ
=

′
′ −

V
V

V n V

For NNN links,

for group (ii)

( ) for group (iii),
(C.6)ab 2

AB
2

⎧⎨⎩

whereV andV′ are the direct DDI forNNandNNN link pairs, respectively. The condition forVab in table 1 can
be established by adjusting two inter-layer distances ℓAB and ℓAC and density fluctuations Δ μ βn V( ) ( , , )2

B B and

Δ μ β′n V( ) ( , , )2
C C as

β Δ
β Δ γ

′ = − ′
= ′ = −

n V V V

n V V

( ) 2 ,

( ) ( ). (C.7)

2
AC
2

2
AB
2 2

Let us present some brief account for an example and estimation of the experimental parameters that satisfy
the tuning relations equation (C.7).We shall report detailed discussion on this example and related topics in a
future publication.

For bosons loaded in each layer, we consider 52Cr atoms [44] as A bosons, Rb87 atoms as B bosons, and Er168

atoms [45] as C bosons. They have the permanentmagneticmoments μ μ6 ,BM BM, and μ7 BM (μBM is a Bohr
magneton), respectively. Thenwe are interested in the effective double-layer system, which is obtained from the
triple-layer system explained earlier by choosing ℓ = 0AB . The reason for using the double-layer system is to
make the intersite interaction as large as possible because themagneticmoment of the 87Rb atom is small.

Themethod tomake such a double-layer system is sketched in figureC1 . First, one prepares the 3D layer
system as shown infigure C1(i) by emitting three standingwaves with thewavelengths satisfying
λ λ λ= =2 21 2 3 (e.g., λ = 4101 nm, λ = 580 nm2 and λ = 8203 nm) in eight appropriate directions in the x-y
plane, each being separated by 45 degrees. In addition, we emit another standing-wave laser in the z-direction
with thewavelength λz to establish the 3D structure. Because 52Cr,87Rb and 168Er exhibit the specific strong
absorptions of photonswithwave length 425 nm, 780 nmand 401 nm, respectively, above standingwaves load
these atoms to the sites of the corresponding layer LA,B,C [46]. This completes the step (i) infigureC1.

In the second step (ii) infigure C1, one needs to remove almost all the atoms except for those in two adjacent
x-y layers. This can be experimentally realized by using the technique of a position-dependentmicrowave
transfer in amagnetic field gradient perpendicular to the layers [47] successively. This achieves an effective
double-layer systemwith ℓ ℓ ℓ= =0, zAB AC .

Finally, let us estimate the parameters to satisfy the tuning relation equation (C.7). Bymaking a
straightforward calculation usingDDI, we find that the following is a typical example of the parameters:
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μ μ
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The average densities per site are∼560 for B-bosons and∼8 for C-bosons. The ratio μ∣ ∣VAB(C) B(C) is ∼0.192
(∼0.585), which seems to validate the perturbation theory.
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