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Abstract

Lattice gauge theory has provided a crucial non-perturbative method in studying canonical models in
high-energy physics such as quantum chromodynamics. Among other models of lattice gauge theory,
the lattice gauge—Higgs model is a quite important one because it describes a wide variety of
phenomena/models related to the Anderson—Higgs mechanism, such as superconductivity, the
standard model of particle physics, and the inflation process of the early Universe. In this paper, we
first show that atomic description of the lattice gauge model allows us to explore real-time dynamics of
the gauge variables by using the Gross—Pitaevskii equations. Numerical simulations of the time
development of an electric flux reveal some interesting characteristics of the dynamic aspect of the
model and determine its phase diagram. Next, to realize a quantum simulator of the U(1) lattice
gauge—Higgs model on an optical lattice filled by cold atoms, we propose two feasible methods: (i)
Wannier states in the excited bands and (ii) dipolar atoms in a multilayer optical lattice. We pay
attention to the constraint of Gauss’s law and avoid nonlocal gauge interactions.

1. Introduction

Cold atoms in an optical lattice have been used as versatile quantum simulators for various many-body quantum
systems, and some important results were obtained [ 1]. Recently, there appeared several proposals to simulate
models of lattice gauge theory (LGT) [2—4]. Since its introduction, LGT has been an indispensable tool for
studying the non-perturbative aspect of quantum models in high-energy physics (HEP), such as confinement of
quarks, the spontaneous chiral-symmetry breaking, etc. Atomic simulations, if realized, shall certainly clarify the
dynamics, i.e, the time evolution of lattice gauge models, which is far beyond the present theoretical standard.

At present, the proposals are classified into two approaches. In the first approach [5-11], atoms with spin
degrees of freedom are put on links of the optical lattice. Such a lattice gauge model is called the ‘quantum link
model’ or ‘gauge magnet’ [12—14]. Although Gauss’s law (divergence of the electric field is just the charge
density of matter fields) [15] is assured as the conservation of ‘angular momentum’ [16], the Hilbert space of this
model itself truncates the full Hilbert space of the original U(1) LGT studied in HEP.

In the second approach [17], one considers the Bose—Einstein condensate (BEC) of atoms put on each link of
the two-or three-dimensional optical lattice. The U(1) phase variable of the complex amplitude of BEC plays a
role in the dynamical gauge field on the links, and its density fluctuation corresponds to the electric field, the
conjugate variable of the gauge field [17, 18]. Adopting the phase variable of the atomic field as the gauge field
assures us that we deal with a U(1) field as in HEP in contrast with the first approach. However, to keep Gauss’s
law and the short-range gauge interactions simultaneously, a complex design of the system and a fine-tuning of
interaction parameters are generally needed in the experimental setups [17, 18].

Recently, we proposed a perspective to overcome the difficulty with respect to the local gauge invariance in
the second approach [19]. Namely, the cold atomic simulator of the LGT without exact local gauge invariance
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due to untuned interaction parameters (Gauss’s law is not satisfied) can be a simulator for a lattice ‘gauge—Higgs’
(GH) model [20] with exact local gauge invariance, where the unwelcome interactions that violate Gauss’s law
are viewed as gauge-invariant couplings of the gauge field to a Higgs field.

Needless to say, the GH model is a canonical model of the Anderson—Higgs mechanism and plays a very
important role in various fields of modern physics. Its list includes mass generation in the standard model of
HEP, phase transition and the vortex dynamics [21] in superconductivity, time evolution of the early Universe
such as the dynamics of Higgs phase transition and the related problems of topological defects, uniformity, etc
[22,23]. Atomic quantum simulation of this model is certainly welcome because it simulates the real-time
evolution of the previously mentioned exciting phenomena.

In what follows, we consider the second approach to discuss the atomic quantum simulator of the U(1)
lattice GH model by using cold atoms in a two-dimensional (2D) optical lattice. Our target GH model has a
nontrivial phase structure, i.e., existence of the phase boundary between confinement and Higgs phases, and this
phase boundary is to be observed by cold-atom experiments. In the experiments, each phase could be generally
studied through the non-equilibrium dynamics of the system, which are detected by, e.g., the density
distribution of the time-of-flight imaging after the system is perturbed. As a reference to such experiments, we
make numerical simulations of the time-dependent Gross—Pitaevskii (GP) equation and observe the real-time
dynamics of the atomic simulators. In particular, we study the dynamic stability of a single electric flux
connecting two charges with opposite signs, corresponding to a density hump and dip for the atomic simulators.
We stress that this dynamic simulation in an interacting atomic system gives a new theoretical tool for the
analysis of lattice gauge models far beyond the present standards of the theoretical study on the LGT using the
‘classical’ Monte Carlo simulations, the strong coupling expansion, etc. The obtained phase boundary is
discussed and compared with that of the Monte Carlo simulations. Next, we propose two realistic experimental
setups for the quantum simulators. To respect the constraint of Gauss’s law and avoid nonlocal gauge
interactions, it is necessary to tune suitably the intersite density-density interaction of the hamiltonian. We give
two ideas: (i) using Wannier states in the excited bands and (ii) using dipolar atoms in a multilayer optical lattice,
both of which are reachable under current experimental techniques.

The paper is organized as follows. In section 2, we introduce our target hamiltonian of the U(1) lattice GH
model starting from the extended Bose—-Hubbard (BH) model with the intersite density-density interaction. The
exact correspondence of the atomic system to the LGT has been discussed in [19]. In section 3, we present the
results of the dynamic simulations by means of the GP equation, which is obtained under the saddle-point
approximation of the real-time path integral of the two quantum hamiltonians, i.e., the original BH model and
the target GH model. The obtained dynamic phase diagram is compared with the result of the Monte Carlo
simulations. We give two proposals for experiments to construct realistic atomic simulators for the lattice GH
model in section 4. Method A in section 4.1 relies on extended orbits of the Wannier functions in excited bands
of an optical lattice. Method B utilizes the long-range interaction between atoms in different layers of 2D optical
lattices. Both methods may be used to tune the intersite density-density interactions in the 2D BH system for our
purpose. Section 5 is devoted to our conclusion and an outlook on future directions.

2. From Bose—-Hubbard model to the gauge—Higgs model

Corresponding to the simplest realistic experimental situation of the quantum simulator, we focus on the boson
system defined on a 2D square lattice. We start from a generalized BH hamiltonian [1]

== 3 il + 5 Zal = 1)+ T S (1
a

k,a#b k,a#b 2

which describes the bosons in a single band of a 2D optical lattice. The bosonic atomic fields i, = exp (i6,) \/;a
are put on the site a of the square optical lattice. The summation is taken over the unit cell k (yellow region in
figure 1) and, in each unit cell, over the the site a (b) € 1-6. We confine ourselves to the nearest-neighbor (NN)
and next-nearest-neighbor (NNN) couplings for the site pairs (a, b) in the first and third terms. The parameters
Jav (= Joa)> Vo, and V(= Vj, ) are the coefficients of the hopping, the on-site interaction, and the intersite
interaction, respectively, and are calculable by using the Wannier functions in a certain band. The intersite terms
V,» may arise when the atoms have a long-range dipole-dipole interaction (DDI) [25], or when the atoms are
populated in the excited bands of the optical lattice [26].

To map the BH model onto the hamiltonian of LGT, we consider the diagonal lattice whose sites r = (1, 1)
are positioned on the centers of the colored squares in figure 1. Then, the original sites can be viewed as links of
the diagonal lattice. The links are labeled as (r, i) with the direction index i = 1, 2. To derive the hamiltonian of
the target GH model, we consider the case such that J,;, and V,;, take values according to the following three
groups (i)—(iii) for pairs (a, b) of sites as shown in table 1 [17, 19]. We note that table 1 breaks the translational

2



10P Publishing

New J. Phys. 17 (2015) 063005 Y Kuno et al

P2 A b Al RN DN
i=1 ()

Figure 1. Relation between two 2D lattices. The dashed red lines indicate the 2D optical lattice with the square geometry, and cold
atoms reside on its sites denoted by black crosses. Its unit cell consists of a pair of white and blue squares (yellow region). The filled
black lines indicate the 2D gauge lattice on which the U(1) lattice GH model is defined. Then the cold atoms are viewed to sit on each
link of the gauge lattice to play the role of the gauge field. The relevant sites of the original lattice (links among the site r of the gauge
lattice) in table 1 arenumberedasa =1 ~ 6,asa=1=(r,1),2=(r—2,2),3=(r—1,1),4=(r,2),5=(r+ 2, 1),

6 = (r + 1, 2), where (r, i) represents the link of the gauge lattice emanating from the site r into the positive i (= 1, 2) th direction.
The gauge lattice plays an important role also in the study of the BH model with V,;, = 0 in a different context [24].

Table 1. Atomic parameters ], and V,;, in equation (1). Those not shown
below are set to zero to avoid double counting ((1, 6), etc.) or due to longer-
ranges ((3, 5), etc).

Group Range (a, b) Jao  Vab

(1) NN (1,2),(2,3), ]
(3,4),(1,4)

(ii) Isthalf of NNN (1,3),(2,4) 7oy

(iii) 2nd half of NNN (1,5),(4,6) J 0

symmetry of atomic interactions, e.g., V54 # 0 while V{5 = 0. Next, we assume that the equilibrium atomic
density is uniform and sufficiently large py = (4. ,) > 1. Then, we expand the density operator as
pri = Py + A, ;»and keep terms up to O (%) to obtain

2
. R , Vi s
H =~ ZL},Z - Z(rlr,i + nr—i,i) + 70 an?i

i 7,0

- po]Z Cos(ér,i - ér,é) - 2,00],2 Cos(ér,i - ér—i,i) - ZPOJHZ Cos(ér,i - ér—;,i)> (2)

7,1,0 r,i [

where V) = Vy — 2y7% > 0, (r, 8) represents the NN links of (r, i),and I = 2, 2 = 1. The first-order term O (5})
is absent due to the stability condition for p, = [ + 4] + 2(J' + J")] / (V§ + 8y~2) with the chemical potential
u. In the atomic simulators of LGT, the phase 6, ; plays a role of a gauge variable on the link (r, i) and its
conjugate momentum 7, ; is the electric field —E,‘i [17-19]. Byreplacing , ; — (=)7}, ;and ém- - (—)Tér),' with
(=) = (=)"*", the first term in the rhs of equation (2) describes ‘Gauss’s law’ as

2yH7! zr [Zi (i — i) P = D)7 Zr (V- E)%. The two conditions V;;y = Vi) (= y™?) and V) = Oin
table 1 are necessary to generate the (V - E)? term without non-local interaction among E, ;. If these conditions

arenot fulfilled, a product E, ; E, ;- over the different links appears additionally, and it gives rise to long-range
interactions among the gauge field 8, ; in the target GH model. Although such a model still respects gauge
symmetry, we reject it here because all LGTs relevant to HEP are generally models with local interaction.

In [19], it was shown that the partition function Z = Trexp (—#H) of the atomic model of equation (2) is
equivalent to that of the GH model. The GH model is the U(1) lattice gauge model on the (2+1)D lattice, and its
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partition function is given by

ZcH = / [dU] [d¢]€Xp(A1 +Ap + AL + Ay + Ap),
1 -
A= 3 ZC1”(¢X+M Uep + c.c.),
xp

Ap = % z CZ;w( Ux,u _X+p,,4 Ux+ﬂ,p Ux,” + C.C.),

Xu<v

Z [d_’x+l+2 Ux+1,2 Ux,l¢x + d_)x+2 Ux+2,1 Ux+1,2¢x+1

X

+¢_Sx Ux,Z Ux+2,1¢x+1+2 + qsx-{_l Ux,l Ux,2¢x+2 + C-C-])

Ay = % z Z [4_7“,' Us,iUssiith_; + C-C-],

x i=1,2

c - _
Ap= Yl dernUenithesrs - U + (10 2) +cc. |- (3)

X

C3
A==
LT

Here, x = (x¢, 1, 1) is the site index of the (2+1)D lattice with the discrete imaginary time
T =x9 X At [x9 =0, -+, Ny, NgAr = = (kg T)!]and the 2D spatial coordinate r;, 7,. gandv (= 0, 1, 2)
are direction indices. The U(1) gauge variables U, , = exp (if,,,) are defined on thelink (x, p). 6, (u =1, 2)
corresponds to the eigenvalue of the phase of atomic operator y , through 6, , = 0, ;. The complex field &,
defined on site x is a bosonic matter field, referred to as ‘Higgs field’ in the London limit, taking the form
¢, = exp (ig,) with frozen radial fluctuations. The integration / [dU][dg]is over the angles 6, ,, ¢, € [0, 27).
The coefficients ¢; ~ cs are real dimensionless parameters for interactions among gauge fields. Each term of the
action, hence the action itself, and the integration measure are invariant under the local U(1) gauge
transformation, 6, , = 6, + Aoy — A @ = @ + Ay

According to [19], the atomic simulator of the GH model in a 2D system corresponds to the following case of
parameters for ¢y, ¢,

cqo=c¢, a=c2=0,

C01=C02 =€ G2 =0. (4)

In terms of the atomic system, the ¢; and ¢, terms describe the sum of the self-coupling and the neighboring
correlations of densities of atoms, and the ¢c; and ¢, 5 terms describe the NN and the NNN hopping terms,
respectively. The relations among the parameters of equations (2) and (3) are

v’ 1

aQ=—-— (%]

=——, c¢3=2]Jp,At, cs = 2] p AT, ¢5=2]"p,At, 5
Az ATV(; 3 Po 4 Po 5 Po (5)

In experiments, we expect low T(S10 nK set by the parameters of H ), and the quantum phase transitions may be
explored in a multi-dimensional space parameterized by the dimensionless and Az-independent combinations
suchas ¢ /c; = y*Vy, e3¢, = 2Jp,/ Vi ete.

3. Real-time dynamics of simulators: stability of an electric flux

In actual experiments observing the non-equilibrium time evolution of a quantum simulator, the results
globally reflect the phase structure of the target model. The (2+1)D GH model supports the confinement phase
and the Higgs phase (see appendix A). The confinement phase is characterized by the strong phase fluctuation;
when static two-point charges, such as density defects created by the focused potentials, are put on, they are
connected by an almost straight electric flux (linearly rising confinement potential). In contrast, the Higgs phase
possesses the phase coherence over the system and the system can be regarded as a superfluid phase; the density
wave can propagate around the charges [19].

To get some insight into the time evolution of the system, we study the dynamic features of the simulators
through numerical simulations under the mean-field approximation of the two quantum hamiltonians: the base
BH model equation (1) and the target GH model equation (2). The time-dependent equations can be derived
from the real-time path-integral formulation under the saddle-point approximation (we put 2 = 1). The
operators of the original hamiltonian are replaced by the c-number fields. We confine ourselves to the models
with only NN hopping J # 0and J' = J” = 0 for simplicity. We note in advance that the mean-field equations
necessarily underestimate quantum fluctuations, and their results should be taken as a guide to practical and
future experiments, which are expected to reveal the real dynamics of quantum systems.

4



I0OP Publishing New J. Phys. 17 (2015) 063005 Y Kuno et al

The equation of motion for yin the BH model of equation (1) can be derived from the Lagrangian
L= —Zr Zi=1 L (dy, ; / dt) — H.Itis the discretized version of the GP equation called the discrete

nonlinear Schorédinger equation [27] and given by

.al//r,i
1 o = _](l//r,i + l[/.,_{,{ + l//r+i,; + l//r+i—17,17)
.2 2 1 2 2
+|| Vo + ¥l T |¥Wi| T l//r—17,17|
14 4
2 2 2 2
t \Werii| T |Wri-ii| W] T ‘/’r+i,i| Vi ©

wherei = 1, 2and1 = 2, 2 = 1. The uniform stationary solution can be obtained by substituting
W =W e M as|y, = (u + 4)) / (V4 + 8y72), where p is the chemical potential. Since an important quantity
to observe the dynamics of electric fluxes is the density fluctuation, we give the equilibrium density [y, |* = p, by
controlling the chemical potential as u = p, (Vy + 8y™%) — 4J and see the evolution of the density fluctuation
n=p =Py

The time-dependent equation of motion for 7 and 8 in the GH model of equation (2) is derived in the similar
way from L = —Zm, n,;(d0,;/dt) — H as

dn, ;
d:’ = ijo Z Sin(gr,i - 9r,j)> (7)
j
der,i ’ 1 1
o —Von,; — ?<’7m‘ + i Tt ’Ir_i,i) - F(Wm‘,i T i+ Mgy ’7r+i—i,2)- (8)

In terms of the optical lattice, the summation over j of equation (7) implies the takeover of the four atomic sites,
which are NN to the atomicsite (7, i) (i = 1, 2). In terms of the gauge lattice, given an atomic link (r, 1), (7, j)
takes (r, 1), (r — i, 1), (r + i, i), (r + i — i, 1). Equations (7) and (8) can be also derived by linearizing
equation (6) with respect to the density p, ;(t) = p, + #,;(¢). The constraint of Gauss’s law requires the
replacement 5, ; — (=1)"n, ;and 6, ; — (—1)"6, ;. We make a dimensionless form of equations (6)—(8) by using
the energy scale V. In solving both sets of equations of motion, we use the 200 X 200 discretized space and the
time step At = 1074,

As an explicit example to apply the dynamic equations, we consider the dynamic stability of a single straight
flux connecting two external charges, which is prepared as an initial condition. In the confinement phase, a set
flux string should be stable. To see the stability of the flux configuration, we put the density modulation
Ny = (=)0.1p, for =R < n < R — linthebackground initial density y;, = 1, in which the length of the flux is
R=10. The presence of point charges is taken into account by fixing 5, ;, = 0.1p,and n,_, ; = —0.1p, through

the time evolution. The free parameters of this system are (r% V> J), related to (¢, ¢3, ¢3). By using the At
-independent parameters, we expect the confinement (Higgs) phase for small (large) values of ¢;/c; = y*V;; and
¢3¢ = 2 Jp,/V; (see appendix A).

Figures 2(b) and (c) represent the time evolution of the density distribution #? calculated by the previous
two models. For a certain value of J, both models show similar behaviors for small values of y2, where the placed
density flux is stable and does not spread out. This captures the characteristics of the confinement phase with
strong phase fluctuation, where the density fluctuation can be localized by the mechanism similar to the self-
trapping effects as observed in a cold atom experiment [28]. However, the underlying physics are slightly
different because the system in [28] possesses only on-site interaction, without a long-range one. With
increasing 7, i.e., the Higgs coupling, the structure of the density flux is gradually lost by emitting the density
waves from the charge. This emission is a characteristic of the superfluid phase, i.e, Higgs phase, where the phase
coherence can generate a long-wavelength phonon. The density waves are generated in a different way:
successively in the BH model and intermittently in the GH model, propagating concentrically around the point
charges with the sound velocity ~/Jp, V; for y? > 1.

To judge whether the system is in confinement or Higgs regime by dynamic simulations, we calculate the
remnants of the flux o (¢) defined by

c= Y [no-nO], 9)
¢ €initial flux line

where the sum is taken over the sites on which the density flux line is set initially. The flux is stable when o is kept
small during the time evolution. Figure 2(a) shows the dynamical phase diagram obtained by the behavior of &
shown in figures 2(d) and (e). The rapid oscillation of o reflects the periodic vanish-revival cycle of the density
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Figure 2. Results of the dynamic simulations. (a) The dynamic phase diagram with respect to the Az-independent parameters (y2V;)-
(2Jpy / V) in the BH and GH models. In terms of the GH model equation (3), the horizontal and vertical axes correspond to ¢;/c, and
3¢, respectively. The two models give the different phase boundaries, where Higgs (confinement) like behavior can be observed at the
right (left) of each boundary. The phase boundary of the BH model is calculated for fixed p, = 1.The dotted curve givesa y = 0
curve for p, = 1, where the amplitude dynamics of the BH model is frozen so that the overall dynamics can coincide with that of the
GH model. The upper-right inset shows the initial configuration of the squared density #* = (p — p,)? in the simulation. We put the
density modulation 7, | = (=)"0.1p, for —R < 1; £ R — 1with R=10. (b) Time development of the density fluctuation n? for the BH
model. The parameters are given as (y2Vg, 2 J/V{)= (0.625,2.0) (b-1, upper panels) and (1.25, 2.0) (b-2, lower panels),
corresponding to the confinement and Higgs regime, respectively (the parameters are also shown in (a) by crosses). The unit of time is
chosen as //V, which is ~0.7 msec for the typical energy scale Vi ~ 10 nK. A flux keeps its initial configuration in the confinement
phase (b-1), while it disappears due to the density fluctuation in the Higgs phase (b-2). (c) The same in (b) for the GH model with the
parameter (y2Vg, 2Jp, / V)= (2.4, 2.0) of the Higgs regime. The large amplitude density wave is generated at the point charges, being
emitted intermittently. In the confinement phase, the dynamics are similar to figure (b-1). (d) Plot of the time average of the remnant
of flux ¢ of equation (9) for the BH model. The shown results are obtained for p, = 1and 2 Jp,/V; = 2 and some values of 72V{. The
vertical dashed line gives the boundary between the confinement (left) and Higgs (right) regime. The inset shows the time evolution of
o (t) for (b-1) (red curve) and (b-2) (blue curve). (e) Plot shows the evolution of & (¢) for the GH model with 2]p, /V; = 2 and several
values of y in the legend. The left inset is the enlarged view during ¢ € [25, 30], where o grows intermittently.

flux. In the BH model, we calculate the time average (o), and determine the phase boundary by finding the point
atwhich (o), almost vanishes (below 0.001; see figure 2(d)). In the GH model, the boundary is determined by
the appearance of rapid growth of ¢ (¢) due to the intermittent density-wave emission as seen in figure 2(e).

Itis important to note that our dynamic approach can give a new method to explore the phase structure of
the LGT. The validity of our approach exactly stems from the correspondence of the LGT to the theoretical
description of the atomic systems in section 2. Although the dynamic results are obtained under the mean field
approximation and are only applicable to the GH model with the unitary gauge of the Higgs field [19], the
dynamic phase boundaries of both models are qualitatively in good agreement with the result of the Monte Carlo
simulations of the full GH model of equation (3). (See figure 5 and appendix A.)

The dynamic difference of the BH and GH models can be observed in the amplitude fluctuation of the
simulating gauge field. Because the GH model is obtained by expanding p = p, + # around the constant
density p, > 1, the BH model can approximately reproduce the GH model when the Thomas—Fermi limit is
satisfied; note that the boundary of the BH model in figure 2(a) is obtained for the particular value p, = 1.In
addition, near the situation u = 0 represented by a dotted curve in figure 2(a), the density fluctuation is
accidentally frozen because the development of the homogeneous wave function is driven as y;, e . Then, the
dynamics of the BH model are similar to the GH model. This is a reason of the decrease of (o), around
y*V{ = 2.5. Another point is that the amplitude fluctuation in the BH model can give rise to a similar effect of the
fluctuation of the Higgs coupling. When the Higgs field moves away from the London limit, the Higgs-
confinement transition may become first order and its boundary can be sharp [29]. Since our GH model
corresponds to the London limit, in which the amplitude fluctuation of the Higgs field is absent, the phase
boundary becomes less clear because the two phases connect with each other through crossover. The significant
amplitude fluctuation in the BH model can lead to the stabilization of the Higgs phase as seen in figure 2(a).
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4. Implementation with cold atoms

In this section we present two methods to realize V,,;, as shown in table 1. A major way to prepare intersite
interactions in BH systems is to use DDI between atoms or molecules [25, 30, 31]. In usual experiments, dipoles
of an atomic cloud are uniformly polarized along a certain direction, and one may easily check that uniformly
oriented dipoles generate V,;, different from the configuration of V,;; in table 1. This is partly because we consider
asquare lattice, and the similar requirement for V,; is satisfied on the triangular or Kagome lattice [18].
Although an individual control of the polarization of a dipole at each site may achieve V,,;, in table 1, its actual
fulfillment is difficult (some discussions can be seen in the system of polar molecules [32]), and, importantly, the
hopping process between sites with different dipole orientations are prohibited or reduced due to the
conservation of the atomic spin. We note that the bipartite structures of the nanoscale ferromagnetic islands
have been proposed for realizing the right Gauss law constraint using dipolar interactions [33]. Recently, there is
an interesting proposal to realize V,;; in table 1 by using the Rydberg p-states of cold atoms [34].

In section 4.1, we discuss the possibility of realizing the values of V;; in table 1 by using the excited bands of
an optical lattice, which is an alternative route to get intersite interactions [26]. In section 4.2, we discuss a system
of multi-layer 2D optical lattices [35] to realize tunable DDI between atoms. The difference from the proposal in
[33] is that the long-range interaction of dipoles between different layers is controlled by tuning the height of the
two layers and the length of dipoles in [33], while in our case, the long-range interaction in the same layer is
controlled through the mediation of atomic interaction in different layers. These proposals are within reach in
current experimental techniques.

4.1. Method A: using excited bands of an optical lattice

The Wannier functions in excited bands have extended anisotropic orbitals compared with the lowest s-orbital
band. Thus, we expect the significant intersite density-density interaction without introducing DDI between
atoms [26]. To implement this scheme, we assume the following optical lattice potential:

VoL = VA(cos2 kx + cos? ky) + VB[c:os2 k(x — y) + cos? k(x + y)], Va, Vg = 0, (10)

which can be created in a current experimental setup. For V3/V, > 0.5, the potential forms a checkerboard
lattice (line graph of a square lattice [24]) and its minima are characterized by an anisotropic harmonic form as
shown in figure 3(a). This anisotropy is necessary to prevent the intraband mixing dynamics. Excitation to
higher orbitals can be achieved by stimulated Raman transition [36] or nonadiabatic control of the optical
lattice [37, 38].

The intersite density-density interaction is proportional to the overlap integral O, = / dr |w, [*|wy >, where
w, is the Wannier function at the link (r, a) and we assume a negligibly small DDI. For the horizontal links, by
approximating a minimum of the optical lattice as a quadratic form may, (a’x> + y*)/2, w, can be represented
by the harmonic oscillator basis &, (r), where Awp, = 2,/Ex (Vi + 2Vg) with the recoil energy Ex = h%k?/2m

of the optical latticeand a = \/ 2Vg — VA)/(2W + Vi) .Theband index takes n = (0, 0), (1, 0),and (2, 0) for
the s-, p-, and d-orbitals. For the vertical links, the role of (x, y) is just exchanged by (y, x).

The conditions in table 1 read O;, & O;3 > O;s. Figures 3(b)—(d) represent the parameter domain
satisfying this condition with respect to V, and Vg/V,, where the amplitudes V, and V3 of the optical lattice are
precisely tunable parameters. Because of the characteristics of the potential equation (10), we can have
significant overlap of the Wannier functions even for the high potential height such as Vj, 5 = 100Ey, for
V/Vy = 0.5; see appendix B for more details. For the s orbitals the domain is limited to a narrow region
(Vg ~ 0.55V}, ) of the parameter space. Using the p- or d-orbitals allows us to get the condition of table 1 more
easily in the experimentally feasible condition. When the excited orbitals are used, we have significant hopping
amplitudes J,,;, not only for the NN (J) but also the first half of NNN (J'); the second half of NNN (J”) is small
because of the higher potential height between the link of group (iii) as seen in figure 3(a).

Finally, we admit that for actual parameter estimation, one should also try other more realistic Wannier
functions such as ~x¢ exp (—h|x|) [39], although the qualitative feature captured here needs no modifications.

|2

4.2. Method B: using dipolar atoms in a multilayer optical lattice

The idea for the second method is to introduce new subsidiary 2D lattices and treat the DDI between atoms in
the original 2D lattice and atoms in the subsidiary lattices by the second-order perturbation theory to obtain V,,
effectively. For illustrative purposes we explicitly describe the idea by using a triple-layer system consisting of
three 2D square optical lattices (layer L4, Lg, L¢) as seen in figure 4(a). Here, we neglect the contribution of
short-range interaction for the intersite interaction. The scheme may be reduced to a double-layer system by
approaching the distance between two layers, e.g., L and Lg, to zero, which is discussed for realistic parameter
estimation at the end of appendix C.
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Figure 3. Method A to realize the value of V,;,in table 1 using excited bands of an optical lattice. (a) The profile of the optical lattice of
equation (10) for Vj = V3. The minima of the lattice are located at (x, y) = Ro (my, m, + 1/2) for the horizontal links and

(x, ) = Ro(my + 1 /2, m,) for the vertical links (1, ,: integers), where Ry = #/k is the lattice constant. The panels (b)—(d) show the
domains (colored region) that satisfy the approximated condition for the overlap integral 0.95 < 0;,/0;3 < 1.05and O;5/0;; < 0.1

in the Vy/Eg-V3/Vj plane for s-, p-, and d-orbitals, respectively. For p-, and d-orbitals, the domains bifurcate due to the radial peak
structure of the Wannier function (see appendix B).

The boson system on the layer L, (we call them A-bosons) is a playground of the (2+1)D U(1) GH model,
which is sandwiched by B-bosons on Ly and C-bosons on L¢. The B- and C-bosons are trapped in deep optical
lattices with negligible hopping. Each layer has different basis vectors of the lattice structure as shown in
figures 4(b) and (c). Each species of bosons is assumed to have a dipole perpendicular to the plane of the layer. By
treating the DDI between A-bosons and B-bosons as a perturbation, the second-order perturbation theory
generates an effective intersite interaction between the A-bosons. So is the DDI between A- and C-bosons, which
generates another intersite interaction between the A-bosons. These two kinds of interactions may be tuned to
realize V,,;, as given in table 1. We omit the DDI between the B- and C-bosons because of the large separation.
Let us focus on figure 4(d). When one projects the sites of Ly onto L, their image is located in the center of
each plaquette of the L, lattice. Similarly, the image of sites of L¢ is located in the middle of NN pairs of the L 5

sites. In L 5, the A-bosons at different sites have the repulsive DDI. Furthermore, the A- and B(C)-bosons are
coupled through the NN attractive DDI given by

Hap = Vg ZPA,k+§nB,k)
k6

Hac = Vac D Panshc (11)
L6

where p, ; and np c) x are boson densities at the site kand Vyp (c) < 0is the DDI, which is tunable by controlling
the interlayer separation. Our strategy is to trace out B- and C-bosons to get the effective attractive intersite

interactions between the A-bosons themselves. According to the usual second-order perturbation theory with
Hp(c) as perturbation, the effective attractive interaction between A-bosons may be estimated as

8
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Figure 4. (a) The structure of a triple-layer 2D optical lattice. The LGT is simulated on the lattice of black solid lines. The layers are
separated by distance £ and £xc. The panels (b) and (c) show the projective mapping of L 4 (red lines) and Ly (blue lines), and L5
and L (orange lines), respectively. The panel (d) shows the unit cell of the projective mapping of all layers. The site labels of L 5 and
L¢ are denoted as kand J, respectively. For the layers Ly and L 5, we take the NN DDI between atoms on the sites kin L and

k + 6, (6,)in L, into account. For L¢ and L, we take the NN DDI between atoms on the sites /in Lc and  + 6+(6_)in L, into
account.

~=Vip Zk 55 PAk+sPajss and — Vic Zz 5P A1+6P A, 1—5- They are due to density fluctuations of B- and
C-bosons, reépectively. The former term contributes a constant to V. for (a, b) of the groups (i, iii) of table 1,
while the latter contributes a constant only for the group (i). Then one may fulfill the condition of V;, in table 1.
The detailed calculation of the effective interaction and the experimental feasibility are described in appendix C.
Although there is a small contribution of long-range interaction beyond the NNN links due to the power-law tail
of 1, this correction may suppress the density fluctuation and result in the enhancement of the confinement
phase.

5. Conclusion and outlook

In conclusion, realization of the quantum simulator of the U(1) lattice GH model provides a significant
innovation to tackle unresolved problems such as the inflation Universe, being able to be constructed by the cold
atomic architecture. The phase structure of the atomic simulators may be explored by the non-equilibrium
dynamics, where the electric flux dynamics can be observed from the behavior of the density fluctuation. We
proposed two experimentally feasible schemes (Methods A and B) to respect the constraint of Gauss’s law and
locality of the gauge interaction in the atomic simulators.

Many works have been devoted to the dynamic properties of phase defects, namely quantized vortices, by
analyzing the GP equation [40]. In terms of the gauge theory, these phase defects correspond to the magnetic
fluxes. Our work focuses on the density fluxes, corresponding to electric fluxes, whose dynamics are under
constraint by Gauss’s law. Such a density flux in the GP model has not been discussed before, and this point of
view could open the door for a new avenue of the GP dynamics, such as dynamic features of various
configurations of an electric flux or many fluxes. These non-equilibrium dynamics are interesting themselves,
although they could also give references as a guide not only to the atomic simulator experiments, but also to the
LGT. The dynamic equations can be derived and give some insights for various models of the LGT.

The other problems for future study include the clarification of the global phase diagram of equation (3) for
the general sets of parameters and of how to implement the general terms in equation (3) experimentally. It has
been proposed in [19] that the Higgs coupling (cj;-term) in the spatial dimension can be implemented by using
anideaof [41]. Anidea to generate the spatial plaquette (c,;;-) termis discussed in [42]. There is still insufficient
discussion on how to combine these schemes toward the quantum simulation of the full GH model, which is a
subject for future study. Fine-tuning of the intersite density-density interaction is also an important task, and we
believe that the method in section 4.1 is the most feasible scheme in actual experiments. Our method in
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Figure 5. Phase diagram of the (2+1)D U(1) lattice GH model of equation (3) with asymmetric couplings ¢, and c,,,, given by
equation (4) and ¢4 = ¢5 = 0. (a) Three curves connect transition points in the ¢;—c; plane for ¢, = 0.4, 1.2, 2.4 from above, which
separate the Higgs phase (above) and the confinement phase (below). The transition points are located at the peak of Cas a function of
c; for fixed ¢;. They are (i) second-order (no marks) where the peak of C develops as the size L increases and U exhibits no hysteresis or
(it) cross-over or Kosterlitz—Thouless (KT) transition (both marked with co) where the peak does not develop. (b) The transition
points on (a) are arranged in the (ci/c;) — (c3 + ¢z) plane (¥?Vj — 2Jp, / V, plane). They almost sit on a single curve (gray line) (see the
comment right after equation (5)).

section 4.2 provides a new scheme for tuning the intersite atom-atom interactions, and more elaborate
discussion using concrete atomic species, optical lattice structures, etc, remains to be studied. All of these issues
will be reported in future publications.
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Appendix A. Phase structure of the U(1) GH model

Let us explain the phase structure of the GH model defined by equation (3) with asymmetric couplings ¢y, 2,
given by equation (4). First, we note that the (241)D version of the standard 4D U(1) GH theory [20], which is
considered in HEP and has the symmetric couplings (c;, = ¢; 2 0, ¢35 = ¢, 2 0, ¢345 = 0inequation (3)), is
always in the confinement phase [43], in which the phase 6, , is unstable by strong fluctuation. In our model,
inclusion of sufficient c; in addition to the asymmetric couplings ¢;, and ¢, lets the system enter into the
‘Higgs’ phase, where both 6, , and ¢, are stable (see figure 5).

To identify the location of the transitions, we measure the internal energy U = (A) and the specific heat
C = (A%) — (A)* by using the standard Metropolis algorithm in Monte Carlo (MC) simulation with the
periodic boundary condition for the cubic lattice of size V = L* with L up to 40. The typical number of sweeps is
100000 + 10000 x 10, where the first number is for thermalization and the second one is for measurement. The
errors of Uand Care estimated by the standard deviation over 10 samples. Acceptance ratios in updating
variables are controlled tobe 0.6 ~ 0.8.

Explicitly, we confine ourselves to the case ¢, = ¢s = 0 and obtain the phase diagram in the ¢; — ¢3 plane for
several values of c,. The result is presented in figure 5. There are two phases: the Higgs phase in the large c; region
(upper region) and the confinement phase in the small ¢; region (lower region). The confinement-Higgs
transition here should correspond to various phase transitions such as the superconducting transition, the mass
generation in the standard model, and the one believed to take place in the early Universe [22, 23]. In contrast to
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the phase diagram of the (3+1)D model for ¢, = ¢5s = 0, ¢; = ¢3,and ¢; > 0 [19], the Coulomb phase is missing
due to the low dimensionality.

To understand figure 5, let us consider some limiting cases. First, after choosing the unitary gauge ¢, = 1,let
us consider the limit ¢; - oo. Then the ¢; term makes 6, o = 0 [mod(2x)], and the action becomes

2
Aclzoo =0 ZZ C05<9x+0,i - ex,i)

x i=1

+c3 Z[cos(ﬁx,l - Hx,z) + cos(ﬁx,l + 6x+1,2)
X

+ COS( Oci12 — 9x+2,1) + COS( 02+ 0x+2,1)]) (A.1)

up to constant. This is viewed as a 3D XY spin model with asymmetric couplings, where 6, ; (i = 1, 2) onthe
link (x, x + i) is the XY spin angle 6. In fact, the ¢ term is their NN coupling in the 12 plane and the ¢, term is
their NN coupling along the y = 0 axis. The region of sufficiently large ¢, and c; is the ordered phase of this XY
spin and corresponds to the Higgs phase with small gauge-field (6,,,) fluctuations. As a check of figure 5, let us
consider the case ¢; = c3 of equation (A.1), which reduces to the symmetric 3D XY spin model of
Aspxy = cxy ZX cos (Oz4 u— 0z). It is known to have a genuine second-order phase transition at cxy =~ 0.45.
Therefore the transition line in figure 5(b) should approach to ¢; * ¢; — 0.452 ~ 0.20 as ¢;/c; — oo as it shows.

Next, let us consider the case ¢; = 0. Then, each variable 6, o appears only through the ¢; term without
couplings to other variables (we take the unitary gauge as before). Then the dynamics is controlled by the ¢; term.
Again, this term is viewed as the energy of the XY spins 8,; (i = 1, 2). However, they have no coupling along the
u = 0direction, and therefore the system is a collection of decoupled 2D XY spin models. The 2D XY spin
model is known to exhibit KT transition, which is infinitely continuous. Thus, although it is not drawn in
figure 5, there should be added a horizontal line (independent of ¢; ) for ¢, = 0 consisting of a collections of KT
transitions ataround ¢; ~ 0.96. We understand that the crossover points appearing in the smaller ¢; partin each
curve for three ¢, drawn in figure 5 are the remnants of these KT transitions. They have a chance to be a genuine
KT transition, although we called them crossover here. Another support of this interpretation is to consider the
case ¢; = 0. Then there is no source term for 6, o and 0,y should determine their dynamics only through the ¢,
term. Thus, even 6, ; could be set constant with no fluctuations, 6, o has the NN coupling in each 12 plane.
However, two dimensions is not enough to stabilize 6, o. In turn, the ¢, term is not enough to sustain the
coupling between 0, ; alongthe y = 0 direction. The dynamics of 0, ; is essentially from the c; term, which is the
2D XY model as explained. Therefore, the transition, if any, for ¢; = 0 may be a KT transition. No genuine
second-order one is possible.

Thelast caseis c; = oo. Then 6, , is frozen to be a pure gauge configuration, 6, , = A.,, — A.. By plugging
this into the ¢; and c; term, we obtain

A= =101 Z cos ( Axys — /Ix) + 2¢; Z [cos ( Ayy1 — /lx+2) + cos ( Ay — Axs142 )], (A.2)
X X

which belongs again to the class of 3D XY spin models, where 4, is the XY spin angles on the site x. So we should

have a second-order transition at ¢, = oo aslongas both ¢; and ¢; are nonvanishing. This is consistent with

figure 5.

Let us finally comment on the transition line of figure 5(b) and the boundaries of figure 2(a) calculated by
dynamical simulation in section 3. Their behaviors in the (¢;/¢; )—(c5 - ¢;) plane are qualitatively consistent but
different in quantitative comparison. We understand that there is no inconsistency in these results because the
two methods, MC and GP, are different in nature: MC is static and GP is dynamic, they treat fluctuations in
contrasting manners, and especially, the dynamic simulations necessarily exhibit various properties of the
system according to their setup and probes, etc This certainly motivates exact quantum and dynamic simulation
of the BH model in experiments.

Appendix B. Calculation of overlap integrals

In this section, we describe the calculation of the overlap integrals discussed in section 3.1. For the horizontal
links of the potential V5 of equation (10), the minimum is approximated by the harmonic oscillator
Vi = mw, (a’x? + y?)/2. The basis function of V. is given by

& (Jax, y) = A,,an(ﬁ LJHW(L)ewzﬂz)/z“ﬁ"’ (B.1)

Oho Oho
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where H,, is the Hermite polynomial, A, the normalization factor, and ay,, = ./A/mwy, the harmonic oscillator
length.

Thes, p, and d orbitals for these links correspond to n = (,, n,) = (0, 0), (1, 0),and (2, 0). Asthe
Wannier function w, (r) at the link (r, a), we use @, with (x, ) measured from the center of the link. For the
vertical links, the minimum is also approximated as V;, = mw, (x> + a’?) / 2 and the basis function is
G, (x, Vay) = A H,, (x/ane)H, (Nay/ay,) e~ +ay)/2a5, The s, p, and d orbitals for these links correspond to
n = (n,, n,) = (0, 0), (0, 1),and (0, 2). Then, the Wannier functions w;, (r) relevant to the following
calculations are given as follows:

wi(r) = &, (VAR (% — 1/2), Roy),
wy(r) = @, (RoX, VaRo (7 + 1/2)),
w3 (1) = @ (VaRo (X + 1/2), Rof),
ws(r) = @y (VaRo(X = 1/2), Ro(§ — 1), (B.2)

where Ry represents the lattice spacing and we shift the origin of the coordinate to (Ry/2, Ry/2) of figure 3(a).
The length scale of the coordinate is normalized by R and the dimensionless coordinates are denoted by putting
tildes.

The intersite interaction strength V,;,is proportional to the overlap integrals O, = / dr |w, ?|wy |
Itis sufficient to calculate only the integrals for the link pairs (a, b) = (1, 2), (1, 3),and (1, 5), because
O15 = Op3 = O34 = Oy, O13 = Oy, and O;5 = O,4 due to the lattice symmetry.

The typical results of the overlap integrals for the three orbitals are shown in figure B1 for V4/V, = 0.6 asa
|4

|2

function of V5. We also show the integral for the on-site contribution O, = / dr |w,
integrals ] = /drwl (=R2V22m + Vo) wy, ] = /drwl (=R2V%2m + Vor)ws,and

] = / drw, (=h*V'2/2m + Vo) ws. Inany case, Oy, is monotonically increased with V,and J” and O;5 (not
seen in figure B1) are negligibly small. In the case of the s-orbital, Oy, and O, ; are also monotonically decreasing
functions, so that the range satisfying Oy, ~ Oy is onlylimited by a narrow range or a point with respect to V.
On the other hand, for the p- and d-orbitals O;, and O;; change non-monotonically because of the node
structure and the extended amplitude profile of the wave functions. This fact extends the range of Oy, ~ Oy3as
seenin figures B1(b) and (¢).

Note that the hopping integrals Jand J" are of O (1) even for V5 = 100Eg. This is because the energy barrier
between links of groups (i) and (ii) in table 1 is the sub-maximum with the height 2V — Vj at (R¢/2, Ro/2)in
figure 3(a). Since the value of ] (J') is bigger than that of O;,(13) by two orders of magnitude, one needs to
increase considerably the s-wave scattering length via a Feshbach resonance to get the exact Gauss’s law
constraint, namely, V,; > J.

and the hopping

Appendix C. Effective intersite interaction in the triple-layer system of section 4.2

In this section, we apply the second-order perturbation theory to the triple-layer system in section 4.2 to derive
the effective intersite interaction of A-bosons, and estimate the possible values of involved parameters to realize
V,pof table 1. After that, we briefly explain a double-layer system in which magnitude of the intersite interaction
of A-bosons is controlled in a similar way.

We first confine ourselves to the subsystem of the A- and B-bosons (two layers L 5 and Lg), which has the
NN DDI, H,g of equation (11). It implies that the B-boson on the site k interacts with the four NN A-bosons on
thesites k + 6, (y)as seenin figure 4(d). Vg in Hypis expressed as

Vi = [ drdr'Unp (x, 1) |wa (6)F lws () P,

, C 3¢}
Upp (1, ') = 3(1 AB ], (C.1)

4z |r — 1| Ir — r'f?

where r(r’) is the position of A(B)-boson, wy () (r) is their Wannier function, and C = iy fi, fig; y, is the
magnetic permeability of the vacuum and /i, (, is the magnetic moment of A(B)-atoms.

We assume that the B-bosons of L have a chemical potential y(>0), a negligibly small NN hopping
amplitude due to a deep trapping potential, an on-site repulsion Uy (>0), and the NN DDI with A-bosons V.
One may forget the DDI between B-bosons, because it is a constant due to negligible NN hopping. Then, the
Hamiltonian Hy and the partition function Zg = Trexp (—fHg ) for the subsystem of B-bosons are written by
using the B-boson density operator 7 at the site k as
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Figure B1. Overlap integral O,;, and hopping integrals ], J’, and J” as a function of Vy/Eg for V5/Vy = 0.6. The panels (a), (b), and (c)
correspond to the cases of s-, p- , and d-wave orbitals. Using O, the density-density interaction is written by V,;,/Eg = (8a/xl,) Oy
with the s-wave scattering length a and the typical length scale [, along the z-direction. The hopping is also normalized by Eg and its
negative value is plotted by the absolute value. In the p-orbital case, Ji, (= J) and J;3 (= J') become negative, but there is no frustration
because of J»3, Ju1 > 0and Ja4, /o4 < 0.

HB= Z —pphi + Uphig (e — 1) + Vg Z AkPDres |
k =

[so]
Zp = H ZBk» ZBk= 2 exp| — f| En+ nVap Zﬁkﬂ‘? ,
k n=0 3

E,=—ugn + Ugn(n — 1). (C.2)

Byassuming pip, Up > Vi, weexpand zg ; upto O (V3p),
< 1
- —BE| 1 _ Lo 2
zZgr= ) e 1 — nW, + —n* (W) ]
Tl

F 1F
= Fo| 1 = — Wi+ == (W o |,
Fy 2 F
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Wk = ﬂVAB zﬁk+5’ Fm = ane_ﬁE". (C3)
3 n=0

Then we have

Zy=(Fy)" exp {Z[(—n}owk + %(An)z( Wi )? + ]})
k

(n), = 1;_': (An)? = (n2), — (n)2. (C.4)

The first-order terms x W, are renormalized to the chemical potential of A-bosons, and the second-order
terms define the effective density-density interaction Hamiltonian Hag, of A-bosons induced by B-boson
density fluctuation (4n)?,

Haga = —g(An)ZV/iB D hsis- (C.5)
k 0,0

The DDI between A-atoms and C-atoms can be analyzed in the same way, and we obtain another effective
density-density interaction for the A-bosons, HACA = —(/2)(An’)? Vﬁc Zl 55 P145P14+5> Where (An')?is
obtained by replacing py, Up by pic, Ucin (An)>. ”

The sum Haga + Haca contributes to the coefficients V,,;, of the intersite density-density interactions for
A-bosons as follows:

For NN links (group (i) in table 1),
Vay = V = B(An)’ Vi — (An') Vi,

For NNN links,
\%4 for group (ii)

Vi = e (C6)
V' — B(An)* Vs for group (iii),

where Vand V' are the direct DDI for NN and NNN link pairs, respectively. The condition for V,; in table 1 can
be established by adjusting two inter-layer distances £, and Zxc and density fluctuations (An)? (uy, Vs, ) and

(An' ) (uc, Ve, B)as
pAn' P Vie=V =2V,
Bn)Vig=V'(=r7). (C.7)

Let us present some brief account for an example and estimation of the experimental parameters that satisfy
the tuning relations equation (C.7). We shall report detailed discussion on this example and related topicsin a
future publication.

For bosons loaded in each layer, we consider **Cr atoms [44] as A bosons, $’Rb atoms as B bosons, and '%*Er
atoms [45] as Cbosons. They have the permanent magnetic moments 6y, figy> and 7pgy (fipy isa Bohr
magneton), respectively. Then we are interested in the effective double-layer system, which is obtained from the
triple-layer system explained earlier by choosing £;5 = 0. The reason for using the double-layer system is to
make the intersite interaction as large as possible because the magnetic moment of the Rb atom is small.

The method to make such a double-layer system is sketched in figure C1 . First, one prepares the 3D layer
system as shown in figure C1(i) by emitting three standing waves with the wavelengths satisfying
20, = 24, = A3 (e.g., A, = 410 nm, A, = 580 nm and A3 = 820 nm) in eight appropriate directions in the x-y
plane, each being separated by 45 degrees. In addition, we emit another standing-wave laser in the z-direction
with the wavelength 1, to establish the 3D structure. Because **Cr,*’ Rb and '**Er exhibit the specific strong
absorptions of photons with wave length 425 nm, 780 nm and 401 nm, respectively, above standing waves load
these atoms to the sites of the corresponding layer L 5 g ¢ [46]. This completes the step (i) in figure C1.

In the second step (ii) in figure C1, one needs to remove almost all the atoms except for those in two adjacent
x-y layers. This can be experimentally realized by using the technique of a position-dependent microwave
transfer in a magnetic field gradient perpendicular to the layers [47] successively. This achieves an effective
double-layer system with £55 = 0, £ac = 7.

Finally, let us estimate the parameters to satisfy the tuning relation equation (C.7). By making a
straightforward calculation using DDI, we find that the following is a typical example of the parameters:
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Figure C1. Making a double-layer system with three kinds of dipole atoms, A, B, and C. (i) We prepare a 3D optical lattice. Each x-y
plane is separated by the distance ¢, and has the 2D lattice structure of the superposition of the three layers L 5 ¢ shown in figure 3.
Then we supply the A, B, and C atoms so thatevery x — y layer is viewed as the triple-layer system of figure 3 with £45 = £5c = 0. (ii)
We blow almost all the atoms off in such a way that only the A and Batoms in one x — y layer and the C atoms in the next layer are left.
The resulting double-layer system is viewed as the triple-layer system of figure 3 with 55 = 0 and £c = £,.

3640t
Vo~ HoHpm

,  Cac =16 ~ 580 [nm],
473 Ac

1
~—, Up~03V, ~ 2.5V,
p v B HB
Uc~13V, pc~2V. (C.8)

The average densities per site are ~560 for B-bosons and ~8 for C-bosons. The ratio | Vap(c) /#g ) |1s ~0.192
(~0.585), which seems to validate the perturbation theory.
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