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In recent years, the gap between theory and practice in quantum key distribution (QKD) has been
significantly narrowed, particularly for QKD systems with arbitrarily flawed optical receivers. The
status for QKD systems with imperfect light sources is however less satisfactory, in the sense that the
resulting secure key rates are often overly dependent on the quality of state preparation. This is
especially the case when the channel loss is high. Very recently, to overcome this limitation, Tamaki

et al proposed a QKD protocol based on the so-called ‘rejected data analysis’, and showed that its
security—in the limit of infinitely long keys—is almost independent of any encoding flaw in the qubit
space, being this protocol compatible with the decoy state method. Here, as a step towards practical
QKD, we show that a similar conclusion is reached in the finite-key regime, even when the intensity of
the light source is unstable. More concretely, we derive security bounds for a wide class of realistic light
sources and show that the bounds are also efficient in the presence of high channel loss. Our results
strongly suggest the feasibility of long distance provably secure communication with imperfect light
sources.

1. Introduction

The gist of quantum key distribution (QKD) [1-3] is that it allows two remote parties, Alice and Bob, to establish
common secret keys in the presence of an adversary, Eve, who may have unlimited computing resources and
technological advances. Today, three decades after its introduction, QKD has made enormous progress in both
theory and practice, and is arguably on the verge of global commercialization. Having said that, however, there
are still some issues, both theoretical and experimental, that need to be resolved before we can reach that level.
Amongst those, the most pressing one is the mismatch between device models used in security proofs and actual
devices used in QKD systems. In particular, such implementation loopholes can lead to side-channel attacks that
break the security of QKD. Notably, it has been repeatedly demonstrated that the behaviour of single-photon
detectors employed in QKD systems can be externally controlled, simply by exploiting their physics [4]. In this
case, it is easy to verify that security cannot be achieved, since the measured data are not representative of the
quantum channel [5]. Undoubtedly, such hacking demonstrations raise not only the importance of proper
calibration of QKD systems, but also the importance in developing security proof techniques that can tackle
modeling discrepancies. Indeed, in the past few years, much attention has been devoted towards the
development of such proof techniques and side-channel countermeasures, particularly in the areas of security of
finite-length keys [6—10] and detector side-channel attacks [11, 14, 15, 12, 13].

Amongst these theoretical results, only a few considered the issue of state preparation flaws—despite that it
is acommonly faced experimental problem. More concretely, typical light sources used in QKD systems are not
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true single-photon sources and practical optical modulators employed to encode the light pulses are inherently
limited in precision. The former can be resolved by using the decoy-state method [16—18], which allows QKD
systems based on practical light sources to achieve the security performance of single-photon QKD. The latter,
however, does not have an adequate solution. In particular, it has been firstly shown by Gottesman et al [19] that
such inaccuracies in encoding can lead to very pessimistic secret key rates in the presence of high quantum
channelloss. Also, other works show similar results [20]. This strong dependency on channel loss is primarily
due to the fact that state preparation flaws can be seen as a form of basis information leakage, which gives Eve
some advantage in formulating basis-dependent attacks. Crucially, as shown in [19, 20], Eve’s advantage can be
significantly enhanced by exploiting channel losses. Consequently, this heavily penalizes the secret key rate
whenever the channel loss is substantial.

Very recently, aloss-tolerant QKD protocol [21] has been proposed by Tamaki et al as a means to overcome
typical encoding flaws in QKD systems. More specifically, as briefly mentioned earlier, here we are considering
encoding flaws due to imprecise alignment of optical modulators. For example, if the quantum states are
encoded into the polarization degree-of-freedom of photons, an encoding flaw could be due to a misalignment
in the wave-plate used to set the desired polarization. The protocol is similar to the Bennett—Brassard 1984
(BB84) QKD scheme [22], but instead of considering all the four BB84 states, it uses only three of them.
Interestingly, by considering statistics beyond those of the BB84 protocol, the resulting secret key rate is the same
as the one of BB84’s [23—-27]. More importantly, the secret key rate has the very nice property in that it is almost
independent of encoding flaws. These results imply that the usual stringent demand on precise state preparation
can be considerably relaxed and one only needs to know the prepared states. Additionally, it is useful to mention
that most current BB84 QKD systems can easily switch to the loss-tolerant QKD protocol without much
hardware modifications.

In anticipation that the loss-tolerant QKD protocol will be widely implemented in the near future, we extend
the security analysis in [21] to the finite-key regime, i.e., we derive explicit bounds on the extractable secret key
length (in [28], the authors have implemented the loss-tolerant protocol experimentally with careful verification
of the qubit assumption used in the protocol. This paper also includes some finite-key analysis of the protocol.
Unfortunately, however, its phase error rate estimation seems to be valid only against collective attacks).
Furthermore, our bounds can be applied to a wide range of imperfect light sources —including typical cases
whereby the intensity of the laser is fluctuating between a certain range®.

Also, the security bounds are obtained within the so-called universal-composable framework [30], and thus
secret keys generated using these bounds can be applied to other cryptographic tasks like the one-time-pad. In
order to investigate the feasibility of our results, we consider a QKD system model that borrows parameters from
recent fibre-based QKD experiments. With this realistic model, our numerical simulations show that provably-
secure keys can be distributed up to a fibre length of about 120 km, even when only 10" signals are sent by Alice
to Bob.

This paper is organized as follows. In section 2, we describe some assumptions that we made in our security
analysis and after that we introduce our protocol. In section 3, we give the security definition of the protocol and
provide the formulation of the extractable secret key length. In section 4, we present the results of the parameter
estimation using the decoy-state method for two different cases: an exact intensity control case and an intensity-
fluctuation case. Then, in section 5, we simulate the key generation rate for both scenarios. Finally, section 6
concludes the paper with a summary. The paper includes as well some appendixes with additional calculations.

2. Assumptions and description of the protocol

2.1. Assumptions on Alice and Bob’s devices
Prior to stating the actual protocol, we first describe the assumptions on the user’s devices.

We consider that Alice’s transmitter contains a laser source, an amplitude modulator and a phase
modulator. See figure 1. The laser is single-mode and emits signals with a Poissonian photon number
distribution. Also, we assume that Alice encodes the bit and the basis information in the relative phase 6,
between a signal and a reference pulse, whose joint phase is perfectly randomized’. Let us emphasize, however,
that the security proof that we provide in this paper applies as well to other coding schemes like, for instance, the
polarization or the time-bin coding schemes. Next we present the two types of imperfections that we consider
for Alice’s device.

® Inthe asymptotic limit of an infinitely long key, the problem of intensity fluctuations in decoy-state QKD has been considered in [29].
7 Note that the recent work [31] shows that discrete phase randomization is sufficient for the BB84 protocol.
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Figure 1. In each trial, Alice’s laser emits two consecutive coherent pulses representing the signal and the reference pulse. For this, she
first uses an amplitude modulator to select the pulses’ intensity k € K. After that, she applies a phase shift {0, 7, 7/2} to the signal
pulse. On reception, Bob splits the received pulses into two beams and then applies a phase shift {0, —m/2} to one of them. Also, he
applies a one-pulse delay to one of the arms of the interferometer and then recombine the pulses at a 50:50 beamsplitter (BS). A ‘click’
in detector DO (D1) provides Bob the key bit y’' = 0 (' = 1).

(1) Intensity fluctuations.

The fluctuation of the intensity of the emitted coherent light is typically due to the laser source and
imperfections in the amplitude modulator. Here we shall consider that Alice does not have a full description of
the probability density function of the fluctuations, but she only knows their range”. That is, she knows that the
intensity k of the emitted coherent light lies in an interval k € [k~, k™] except with error probability €;y¢en, where
k+() is the upper (lower) intensity. Moreover, we assume that the intensities of the coherent pulses are not
independent to each other, that is, they can be correlated in an arbitrary manner as long as they lie in the interval.
For simplicity, we shall assume that €pen = 0. If €jnen, > 0 this error probability can be directly taken into
account through the security parameter €, whose definition is referred to equation (40). The intensities of the
signal and reference pulses are k*# := kV and k™ := k(1 — V) respectively,with0 < V < 1.

In section 4. A we study the case where k = k= = k™, i.e., there are no intensity fluctuations. After that, in
section 4. B, we evaluate the typical scenario where k* > k™.

(2) Imperfect encoding of the bit and basis information.

In our protocol, Alice chooses the relative phase 8, at random from {0, /2, 7} to encode the bit and basis
information. The phase 8y € {0, 7} corresponds to the Zbasis states which are selected with equal probability, and
0 = /2 denotes the X basis state. Alice assigns abit valuey=0to 64 € {0, w/2}andabitvaluey=1to 04 = .

Due to the misalignment of the optical system, however, the actual relative phase prepared by Alice may
deviate from the desired angle 6, by a factor Af,. Hence, we have that the actual state Alice sends to Bob can be

typically described as
j(;27r p(AQA)P“ krefeiX>

Here,wedefine P[ - ] = | - )( - |, the parameter y € [0, 27) is arandom phase, the state | )y is the coherent
state of the signal (reference) pulse, and p (A, ) is the probability distribution of Af,.

Alice does not need to know the origin of the encoding errors Afy, but we assume that she knows p (A6 ).
Also, we assume that p (A#f, ) is independently and identically distributed for each run of the protocol.
Moreover, we consider that there are no side-channels in Alice’s device.

Assumptions on Bob’s apparatus

We consider that the detection efficiency of Bob’s detectors is independent of his measurement basis choice.
A phasevalue g = 0 (g = —m/2) corresponds to a device parameter to choose the Z (X) basis for the
measurement. Also, like in the case of Alice, we consider that Bob uses an imperfect phase modulator that shifts
the phase of the incoming signals by 6 + Afg, where Afy is the modulation error. Note, however, that this last
assumption is not needed in the security proof; we use it only for simulating the resulting secret key rate.
Furthermore, we assume that there are no side-channels in Bob’s device.

ksigei(X+9A+MA)> ]dAoA. (1)

2.2. Protocol description

We study a three-state protocol that uses one signal and two decoy settings. Also, we consider that the protocol
employs an asymmetric coding, i.e., the Z and the X basis are chosen with probabilities p,and p, = 1 — p,,
respectively. The secret key is extracted only from those events where both Alice and Bob select the Zbasis and
the signal setting. In addition, we assume that Alice and Bob do not implement a random sampling procedure to
estimate the bit error rate, but they perform error correction for a pre-established fixed value of it. The error
verification step of the protocol (see step 5 below) informs them about whether or not the actual residual bit
error rate exceeds the considered value.

Note that in those scenarios where Alice knows the exact probability distribution of the fluctuations then the conventional decoy-state
method can be directly applied.
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The protocol runs as follows.

Actual protocol

First, Alice and Bob decide a security parameter €, whose definition is referred to equation (40). Then, they repeat the first three steps of the
protocol for i = 1, ..., N until the conditions in the sifting step are met.

(1) Preparation

For each i, Alice randomly chooses the intensity k € K = {ks, ka1, k4> } with probability p, , p,, and p,,, =1 — p; — py, , respectively.
The intervals [k~, k*]where the different intensities lie have to satisfy kg, > kg, and k;” > kg + kg,. Then, Alice randomly selects the
basis a € {Z, X} with probabilities p, and p,, respectively. Next, she chooses at random the signal phase 84 € {0, 7} when she selects the
Zbasis, and she chooses 64 = /2 when she selects the X basis. Finally, she generates the signal and reference pulses following these
specifications and sends them to Bob via the quantum channel.

(2) Measurement

Bob measures the incoming signal and reference pulses using the measurement basis b € {Z, X},which he randomly selects with prob-
abilities p, and p,, respectively. The outcomeis recordedin d € {0, 1, L , @}, where L and @ represent the double click event and the no
click event, respectively. If d = L, Bob assigns a random bit to it”. As a result, he obtains y’ = {0, 1, @}.

(3) Sifting
Alice and Bob announce their bases and intensity choices over an authenticated public channel and identify the following sets:
Zy:={ila=b=2Z A Intensity =k A y' = @}, X/ == {ila=b=X A Intensity = k A y' =j},
Z290xj={ila = ZAb = X A Intensity=k Ay = 0 (1) Ay =j}and
XZ,g == {ila=X AN b=2Z A Intensity = k A y’ = j}with j € {0, 1} and k € K. Then, they check if the following conditions are
met: | Z;| > Ny, |X{| > Ny |Z00X]| > N oy and [XZ{| > N, jforall j € {0, 1},all k € K, and for certain pre-established
values Nz, N yj, N,on)yjand Ny, j,where | * |represents thelength of the set .
We denote by N the number of pairs of coherent states (i.e., signal and reference pulses) sent by Alice until these conditions are fulfiled. We

denote Alice and Bob’s sifted keys as (Zy, Zp); theirsizeis |[Z;| = |Zg| = | Zk,|.

(4) Parameter estimation

They estimate the number of events 111, where Alice emitted the vacuum (the single-photon) state within the set Zj,. Their expression is
given by equations (12) and (18) for the scenario without intensity fluctuations, and by equations (23) and (28) for the case with intensity
fluctsuations. Also, Alice and Bob estimate Ny, i.e., the number of the so-called phase errors in the single-photon emissions within the
set Zy, (see equation (36)). They check if the phase error rate ey, = Npp/m1 is lower than a predetermined threshold value &g, , which
corresponds to the phase error rate associated with a zero secret key rate (see equation (2)). If ey, > €pp, they abort the protocol; otherwise
they proceed to step 5.

(5) Postprocessing

Alice and Bob perform error correction over an authenticated public channel for (Z,, Zg). This step consumes at most Agc bits. Finally, they
implement an error verification step and, after that, they perform privacy amplification using a hash function that extracts a secret key pair
(Sp, Sp),where |Sy| = |Sg| = £ bits.

3. Security bounds

The security of a QKD protocol is characterized by its correctness and secrecy. That is, following the universal
composable security framework [30], the protocol is called €5.c-secure if it is both e.-correct and ¢,-secret, where
€sec = € + €. Here, the correctness criterion is met whenever the output keys, Sy and Sg, are identical. More
generally, for some small error ¢, in the correctness, we say that the protocolis e.-correct if Pr[Sy 5= Sp] < e is
met. For the secrecy criterion, it is met whenever the joint classical-quantum state describing Alice’s output key and
Eve’s quantum system is of the following form, Uy ® pg, where U, is the uniform distribution over all bit strings,
and py isan arbitrary quantum state held by Eve. Likewise, for some small error ¢, we say the protocol is ¢;-secret if

1
> [ ps,e — Ua ® pg |, < 6

where pg 1, is the joint state shared by Alice and Eve. Note that || - || is the trace norm defined as

[1-1h = TrV .. Using these security definitions, it can be shown (see appendix A for details) that a lower bound
on the secret key length for the protocol described above

2> |my+ mlL[l - h(e;{,)] - Ingﬁ — Aec — long3 , (2)

[

9 . . . . . .
Note that this random assignment is not mandatory, and Bob can always choose a particular bit value, say 0, for d = _L as this preserves the
basis-independence detection efficiency condition.
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where i (x) = —x log,x — (1 — x)log,(1 — x)is thebinary entropy function, moLm is alower bound on mg(y),
U= N;f, / m" is an upper bound on the phase error rate, and 1 is the sum of the failure probabilities when

estimating m, and ep,. This last parameter is upper bounded by ) < 1 — Ez oEz 1 Eph, where E o, Ez yand Epp,

are the failure probabilities associated to the estimation of 11", m" and to the upper bound on the number of the

phase errors N}}fl, respectively.

4. Parameter estimation

In this section, we briefly describe the estimation procedure to obtain m and m. Also, we provide an
expression for N}}l{‘. The detailed calculations are included in appendix D.

As mentioned in section 2.2, we assume that the phase of each pulse generated by the laser is perfectly
randomized. This means, in particular, that we can regard the signals sent by Alice as a classical mixture of Fock
states, each of them representing the total number of photons contained both in the signal and in the reference
pulse. That is, the probability that Alice emits a pulse with # photons conditioned on the fact that she selects the
intensity setting k € K is written as

KK
p(nlk) = e prR (3
Also, from the property of the decoy state method we have that the total number of detection events when both
Alice and Bob use the Z basis is given by

Zal = Y| 2] = 3 S )
n=0

kek

where Sy , represents the number of detection events when Alice and Bob used the Z basis and Alice emitted an
n-photon state.

4.1. Estimation of the number of vacuum and single-photon contributions for the exact intensity
control case
We consider first the scenario without intensity fluctuations in the source, i.e., when k = k= = k™.

Owing to the use of decoy-states [ 16—18], it can be shown that Eve cannot obtain any useful information
about Alice’s intensity choice if she observes an n-photon state in the quantum channel. Therefore, it can be
demonstrated that the actual protocol, where Alice chooses the intensity of each signal before she actually sends
it to Bob, is equivalent to a counterfactual protocol described as follows. First, Alice prepares and sends n-photon
states to Bob. Then, Bob measures all the signals received from Alice. Afterwards, Alice decides the intensity
setting for each signal. Due to this equivalence between the actual and the counterfactual protocols, we have that
the number of detection events | Z; | for setting k € K within | Z,, | has the form

|Zkl = (Zx) + bk (5)

except with certain error probability that will be introduced later on, and where (Z;) denotes the mean value of
| Zi | given by

(Zi) = pkln)Sz,n. (6)

n=0

Here, p(k|n) is the conditional probability of choosing the intensity k given that Alice prepared a n-photon state.
The parameter ¢ that appears in equation (5) denotes the deviation between the experimentally obtained
quantity | Z; | and its expected value. The convergence of §; is discussed in appendix B.

4.1.1. Estimation of the number of vacuum contributions

At first, we calculate alower bound on 1, the number of events in Z_ that originate from a vacuum state sent by
Alice. We define the mean value of mg as 1, = p (k|0) Sz 0. Now, by applying lemna 1 from appendix B we
obtain that

mo = pg — Dz, 7)

except with certain error probability €, o, where the deviation Ay o is given by Ay o = g (14g, €7,0) With

8- (x, ) = /2x In 1/y. So far, the lower bound on 11, depends on the unknown mean value j1, which cannot
be directly observed in the experiment. According to the definition of 1.,, however, this problem can be solved by
estimating alower bound on Sy . For this, we use a result from [8]. In particular, we have that
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kay kai
S0 > 2O K 7 ) K (2 ) = s ®)
kar — kaz\ Py, Pry

where p(0) = Eke « P P(0[k). Toestimate the mean values (Z,,) and (Zy,,), we can employ either lemmas 2
or 3 introduced in appendix B, such that the fluctuation is minimized. In so doing, we obtain a lower bound on

(Z,,) together with an upper bound on (Z;, ) given by
3/2
(e5)”") |2 ) | ®

<Z,;u> i= | Zi,| — min {gM(‘dez
. 4
(22,) = |21a] + min { (|10 (5)'/16), (| 2] )} (10
where g, (x, ) = {J2x In 1/y and g, (x, y) = \/x/2 In 1/y. The failure probability associated with the

estimation of (Z;), with k € {kqy, ka» ), is either givenby e . = €% jorbyeh ; = €% + €} 4, dependingon
which lemmas (2 or 3) we use. As a result we find that

—k

Pr€ ™ | kare _ kqpeka

0)Sho > — L (Ze,) =~ () [= b (1)
kar — ka pkdz pkdl

which only depends on known parameters. Note that in equation (11) we have used the fact that
p(ks|0) = P p(0 |ks) / p(0) = pkse‘ks / P (0) in combination with equation (8). We finally obtain, therefore, that

kg

Ko 2 P(ks

mo > ps — Nz = my, (12)

except with error probability 70 = €70 + 612‘0 + 5’}{20.

4.1.2. Estimation of the number of single-photon contributions

Here, we calculate alower bound on the number of single-photon pulses sent by Alice that contribute to Z . For
this, we use a similar technique to the one described in the previous section. In particular, let 1, be the mean
value of m;, which is given by y1; = p (ks|1)Sz,1. Then we have that

my =y — Az, (13)
except with error probability €, ;, where Ay | = g~ (i, €z,1). From [8], we have that
Dk, eka eka
SZ,1> p( ) I:_<de1> - —<dez>
(kar = kao) (ks = kar = ka2 )| Pra Piy

ks
ki — ki | Sto ¢ ‘<Zk’> =SL, (14)
k? p(0) Py, ’

where p(1) = Zke « Pr p(1]k). Asbefore, by using lemmas 2 and 3 from appendix B we obtain a lower bound
on (Zy,,),and an upper bound on (Zy ,) and (Zy ). They are given by
, e@d}l)}, (15)

— min {gM(‘del s (61211)3/2)3 gH(‘Ztot
) o

, (521)4/16), gu( | Zn

where the second equality holds for k € {k, k4, }. The failure probability associated with the estimation of (Z)
(with k € K)is either given by 5’},1 = 6121 or by 5’%,1 =€ ’21 + 5?1,2, 1» depending again on which lemma (2 or

3) we apply. By employing the relation p (k|1) = prp(1] ks )/p (D) = py, ks e*kS/p (1), we obtain a lower bound
on yi;, which only depends on known parameters

(Zk,

d1

> = |de1

@) = |z + min { (|2

> (k1)
pksksze_ks ﬂ _ B ﬁ .
R e R e
L ) B () = pl. (17)

kZ p(k5 A 0) Dk,
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Therefore, we have that

m > — Az =mf, (18)
. " 1
except with error probability ¢, ; = Zn: O(sé‘tln + 5’}{2,1) + ez + 5}21, where the parameters 812'0 and 6’}{20
come from the estimation of ug.

4.2. Estimation of the number of vacuum and single-photon contributions for the intensity-fluctuation case
We now evaluate the scenario where the laser suffers from intensity fluctuations. As introduced above, here we
shall assume that Alice only knows the range [k~, k] where the intensity value k lies. Below we introduce the
final expressions for the different parameters; the detailed derivations are referred to appendix C.

4.2.1. Estimation of the number of vacuum contributions

Here, we present the result for the estimation of the lower bound on T 4. Here, T ¢ is the sum of the conditional
probability that Bob detects a signal in the Z basis conditioned that Alice chooses the signal intensity and sends a
vacuum state in the Zbasis (see equation (60)). It is given by

1 kgeke k ek
Tro > ———| "= (Zk,) — " (Z) |= Thor (19)
kan — ki | iy, P,

To calculate the mean values (Zy,) and (Zy,) we employ Azuma’s inequality, which is described in Lemima 4 (see
appendix B). Importantly, note that this inequality holds without assuming independence of the trials. Asa
result, we obtain alower bound on (Z;, ) together with an upper bound on (Zy,,). They are given by

<Zk7dz> = |dez| - gA(ZVZ) 6]220)) (20)
(7)) = | Zka] + (Mo €5), 21)

where g, (x, y) = \/2x In(1/y), and N, is the number of events where Alice and Bob use the Zbasis within N
trials.

In so doing, we find alower bound on 1, that only depends on parameters that are directly observed in the
experiment. It has the form

—k — ke +
I Ty kaeha /o L
po = p (ke A O)T7o> ——— Ziy) = Zi,) = (22)
( ) kdl _ k&; pkd2 < l2> pkdl < d > 0
where the p~(k, A 0)isalowerboundon p(k; A 0).
Finally, we obtain a lower bound on #1y which is given by
mo = uﬁ — Ay = mf, (23)

except with error probability €79 = €z, + 6]210 + 6’}%.

4.2.2. Estimation of the number of single-photon contributions

Here, we introduce alower bound on T ;. Here, T ; is the sum of the conditional probability that Bob detects a
signal in the Zbasis conditioned that Alice chooses the signal intensity and sends a single-photon state in the Z
basis (see equation (69)).

Itis given by
K el ek
Tz, 2> (k(ﬂ _ kd_z)(ks_ — k;i _ kd_z) lpkdl <de1> Pra, <deZ>
2 N2y
s ks

Again, to estimate the mean values (Zy, ), (Zx,,) and (Z; ) we employ lemma 4. This way we obtain alower
bound on (Z;, ) and an upper bound on (Zy,)) and (Z} ) as

<Zk:n> = |de1 — 8a (Nzr fé‘fﬁ), (25)
(Z{) = ‘Zk‘ + gA(Nz, 6’},1), (26)

where the second equality holds for k € {k, k43 }-
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Hence, alower bound on (i, can be directly written as

Hy = P_(ks A 1)7%,1

pkse_k;(k;)z lekﬂ <Z;; > o ek(;E <ZI:L >
d1 a2

(ki - ka) (ke — ki — ko) | e P
k 2 . k7 2 :
( dl)(k_)(z 2) ;kk (2) - p(kljo ) =, 27)

where p~(k; A 1)isalowerboundon p(k; A 1).
Finally, we obtain m/" as

m >l — Agy=my, (28)

. . 1
except with error probability ¢, | = ano(eé“frl + 5’22,1) + €71+ 6121.

4.3. Estimation of the number of phase errors

In this section we present an upper bound on Ny, which is the number of phase errors in the single-photon
emissions within the set Z; . As already mentioned in section 2.1, the states sent by Alice are given by

equation (1), and we assume that the distribution p (A8, ) is known to Alice. We denote the single-photon part
of equation (1) as p (6, ). Note that from equation (1) the state p (6, ) can be written as

2T
p(Oy) = f PAG)PL(1)]0) + yelatAon |0>r|1>s)/1/1 + 7?1dAf,, where the parameter
0

v = Jk%8/k™! and the state |n),(,) denotes an n-photon number state of the reference (signal) pulse. The state
p (04) can be expressed as a function of the Pauli operators as follows:

o(01) - foﬂ p(AeA)%[UI i (cos(6a + A6 )oz + sin( 6 + A6 ) o)

I+
A2
+ 127, ldae,. (29)
1+ 42
Here we define the eigenvectors of the Pauli operators oy, 0z and oy as: [0,) = |1);]0)s, [1,) = [0);[1)s,

10.) = (10,) + I1,))/2, |L.) = (=i 10,) + i |1,))/V2 and|iy) = (10.) + (~1)|L))/V2 withi € {0, 1}.
With this notation, the single-photon part of the three states sent by Alice can be expressed as p,, = p(0),

p, = p(m)yand py, = p(7/2).Let pg = (07 + G - \75)/2, where ¢ = [0y, oy, 0z]and the Bloch vector

Vs = [V§, Vy, V5 ]isareal three-dimensional vector that satisfies | Vs| < 1with S € {0z, 1z, 0x}. From [21] we

have thatif Vi = 0 the phase error rate of p,, and p,, is equivalent to that obtained after the application of the

following filter operation 1o

Fr = JT= %[ |o,) |+ T+ WP[]1,) ] (30)

Note that the success probability p = 1 — Vi of this filter operation is the same for all the states that have the
same Vy. This means, in particular, that we can restrict ourselves to the estimation of the phase error rate of the
states pg which lie in the ox—0o7 plane

o Fy pgFy (UI +riox + TZSUZ) -

Pg = - = s

Tr[F;, Fy Ps] 2

where the parameters r and r; are given by r=Vy f (Vy)and =V f(W)with f (W) =1 / J1 — V. The
states pg given by equation (31) can also be decomposed as

ps= 3P| 03) | + BEP[] ) | (32)

10y ote that this filter operation is just a mathematical tool for the security analysis, and it does not need to be implemented in the actual
experiments. It is mainly used to simplify the estimation of the transmission rates of some virtual states that are needed to calculate the phase
error rate of the protocol (see appendix D). Such derivation could be performed as well without considering such filtered states, but the
analysis is more cumbersome.
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where the probabilities P; have the form
s_ 1 i () 5%
P, 5(1(1) (=) + () ) (33)

and the eigenvectors | ¢f> are given by

-

S — () + ()
N r(,f) ) 0.) +[1:)| (5 =0)
o5) = (34)
i) (=0 A rf<0)
i®1,) (=0 A rf>0),
=af]0.) + b [1.), (35)

fori € {0, 1},and where N is the normalization factor of the state.
After some lengthy calculations (see appendix D for details), we obtain that Nj,j, is upper bounded by

Nph<21: PG+ 1)
a1+ (VR (o o) + VR (of7]o) ) |

1
(=13 PP { CoNag, (3) + CoiNyg, (4) + ct,zNMX5(5>}] + AEL

t=0

[ Nt (3) + Nag, (4)

= NY, (36)

except with error probability ,1,. Here, the terms Ny (j) with j € {3, 4, 5} are defined in equations (96)—(98);
the quantities P(1) and P(2) are given by equation (81); the parameters C, ; have the form

Coi=(a%a” + b7 b)) As) + @b + b a/)A[] + (@ al* — b¥*b}*)A; | for ] € {0, 1, 2}; the coef-
ficients Ai”jl are the (i, j) element of the following matrix

1z .0x Ox 1z 0x .0z 0z .0x 0z 1z 1z 0z
2 Tty — I 1, Ity — 1 1y Ty 7,7 — Ix I
Ali= o rie — & — 02 7 — e (37)
0x 1z 0z 0x 0z 0x
ry — 1y ry — 7Ty re — Ty

where Q := r,* (r — r2?) + r*(r?* — r}*) + rZ(r}* — 12*);and the fluctuation term A}, | is given by
equation (95).

5. Simulation of the key rate

In this section, we show the simulation result for a fibre-based QKD system. Alice chooses the intensity of the
laser from the set {kq, kqy, kg, }, where we fix the intensity of the weakest decoy state to kg, = 2 x 10~*. Thisis
so because, in practice, it is difficult to generate a vacuum state due to the imperfect extinction of the amplitude
modulator. Also, we assume that Bob uses an active measurement setup with two single-photon detectors with
detection efficiency 1y, = 15% and a dark count probability p; = 5 x 10~". The attenuation coefficient of the
optical fibreis 0.2 dB km ™' and its transmittance is 77, = 10~°2P/10 with D denoting the fibre length. The
overall misalignment error of the optical system is fixed to be e;; = 1%. In addition, we assume an error
correction leakage \gc = fi.|Zi, |h (e;), where e, is the bit error rate of the sifted key (Z5, Zg). Moreover, for
simplicity, we consider that the error correction efficiency of the protocol is a constant number f,.=1.16 which
does not depend on the size of Z . For simplicity, we model the imperfection of Alice’s (Bob’s) phase modulator
as Ay = €0,/ (ABg = —Aby). Also, we consider that the intensity fluctuation of the laser source lies in the
interval [k, k*]withk~ = (1 — r)kand k* = (1 + r)k for a fixed valuer.

In these conditions, we simulate the secret key generation rate R = £/N for a fixed value of the correctness
coefficient €. = 107!, For this, we perform a numerical optimization of the resulting secure key rate over the
free parameters D> Prs> Pryp ksand kq;.

5.1.Key generation rate for the exact intensity control case

The resulting secret key rate for this scenario, i.e. when r = 0, is shown in figure 2. The security parameter is
€sec = 1071%and the total number of signals sent by Aliceis N = 10° with s = 9, 10, 11and 12. We consider
two possible cases: £ = 0 (i.e., the perfect encoding case) and £ = 0.147, which is equivalent to a phase
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Key rate (per pulse)

0 50 100 150 200
Fibre length [km]

Figure 2. Secret key rate (per pulse) in logarithmic scale versus fibre length for the case with exact intensity control. The security
parameter is €, = 107'% and the total number of signals sent by Aliceis N = 10° with s = 9, 10, 11and 12 (from left to right). The
rightmost two lines correspond to the asymptotic secret key rate with two decoy settings. The solid lines denote the case { =0 (i.e., the
perfect encoding scenario) while the dashed lines show the case { = 0.147 which is equivalent to a phase modulation error of 8.42°
(this error parameter is measured in an updated version of a commercial plug&play system (ID Quantique Clavis 2) [28]). The
experimental parameters are described in the main text.

Postprocessing block size

0 50 100 150 200
Fibre length [km]

Figure 3. Postprocessing block size | Z | versus fibre length for a fixed total number of signals N = 10° sent by Alice with exact
intensity control, with s = 9, 10, 11and 12 (from left to right). The solid lines correspond to the case { = 0 and the dashed lines are for
£=0.147.

modulation error of 8.42°. For comparison, figure 2 also includes the asymptotic secret key rate (i.e., the key rate
in the limit of infinitely large keys) with two decoy settings.

As aresult, we find that the effect of state preparation flaws on the key generation rate is almost negligible.
Also, we have that if the total number of signals sent by Alice is about N = 10'2, Alice and Bob can exchange
secret keys over 150 km both when £ = 0and £ = 0, 147.

Finally, figure 3 shows the postprocessing block size | Zy_ | which is the length of the bit string to be processed
in error correction and privacy amplification as a function of the distance when N = 10°with s = 9, 10, 11and
12. This value is an essential parameter in actual experiments, as it gives us the length of the bit strings needed for
the classical post-processing step of the protocol. As shown in figure 3, the size of | Z | decreases linearly in
logarithmic scale with the distance because the successful detection probability decreases exponentially with the
distance.

5.2.Key generation rate for the intensity-fluctuation case

In this section we evaluate the resulting secret key rate when the laser source suffers from intensity fluctuations.
We study two cases: = 0.02 and r = 0.05, where r is the deviation rate from the expected value of the intensity.
The results are shown in figures 4 and 6. Here we consider that N = {104, 10'*}, and the term ¢ takes again the
values £ = 0and £ = 0.147. The security parameter is €,.c = 107! in figure 4 and €,.c = 1078 in figure 6.

For comparison, these two figures also show the asymptotic secret key rate when Alice and Bob use two
decoy settings. In this asymptotic case, we find that the degradation on the achievable key rate, when compared
to the scenario r = 0, is only about 10 km (20 km) when r = 0.02 (r = 0.05).

In the finite-key regime, however, we obtain that the presence of intensity fluctuations seems to strongly
limit the key generation rate if Alice and Bob do not know their probability distribution but only know the
interval where the fluctuations lie in. For instance, when N = 10'!and r = 0 (see figure 2) Alice and Bob can
distribute a secret key over more than 100 km. However, to achieve a similar secret key rate performance when
the intensity fluctuation of the source is 2% (i.e., the parameter r = 0.02) they need to exchange about N = 10"

10
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Key rate (per pulse)
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Figure 4. Secret key rate (per pulse) in logarithmic scale versus fibre length when the intensity fluctuation is 2%. The security
parameter is €;.c = 107'%and the total number of signals sent by Alice is N = 10° with s = {14, 15} (from left to right). The
rightmost two lines correspond to the asymptotic secret key rate with two decoy settings. The solid lines denote the case £ = 0 (i.e., the
perfect encoding scenario) while the dashed lines show the case { = 0.147 (which is equivalent to a phase modulation error of 8.42°).
The experimental parameters are described in the main text.

1013
1012’

10||

10|0

Postprocessing block size

0 50 100 150
Fibre length [km]

Figure 5. Postprocessing block size | Z | versus fibre length for a fixed total number of signals N = 10° sent by Alice, with
s = {14, 15} when the intensity fluctuation is 2% (from left to right). The solid lines correspond to the case £ = 0 and the dashed lines
arefor£=0.147.

signals. The main technical reason for this behaviour seems to be the fact that Azuma’s inequality [36] has a
relatively slow convergence speed when compared to the Chernoff bound [34] and the Multiplicative Chernoff
bound [13].

Asaside remark, let us mention that when r=0.05and N = 10'* we find that the achievable secret key rate
is basically zero unless we increase the security parameter €, from €. = 107190 ;. = 1078, Thisis illustrated
in figure 6.

Finally, figures 5 and 7 show the postprocessing block size | Z. | as a function of the distance when N = 10°
with s = {14, 15} for the 2% intensity fluctuation case and for the 5% intensity fluctuation case, respectively.

6. Conclusion

In summary, we have provided explicit security bounds for the loss-tolerant QKD protocol in the finite-key
regime. On the application front, our results constitute an important step towards practical QKD with imperfect
light sources, in that the resulting security performance is robust against encoding inaccuracies like, for instance,
optical misalignments. Furthermore, our results take into account intensity fluctuations in the light source,
which is a common experimental fact. Our results highlight the importance of the stable control of the intensity
modulator as well as the need for a precise estimation of its intensity, which is not often sufficiently emphasized
in the experiments. On a more general outlook, it would be of great practical interest to incorporate our results
into measurement-device-independent QKD (mdiQKD) [11].
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Figure 6. Secret key rate (per pulse) in logarithmic scale vs fibre length when the intensity fluctuation is 5%. The security parameter is
€sec = 1078 and the total number of signals sent by Aliceis N = 10°with s = {14, 15} (from left to right). The rightmost two lines
correspond to the asymptotic secret key rate with two decoy settings. The solid lines denote the case £ = 0 (i.e., the perfect encoding
scenario) while the dashed lines show the case £ = 0.147 (which is equivalent to a phase modulation error of 8.42°). The experimental
parameters are described in the main text.
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Figure 7. Postprocessing block size | Zy | vs fibre length for a fixed total number of signals N = 10° sentby Alice, with s = {14, 15}
when the intensity fluctuation is 5% (from left to right). The solid lines correspond to the case £ = 0 and the dashed lines are for
£€=0.147.
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Appendix A. Derivation of the security bound

Here we present the calculations for the security bound given by equation (2). The security analysis is based on
the universal composable security framework [30].

Recall that after privacy amplification, the joint state shared by Alice, Bob and Eve is described by the
following classical-quantum state

pg’c‘tg:lli =2 p(SA’ SB)‘SA’ SB> <5A’ SB‘ 550 PEs (38)

SA>SB

where s, and sp are the classical bit strings for the keys, associated with orthonormal states |s5 ) and |sp) ina
Hilbert space. Here, p(sy, sg) denotes the distribution of the keys and p3** is the quantum state of Eve’s system
conditioned on Sy = s, and Sg = sp. In the ideal scenario, the joint state is described by

i 1

deal

pISAeSaBE = W Z [s, 5> <5) 5|SASB X Pp» (39)
S

where Sy = Sp = sand py; is an arbitrary quantum state held by Eve. Using the security definition stated in the
main text, a €,.-secure QKD protocol satisfies
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Furthermore, if the security parameter ¢, is appropriately chosen, it can be seen as the sum of errors in the
correctness and secrecy, i.e., €. = € + €. To see this, let us introduce an intermediate state

= Sl ) sl 200 o

actual 1deal
PsySsE — PSySsE

|1 < 6S€C . (40)

which is just a trivial classical extension of Alice’s state. Then, by using the triangle inequality property of the
trace distance metric, we have

1 actual ideal 1 1 ideal
- _ < - ‘ actual __inter | H inter __ideal |
> ‘ Ps,ssE — Ps,S3E | > PosiE — PssiEll T 7 ||PsisiE — Ps,SsE )
Fixing the first term on the rhs to €. gives
_ - actual mter - actual mter _
= | Ps, sk~ Ps,s,.E ‘ z | Psiss — Psasall, = Pr[SA7SB]’

where the inequality is due to the fact that the trace distance metric is contractive under any trace-preserving
operation (in our case, the partial trace operation). Similarly, by fixing the second term to ¢, we have

o= 1] 1)

Therefore, fixing €, = ¢ + €. gives the desired decomposition.
From [32], the lower bound on the secret key length of our protocol is written as

inter 1dea1

inter ideal
Ps,g — Ps,E

Ps,s,E — Ps,s:E

1.

f > [mo —+ ml [1 — F] — AEC IOgZEJ, (42)
€c

where m;" and m" are the lower bounds on the detection events of the vacuum and the single-photon emission,
respectively, and m"T' = m/"(h (eph) + 6) is the number of rounds performing the random hashing to correct
the phase error, which is equivalent to the number of bits sacrificed in the privacy amplification step of the
protocol. The parameter Agc denotes the number of bits consumed in bit error correction, and

[ log,1/ fc—l < log,2/¢. is the length of the hash that Alice sends to Bob for the error verification using the
universal, hash functions. From [7] and [33], we have that ¢ can be bounded by

< \/1 -1 -na - 2-midHly \/17 + 27m6+1 Therefore, the secret key length is obtained as

2 2
> {mOL + mlL[l — h(eé{l)] — logzﬂ — Aec — logze_J’ (43)

where we consider 7 as a fixed value in this paper.

Appendix B. Technical lemmas

In this appendix we introduce four different concentration inequalities which are used throughout this paper.
First, we introduce the stochastic model that is assumed in lemmasl, 2 and 3.

Stochastic model in lemmas 1,2 and 3. Let X, X; ..., Xy be aset of independent Bernoulli random variables
that satisfy P(X; = 1) = p,,andlet X := ZZIX,-. The expected value of Xis denoted as i1 := E[X] = Zf\ilpi.
An observed outcome of X is represented as x.

Lemma 1. Chernoff bound [34].

This bound requires the knowledge of 1. It relates x with 1 as

x=u+ bc, (44)

except with error probability ec + éc, where the fluctuation term 6 lies in the interval ¢ € [—Ac, AC] with
Ac = g- (i, €c)and AC = 8- (u, éc),where g-(x, y) = \/2x In 1/y and g (x, y) = /3x In 1/y.Herethe
parameter ¢c (éc) denotes the probabilitythat x < p — Ac (x > p + AC). Equation (44) holds if both
0 <g-(1/p, ec) < land 0 < g-(1/p, é&c) < laremet.

Lemma 2. Hoeffding bound [35].

This bound does not require the knowledge of 1. It relates 1 and x as

n =X + (SH; (45)

except with error probability ey + &y, where the fluctuation term 6y lies in the interval 6y € [—Apy, AH] with

Ay = g;(N, €p)and AH = gy (N, &), and where g, (x, y) = \/x/2In1/y.
Lemma 3. Multiplicative Chernoff bound [13].
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This bound does not require the knowledge of y. It combines lemmas 1 and 2 above. It uses Lemma 2 to
estimate a lower bound on g that is then basically used in combination with lemma 1. In particular, let
f; = x — {JN/21In 1/ey for certain ey > 0. Then, if the following two conditions are satisfied:
ey < exp(9/32)and ey, /" < exp(1/3) with &y, ey > 0, thislemma states that ;2 and x can be related
as

= x+ om, (46)

except with error probability e + €y + &y, where §y lies in the interval [— Ay, AM] with
AM = gy, én/16)and Ay = & (% 513\,{2), and where g, (x, ) = /2x In(y ™).

Lemma 4. Azuma’s inequality 36, 37].

Note that lemmas I, 2 and 3 apply only to independent random variables, however, Azuma’s inequality is
applicable to any random variables (including dependent ones, i.e., random variables which can be correlated in
any way) as long as two particular conditions (i.e., a Martingale and a Bounded difference condition (BDC), see
below) are satisfied. In general, Eve’s attacks can be coherent attacks, i.e., Eve can first make all the pulses sent by
Alice to interact in a coherent way with an ancilla system in her hands and then measure the ancilla only after she
haslearned all the information distributed by Alice and Bob through the classical channel. In this general
scenario, therefore, one cannot assume that each sending pulse is independent of each other. Hence, in order to
analyse the security of the loss-tolerant protocol against coherent attacks in the finite-key regime, we use
Azuma’s inequality.

In particular, a sequence of random variables X, X, is called a Martingale if and only if
E[XUHD1xO) xW XD = X for all non-negative integer , where E[ - ] represents the expectation
value. On the other hand, X©@, X®, . is said to fulfil the BDC if there exists ¢ > 0 such that
|X+D — XD < ¢ for all non-negative integer L.

Let us consider N trials of a random variable X®, where I refers to the Ith trial. If X isa Martingale and
satisfies the BDC with ¢ = 1then Azuma’s inequality guarantees that

Ng2

Pr[‘X(N) - X(O)‘ > Né] <2 W (47)

forany é € (0, 1).
Let us now define the following random variable for the Ith trial

1
X(l) = /\(l) — ZP(U |€0) cee 51471)’ (48)

u=1

where A" represents the actual number of events of the form X" = 1observed amongst the first / trials, and
Pul&y ..., &,_,)is the conditional probability of having the event ‘1’ in the uth trial conditioned on the first

u — loutcomes &, ..., ,_,.Inthisscenario, it is straightforward to show that the random variables given by
equation (48) are Martingale and satisfy the BDC with ¢ = 1. Hence, by applying Azuma’s inequality we have
that

N
Pr[ AN = S P (g s &4 )| > Né] <2 Y. (49)
u=1
This means, in particular, that
N
AN =3P (] s &) + Ba (50)
u=1

except with error probability €5 + €5, where the parameter 0, liesin the interval 6, € [—A,, AA] with

Ap = g, (N, €x)and Ay = & (N, &),andwhere g, (x, y) = \/2x In(1/y).

Appendix C. Decoy-state analysis

In this appendix we first present the detail of the decoy-state analysis for the intensity fluctuation case and then
we summarize all the equations for the decoy-state analysis, including those for the exact intensity control case.
More precisely, we describe the estimation procedure that we use in order to obtain a lower bound on the
number of vacuum contributions Ty ¢, and both alower and an upper bound on the number of single-photon
contributions T ;.
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C.1. Intensity fluctuation case

Here, we generalize the decoy-state method to cover the case where the source suffers from intensity
fluctuations. For this, as already mentioned previously, we shall consider that Alice and Bob only know the
interval [k~, k] where the intensity k lies.

1
We begin by calculating the mean value (Z;). Our starting point is the random variable Xk<1 ‘ ) for the ith
trial when both Alice and Bob select the Z basis. This random variable takes the value 1 if Alice chooses the

_—
intensity k and, moreover, the generated signal is detected by Bob; otherwise itis 0. The term i — 1 reflects the
fact that Xk(l ‘ 1 ) may depend on all the previous i — 1 trials. With this notation, (Z;) can be expressed as

Z) = %E[X;fi'ﬁ)] 5ol

i=1 i=1

)k A det)2), 1)

where N, is the number of events where both Alice and Bob select the Z basis. The probability p(i it ) (%)
denotes the conditional probability that the event * occurs in the ith trial conditioned on the results obtained in
the previous i — 1trials,andtheterm k A det|Z represents the event where Alice selects the intensity k and
Bob detects the generated signal given that both of them have chosen the Zbasis. By using Bayes rule, we can
rewrite equation (51) as

N,

:# > p(i ﬁ)(k AZANn A det, (52)
7z i=1n=0
1 N, o
== STpOk A Z A n)p(’ )(det|k N Z N n, (53)
pz i=1n=0
N, oo
—p ZZ pD(nlk A Z)p( )(detlZ A n), (54)

where py is the probability that Alice chooses the intensity k; n denotes an n-photon signal; p, represents the
probability of selecting the Zbasis; and p” ( x ) is the probability that the event * occurs in the ith trial. For
instance, p® (n|k A Z)is the conditional probability that Alice emits an n-photon state in the ith trial given
that she has chosen the intensity k and both Alice and Bob have selected the Z basis in the ith trial. Note that in
the transformation from equation (53) to (54) we have used the property of the decoy-state method i.e.,

p("|"*1)(det|k AZ A n :p(" 1) (detlZ A .
In so doing, we obtain that (Z) is upper bounded by

N« ek (k) /-
(Z) < pkzz #p(’ 171)(det|Z A n). (55)
i=1n=0 .
Similarly, we find that
N, o ek (k™ " |
(Zy Zpe D> %p(’ H)(det|Z A n). (56)
i=1n=0 .

Lower bound on the number of vacuum contributions.
To obtain this bound, we first rewrite equations (55) and (56) for the cases k = kq; and k = kg, respectively.
We obtain the following two inequalities

;k‘”< Zky) < Zp(” ) (detlo A Z) —|—Zp( D) (detl1 A Z)kg,
ka i=1
N, | kg !
=55 o) ety Z)@. (57)
i=1n=2 T’l'
s N, A N, |
;k <de1> Zp(’ ’*1)(det|o A Z) + Zp(l ’*1)(det|1 A Zykq
kar i=1 i=1
N, | ki !
+3 p(' ’71)(det|n A Z)@, (58)
i=1n>2 n

Next, we multiply equation (57) by k4, and equation (58) by kg, and we add both expressions. In so doing, we
find that
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Jidetto 2y > K 7y kit

(kis — ki) 011
i=1

ka> Py,
_\n—1 . + n—1 .
+kcﬂkd§§i > (k) '(kdz) p(i H)(det|n A Z)
i=1n>2 n.
>kcﬁ fﬁkcr2 <de2> o k ekdl <del>

kaz P ka

where the second inequality holds because kz; > kg.
As aresult, we find that T, o is lower bounded by

N o— eka kg,
TZ,O = Ep(l ’71)(det|0 N Z)> % kdl <qu2> - k pr <de1>
Pt a— kb keo p kai

A Mizutani et al

(59)

(60)

To estimate the expectation values (Zy ) and (Zy,), we use Azuma’s inequality because each trial of the random

. ." 1
variables Xk(;‘ ) and X (l‘ - ) may depend on the previous ones.
Lower bound on the number of single-photon contributions.

Here, we first particularize equations (55) and (56) for the cases k = kg, and k = kg,, respectively. We have

that
. N N, -
(2} < 2ol o 2+ 3l et w2 ki)
kar =1 =
N, kai
+ ( )(detln A Z)( )
n>2 i=1 "
+ N
;kdz (2:2) > 5ol detio n 2 + >l et o (ke
ka =1 =
'z N k7 '
-5 5 o) et Z)( D ,
n=2i=1 n

Next, we add both expressions and we obtain

) N +
= (z) +3l @en n 2)(k) + Zi R Z)M
kax i=1 n>2i=1
> ;kdl (z) + 3T ettt n 2)(ki) + Zi () en 2)@'
kai i=1 =it .

This last equation can be rewritten as

= 1)(det|1 A Z)>a<zkd,> - ;]:2<de2>

il

(ki - kdz)i (

)(detln AN Z)
n!

Next, we evaluate the third term on the rhs of equation (64). This term is lower bounded by

(ki2) — (ki)

n!

)(det|n A Z)

Z Zp(
) = ' 3
(kS ) n>2i=1

because when the conditions n > 2, kj; > ki and k; > kj; + kg, are satisfied we have that
k)" — (k)" = [(k3)? — (k)21 (k)2 If we now use equation (56) for k = ks, we have that

‘)(det|n A 2)@,
n!

(ks ~ (i)

(61)

(62)

(63)

(64)

(65)
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p(" ﬁ)(detln A 2)@ < k <st>

i 1)(det|0 N Z) + k, p(z )(detll A Z)) (66)

The rhs of equation (65) can be lower bounded using the rhs of equation (66). This is so because k;; > kg, and

therefore the term [(ki;)> — (k3))?1/(k;)? < 0inequation (65). Hence, we have that the third term on the rhs
of equation (64) is lower bounded by

5 5 o) et Z>(k‘;2)n (ki) > L) - (zkdl) [; ()

n=2i=1 n! (k )
N,

—Z(p( )(det|1 A Z))] (67)
i=1

That s, if we now combine equations (64) and (67) we find that

(kit ~ ki)

1) (det]o A Z) + k; p(’

ko — (kdi + ka)
P

S

)(detll A Z)> el <de1> _e*

% (=

which directly gives us alower bound on Ty ;,

N,
TZ,l = Zp(l

i=1

i_l)(detll A Z)

+

k; ﬁ et
g (kcﬁ - kdiz)(k; B kd+1 - kt;Z) [pkm <del> pkdz <de2>
N -V
_ %[j (zy,) - Tgoﬂ_ (69)
s ks

Here, the lower bound on (Z, ) and the upper bound on (Z; ) and (Zy,) are estimated using Azuma’s inequality.
Upper bound on the number of single-photon contributions.
By adding equations (57) and (58), we have that

(kdil - kiz)gz:P(i ﬁ)(detll A Z) < ;‘T‘ <de1>
= kai
<de2> + ZZP( 1) (detln A Z)M
ka n>2 i=1 )l
ekin ki
< a<2kd1> - Pkd2<dez>,

(70)

where the second inequality holds because kg; > kg5. This means, in particular, that T ; is upper bounded by

Tm—ZP(

) 1 ki eka
(det|]l N 2) K ————— —(Zs,,) —
ki — k& Pry, < ! >

where the upper bound on (Z;, ) and the lower bound on (Z;,) are estimated using Azuma’s inequality.

(Zes) | (71)

d2

C.2. Summary of the decoy-state analysis

Here, we summarize all the equations needed in the decoy-state method, including those for the exact intensity
control case.

Lower bound on the number of vacuum contributions.

17



10P Publishing

NewJ. Phys. 17 (2015) 093011 A Mizutani et al

Let Decoy,(ay, by’) denote alower bound on the number of events where Alice generates a vacuum state

using the signal intensity and the basis setting a € {Z, X} toencode abitvalue y € {0, 1}, and Bob observes the
bitvalue y’ € {0, 1} when he measures the received signal using the basis b € {Z, X}.

p(ks A O)( kiekn - feka /
Decoy,(ay, by') = (7 +) ket <ayb]g'dz > _ kjyeka <aybkydl+> , (72)
B kg — kg Pry Py

where the parameters (a’b ,f’dl . )and (a’b ,g'd/ X +) are defined in a similar way like equations (9) and (10) for the exact
intensity control case and like equations (20) and (21) for the intensity-fluctuation case, respectively. The
probability p~(k; A 0)isalowerboundon p(k; A 0)which denotes the probability that Alice selects the
signal intensity setting and sends a vacuum state.

Lower bound on the number of single-photon contributions.

Let Decoy,(ay, by’) denote alower bound on the number of events where Alice prepares a single-photon
state using the signal intensity and the basis setting a € {Z, X} to encode abitvalue y € {0, 1},and Bob
observes the bitvalue y’ € {0, 1} when he measures the received signal using the basis b € {Z, X}.

p ks A 1)ks k3, - K ,
Decoy,(ay, by"y = ( ) e v, ) — 2 o) ™

vilay, oy + _ — + _ di ka2
— (ki = ka) (ks = ki = ko) | Prs Piy

(ki) = (ko) | Decoyy(ay, byy e (aw)”)
(k;)z p*(kS A 0) Py,

_|_

) (73)

where the probability p~(k; A 1)isalowerboundon p(k; A 1) which denotes the probability that Alice
selects the signal intensity setting and sends a single-photon state.

Upper bound on the number of single-photon contributions.

Let Decoy, (ay, by’) denote an upper bound on the number of events where Alice prepares a single-photon
state using the signal intensity and the basis setting a € {Z, X} to encode abitvalue y € {0, 1},and Bob
observes the bit value y’ € {0, 1} when he measures the received signal using the basis b € {Z, X}.

—_— P+ kS /\ 1 k+1 ! k; /-
Decoy, (ay, by') = g( e <ayb’{d1+> o <ayb1{dz >]’ 7

= +
kar = kg ko

where the probability p*(k; A 1)isanupperboundon p(ky A 1).

Appendix D. Phase error rate estimation

In this appendix we explain how to derive equation (36). That is, we obtain an upper bound on the number of
phase errors associated to the single-photon pulses emitted by Alice when she selects the signal intensity setting,
both Alice and Bob use the Z basis, and Bob obtains a successful detection event (i.e., y' = &). Asweare
interested in the phase error rate defined in the single-photon emission events and all the statistics associated
with the single-photons can be estimated using the decoy state method, in the virtual protocol we only consider
the cases where Alice emits single photons.

To begin with, we first review briefly the main idea that we use to derive the phase error rate; it is based on the
results introduced in [21], which follow the security analysis presented by Koashiin [26] based on a
complementarity argument. This method [21] requires to estimate the transmission rates (i.e., detection
probabilities) that Bob would obtain if he would measure some virtual states (see equation (78) below) in a
complementary basis to the key generation basis. Importantly, it turns out that these transmission rates can be
written as a liner combination of the transmission rates of the actual states sent by Alice (i.e., p,, p;, and py,).
To obtain these last transmission rates, we use the detection events that correspond to basis mismatch events
(i.e., the detection events where Alice and Bob’s basis choices are different). From these results, we can then
calculate the exact value of the transmission rates associated to the virtual states (and, therefore, the phase
error rate).

Based on this idea, we expand the security analysis introduced in [21] to accommodate the finite-key size
effect in the following. For this, in the security proof we consider a virtual protocol that based on the
complementarity argument [26] is equivalent to the actual protocol. In the virtual scheme, Alice prepares an
ancilla qubit which is entangled with the pulse that she sends to Bob. Importantly, from Eve’s viewpoint both
protocols are completely indistinguishable because they emit the same quantum states and announce the same
classical information.
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In addition, as already mentioned in the main text, here we will consider the filtered states 7, and p,, only
for convenience, as they allow us to simplify the mathematical derivation of the transmission rates associated to
the virtual states. Note that due to the action of the filter operation we can concentrate only on those states that
lie in the X—Z plane rather than in the whole Bloch sphere. Most importantly, we have that the relation derived
for the filtered states holds as well for the actual states because all the states, which have the same oy component,
have the same probability of passing the filter. Indeed, one could obtain exactly the same mathematical
expression for the main result of this section (see equation (103) below) without considering a filter operation,
but the analysis is more cumbersome.

Let us start our analysis by introducing the following joint states, which we shall denote as |¢) i)AB- Theyarea
purification of the signals 7, with j € {0, 1} (see equation (32)),

i) o = VB 100 [65) + VPE 1D 0]) (75)

where the index A, represents the ancilla system and the index B is the system that Alice sends to Bob. In
addition, we define the state:

[5), 0= 5 (00n]20) 10 ]B) ) (76)
where the ancilla system A, stores the bit information. The aim of the virtual protocol is to quantify how
accurately Bob can estimate Alice’s measurement outcome if she would measure system A, in the
complementarity basis (i.e., if she would use the POVM My , = {| + ){ + |, | — ){ — |}, where

| £) = 1/42(|0) £ |1))). This way one can characterize the information that Eve could have obtained about
the raw key [26]. Note that equation (76) can be rewritten as

- 1+ (1}02 &12>A1»B 7, vir
\‘I’z>AI,A2,B:\/ : |+ Daa| Yo, >A1,B
1 — " J ~ Vir
. \/M N 77
2 A;,B

where the normalized virtual states | j:ir> A,B With j € {0, 1}, are defined as
‘ {ﬁ yir> B ‘ ?Zoz> b (- l)j‘ &12> ALB
Je B I~ 1~ ’
AvB \/2[1 + (=1 <1/Joz|¢1z>Al,B]

Let us now introduce some additional notation before we describe in detail the different steps of the virtual
protocol. In particular, the states prepared by Alice in the virtual protocol are given by

(78)

5
|Bnae = SNP@ I [6©), (79)
c=1 ’
where the shield system sh belongs to Alice’s laboratory, the states | #)) 5, p have the form
‘ ¢(1)> AB ‘@Z)ox > ALB
‘ ¢(2)> ALB - ‘ q’bl" > AI,B)
09) =10y
09) =10,y
‘ ¢(5)> ALB - ‘ JJO’> ALB (80)
and the probabilities P(c) are given by
P .
Py == (1+ (D]d), )
_ o1
PQ2)= 7(1 — <1/202 1Plz> AI,B>,
PG = Py = £,
P(5) = p,. (81)
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Also, we define Bob’s POVM for the Z and the X basis measurement as Mz 5 = {Mzg, Mz, Mz¢ } and
My g = {Mxo, My, Mxs }, respectively. Here, the operator M (x¢ corresponds to the inconclusive outcome in
the Z (X) basis. Importantly, in the security analysis we assume that this operator is the same for both bases, i.e.,
Mt := My = My¢. Note that this assumption is met in all those actual experiments where the detection
probability for any state is independent of Bob’s basis choice, and this allows us to conceptually delay Bob’s
measurement basis choice until he is certain to obtain a conclusive result. That is, we can consider that Bob first
conducts a filter operation with Kraus operators D = {\/T — M, /M } followed by the Z or X basis
measurement, which we redefine as { Mz, My } and { My, My, }, respectively.

Next we present the steps of the virtual protocol in detail.

Virtual protocol

Alice repeats the first step 1 times, where 1, is the number of single-photon emissions generated by Alice in the actual protocol within the
set | Zg,|.

(1) Preparation

Alice prepares the state | ) a5 given by equation (79). Afterwards, she sends Bob system B over a quantum channel and delays her mea-
surement on system sh until step 3.

(2) Filter operation

Bob performs on system B the filter operation D and, if this operation succeeds, he stores this system in a quantum memory. We will denote
the set of successful filter results as S, and |S| = N;.

(3) Collective measurement

Alice and Bob perform on the states in the set S a collective measurement characterized by the POVM elements
Fos with Q € {1, 2, ..., 6} and s € {0, 1} (see equation (84)) on the states in the set S.

(4) Classical communication

Alice announces the Z (X)) basis choice over an authenticated public channel when the result of her measurement in step 3 is
Q=1,2,3,4 (2 =5, 6). Then, Bobannounces the Z (X) basis choice, also over an authenticated public channel, when the measure-
mentoutcomeinstep3is Q = 1, 2, 6 (2 = 3, 4, 5) to ensure that the classical information declared in both the actual and the virtual
protocols coincide (see the main text below for further details). In addition, Bob declares the value of s when 2 = 3, 4, 5, 6.

(5) Estimation of the number of phase errors
Alice and Bob calculate an upper bound on the number of phase errors. This upper bound is given by

NY = Agﬁ’l)+ Ag,N(,l), (82)

where Am) denotes the number of outcomes associated to the operator F, ; after Nj trials, and Ag\g) is an upper bound on Am).

The size of the set S (see step 2 of the virtual protocol) is upper bounded by

ISf=N < > Y. Decoy,(ay, by"), (83)
a,be{Z,X}y,y'€{0,1}

where the parameter Decoy, (ay, by’) is defined in appendix C. Also, the POVM elements Fq, ; of Alice and Bob’s
collective measurement are given by

FQ,S:P[|Q>Sh]®MXS whenQ € {1, 2, 3, 4},
Fso=P[15)n | ® p My
F6,s = P[|5>sh] ® pZMZs- (84)

These POVM elements satisfy 256{0,1}2526{1,<_.,6}FQ’5 = Iy ® I

It is easy to demonstrate that from Eve’s viewpoint the virtual protocol described above is completely
equivalent to the actual protocol. Indeed, the quantum states that Alice sends to Bob are exactly the same in both
protocols. Also, both schemes declare precisely the same classical information. To see thislast point, let us
turther clarify the fourth step of the virtual protocol. In particular, note that when 2 = 1(2) the state that Alice
sends to Bob in the virtual protocol is Tt P [|1~b0(1)x> A8 ]and Bob uses the X basis. However, in this case, Alice
and Bob announce the Z basis. In so doing, the actual and virtual protocols are indistinguishable. This is so
because in the actual protocol the events {2 = 1 or 2 are used to generate a secret key, i.e., in these events both
Alice and Bob select, and therefore also declare, the Z basis. Then, the virtual protocol has to do the same
declaration, otherwise it could be distinguished from the actual protocol. That is, with our definition of the
virtual protocol we guarantee that it produces precisely the same classical information as the actual protocol.

Next, we present the estimation method that we use in order to upper bound the quantities Aﬂl) and A(z{\g)
using experimentally observed values. For this, we consider the sequence of random variables Xs(zl,)s’ with
=1, ..., N}, given by
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XS(II,)S = gll)s - ZPQS( |€0> (RS} u 1)3 (85)

where Po  (u|&, ..., €,_,) is the conditional probability of obtaining the values €2 and s in the collective
measurement performed in the u th trial of the third step of the virtual protocol, conditioned on the first u — 1
measurement outcomes from the collective measurements &, ..., &,_;. To obtain this conditional probability
we use the following joint state in Nj trials

Dhnrs = [6571) 1 ol 00) g nl O570) 86
[P P sh,ALB P sh,A,B PN sh,ALB (86)

where |¢-—)sh.a,B> |D,)sh,a,B> and |¢m>5h’ A, B Fepresent, respectively, Alice’s prepared states in the first u — 1
trials, in the u th trial, and in the rest of trials.
Let Ugg denote Eve’s unitary transformation on Bob’s system B and on her system E. We have that

Usk |P)sh,a,810) = D Bip [P)sha,5lt)E (87)
t

where B, g denotes the Kraus operator which acts on system B depending on Eve’s measurement outcome
of her ancilla. Now we consider Alice and Bob’s collective measurement. In particular, let My, , represent
the Kraus operator associated with the vth(1 < v < u) measurement outcome of Alice’s system sh and
Bob’s system. Also, let O,_; 5 denote Alice and Bob’s joint measurement operator up to u — 1 trials. It
can be written as

u—1
Oufl,sh,B - ®1 Msh‘,,sv (Ish ® \/1 - Mf) (88)
y=

We shall denote the measurement outcomes of the first u — 1 trials as O,,_ ;. Then, after Eve’s intervention and

conditioned on the fact of obtaining the measurement results O,,_, we have that the normalized u th state of

Alice’s system sh and Bob’s system B, which we shall represent as pS}I B_n is given by

o.sh,B
Oy—1
sh,B _ (89)

P — g
e Tr| o8
ulOy 1

u

where the state UZ}Il’(])Sufl has the form

aSh B Z Try (P[Ou 1,sh,BBB [P)sh A, B ]) (90)

u

Here, Tr; is the trace over all systems except for the u th systems sh and B. Equation (90) can be rewritten as
follows:

oshB (u) _ _
’OM = Z ZN*)TrAI(P[<u 1|<Nl u‘@u 1shBBtB|¢ >shA1, >shA1, ‘(ZSNI >sh,A1,B])
—u
_ (u) ﬁ, Ni—u
- Z Z TrAl (PI:At,B|Ou| ¢”> sh,Al,B])’
t u—1 N
oD
where Trﬁ{’l) represents the trace over the uthA, system, the states | u — 1) and | N; — u ) denote an orthogonal

basis for the first u — 1 systems and the last N; — u systems, respectively, and

_— _ _
A u—1,N—u = < u—1 ’ < N1 — Uu ‘ Oufl)sh,BB[,B |¢)E’> A B|¢m> (92)
> > 43

-1 sh,A;,B

is the Kraus operator acting on the u th system conditioned on the measurement outcomes O, ;.
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Therefore, we obtain that the conditional probability defined in equation (85) for 2 € {1, ..., 6} is
given by

Pos(u|€p s €4my) = Trq Fos

L

. Q® Trl/\/l(5| I)TrAIP[\aS(”)) BH
Tr E(pih% ]Tr(a;hgul

1l
Q
Q T
~
g
=

_TrAlP[ | ) > ADB]], (93)

where E(p) = (I, ® I — Mg)p Iy, @ JI — M;), the probability Q () = P(Q)forQ) € {1, 2, 3, 4},
Q(5) = p,P(5) and Q(6) = p,P (5), the operator Mg;‘ uil):zzt Zﬁ,m( T— M; AtuBl(l)Ni uyt

u=1
My, (I — Mg At“Blé, N "), the states | oV ), p are defined in equation (80), and T,&"X‘ ! ) [TraP[|¢®)a,511is
the u th conditional probablhty that Bob’s measurement outcome in the X basisis s € {0, 1} given that Alice
sends him the state Try P[| V) 5] and the filter operation succeeds conditioned on the first 4 — 1

u|u=1
measurement results. For convenience, we shall refer to Tl{/fm‘ )[A] as the transmission rate of A.
If we apply Azuma’s inequality (see lernma 4 in appendix B), we obtain

(] &) =AY < a0 ©4)

except with error probability €}, o, where A} o = g, (N}, €} o).
By combining this result with that from equation (93), we have that

(™) (M) s
AQS AQ ( ‘ )[ «) ] AQ,S + AA,Q
Q) \L,Zl N L L | )

Note that the parameters A&"S), with Q € {3, 4, 5}, can be upper and lower bounded using the decoy-
state method. We shall denote the failure probability of this estimation as €z xs, €71,xs and €xo xs»
respectively.

u=1
As a result, we obtain bounds on Z 1{,2 ’ ! ) [TraP [|o“D) A,5]] that maximize the number of
phase errors Ny, in the single-photon emlssmns within the set |Z; |. They are denoted as Ny (£2) and
have the form

D 70, Xs) — A} Decov. v
N, (3) = {—eCOYI( 9 A3 or Decoy (20, XS) + A }, (96)
Q(3) Q0B
Nog. (4) = Decoy,(Z1, Xs) — A} 4 o Decoy, (21, Xs) + A} 4 ’ ©7)
Q4 Q4
D X0, Xs5) — A Decov. S
Nig, (5) o= ecoy, ( s) s Decoy, (X0, Xs) + A} 5 . (©8)
Q) Q(5)

When 2 € {1, 2}, the quantity TMX - [,bs‘;“] with s € {0, 1}, represents the transmission rate of the

vir

virtual states p* = Trz(P [|1/J5x )a,B 1), with |¢5 > A, B given by equation (78). This quantity can be decomposed
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into the transmission rate of the Pauli operators oy, oy and oz. However, for later convenience, we will
decompose it as a function of g, and p,,, together with oy, ox and 0. Here, the states p, and p,, are defined
in equation (31). In particular, from equation (78) we find that

—

(u’ﬁ) L 1 { (u‘ufl) ~ (u|ﬁ) 3
T, s | T ~ |~ TMX;%I 2|+ TMXsm 1z
s 1 [p ] 2[1 + (_1)5<¢02|7/J12>A1,B:| [Po] [p ]
)l

+ (—1)5[T£4‘:5|?)[Tr3(f’[ |o.) (.
+ T£41|ﬁ)[TrB(P[|&1> <17)° AI,B])])}
_ 1
2f 1+ ap (VPR (ool ) + PFRE (o
[T&ﬂ;—f)[bm] e ]
ST (ot o)1l )
t=0

+ (atozb,lz + atozbtlz)T(u‘ﬁ)[Ux]

Mygq

o))

+(aa - btozbtlz)ngﬂT)[az]], (99)

where we have used equation (75) in the second equality and see equation (35) for the definition of a,° and b;°.
In addition, we have that the transmission rate of p,, p;, and p,, can be decomposed using the Pauli

operators as follows

]

]
]
el [

1/2 n7/2 r7/2 o o
=(1v2 e e o] | =l ] | con

@

1/2 r)/2 /2 =

rL Rl 1 | I Sl Py

Hence, the transmission rate of the Pauli operators can be described as
T(“\“*l)[ax] = A T(“|“*1)[ﬁlz] , (101)

where the inverse matrix A™! is given in equation (37).
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Now, if we combine equations (99), (101) and (95), we obtain that Ny, is upper bounded by

Nph = A( i) 4 A(Nl < Zp(s + 1) ZT( o 71)[”“] + AP

s=0
! P(5+l)

" o o) - V|
ST - ST
+ (- l)szJW{CroZ (e [poz]+ct12TMi. [p”]
+ctzZ (11, )[ ]}]+AA5H

Finally, by using the results given by equations (96)—(98), we find that

)}

N <3 Lot D [Nas, ) + Nag, (4)

s:02{1+(—1)5(m<g }JZ>+W< 1>)}

1
+ (=1 PP { CrioNa, (3) + CiiNy (4) + CoaNiy ()} + AL

t=0

Nph,

except with error probability
_ 1 0 s
Eph = €p1 T €an T > EAQ
$s€10,1},0€(3,4,5)

+ Z (fzo,XS + €z1,xs + EXO,XS)?
se{0,1}

(102)

(103)

(104)

(105)

where €, (, is the failure probability that equation (94) does not hold for 2 € {1, ..., 5} and s € {0, 1}. Also,

€z0(1),xs and €xg x; are the failure probabilities of the decoy state method i.e., the failure probabilities of the

estimation of A(SIEB ,and A(N‘), respectively.

Appendix E. Simulation

In this appendix we present the calculations used to obtain figures 2, 4 and 6 in the main text.
In particular, we consider that Alice sends Bob pairs of coherent states of the form
|Vkrere™X)e ]/ kgig el (XF0+ 200 “and we set Alice’s (Bob’s) phase modulation error to Ay = &6, /7

(Ag = —An). Also, we assume a Gaussian distribution for the intensity fluctuations of the laser within an
interval [k~, k™. That s, we consider that the probability density function of the fluctuations is given by

pg (k) = A exp[—(k — p)?/20?], where i is the desired value (e.g., ks, kq1, and k), the dispersion ¢ has the

k+
form 02 = ru/5, and the normalization factor A is such that f pe(k)dk = 1.
s

Calculation of the parameters m and m,".

For this, we need to obtain | Z | for all k € K. Afterwards, we simply apply the procedure described in

section 4.1 (for the exact intensity control case) and in section 4.2 (for the intensity fluctuation case).

We consider that the total number of pulses sent by Alice using the intensity setting k is given by Ny =

Np,,

where N denotes the total number of transmissions until the conditions in the Sifting step of the protocol are
met. The total system loss Ty = Ndet e includes the channel loss and the detection efficiency of Bob’s detectors.

The conditional probability p*’ (Zj| Zi) that Bob obtains the bit j € {0, 1} using the Z basis given that Alice

sends him a bit i encoded with the intensity k and also in the Z basis can be written as

) (20]20) = j;c’j+pc(k)[1 ~(1- pd)e*'?syk]dk,
p®(21120) = py,

(106)

(107)
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nsyk(l — (=1)/ cos 5)
2

k+
p®(Zj|Z1) = «fk’ P 1 — (1 — pd)exp — (108)

The conditional probability p*(Zj A Zj & 1|Zi) that Bob interprets the bit value j (after arandom
assignment of double click events to single clicks events) when he uses the Z basis given that Alice sends him a
pulse with the intensity k, prepared in the Z basis, and encoding the bit value 7 is written as

p® (% A ZTo1]Zi) = p®1Zi)(1 - p® (7 @ 11Zi))

+ %p“‘) (Zj|Ziyp® (Zj © 1]|Zi). (109)
To simulate the misalignment in the optical system we transform this probability as
PO(Z A Ze1|Z) =p® (4 A ZGE1|Z)(1 - ems), (110)
PO(zi@ 1 A Zj|Z) = p(Zi A ZTE1|Zj)ems + pP(Z €1 A F|Z). (111)
In so doing, we obtain
1Zl = Nep? Y>> PO(Z A 7@ 1| Zi). (112)
i,je{0,1)

Thebit error rate in the Z basis when Alice sends Bob a pulse using the signal intensity is given by

Z}_HO,I]P(’%)(Z]' o1 A 7j|Zj)

e, = . (113)
ks . = .
Zi,je{O,I}P( )(Z] Nago 1|Zz)
Calculation of the parameter Nyy,.
According to equation (36), we have that N, is upper bounded by
1 — sin = » 2
Ny < Tz(p_z] (Decoyl(XO, X1) + Af\’s)
+ &(D—ecoyl(zo, X0) + Decoy, (Z1, X0) + A% 5 + AOAA)
1 — sin 3 » 2
_ %(_) (Decoyl(XO, X0) + A‘}\)S) + Apq + Apo. (114)

To obtain Decoy, (X0, X1) and Decoy, (X0, X0) we first calculate the probability p®(Xj A Xj @ 1|X0)that
Bob obtains the bit j with the X basis given that Alice sends him a pulse of intensity k using the X basis and
encoding the bit value 0. For this, we have that

K ne k(1 + (—1)/ cos &
p® (Xj|X0) = Pe (k)| 1 — exp| — ’ ( 5 )
-

(1 - pd) dk. (115)

Then, by using equation (109) we find
p® (X A XT@ 1|x0) = p®(XjIX0)(1 — p® (Xj @ 11X0) )
+ %p(k) (X0]X0)p® (X1]X0). (116)

Finally, we include the effect of the misalignment in the optical systems. That is, we transform
PP Xj A Xj @ 1|Xi)as

P(")(XO A ﬁ‘xo) :p<k>(xo A )ﬁ|xo)(1 - emis), (117)
PH(X1 A X0|X0) = p® (X0 A XT|X0)ems + p® (X1 A X0|X0). (118)

The number | X/ | is therefore given by
X/ = Nkpjp<k>(Xj A WP{O). (119)

Next, we calculate Decoy,; (Z0, X0) and Decoy;(Z1, X0). For this we need to obtain | Z iij |- We have that
the probability p® (Xj| Zi) that Bob obtains the bit j with the X basis given that Alice sends him a pulse of
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intensity k, prepared in the Z basis, and encoding the bit value i is given by

Kkt —ne k(14 (—1)/sin £/2
PP (Xj|20) = pg (k)| 1 — exp d ( 3 / )
s

(1 - pd) dk, (120)

—nsyk(l — (—1)/ sin 3¢ 2)
2

k+
p®O(Xj|Z21) = fk P (b1 — exp (1 - py) [dk. (121)

In this scenario the probability P®(Xj A Xj @ 1|Zi) has the form
PO(Xj A XTE1|2i) = pP (Xj1Zi)(1 - p® (Xj © 11Zi))
+ PO 1Zp (0 @ 1120, (122)
and therefore the quantity | Z ’X,f | can be written as

\1ZiX]| = Nk%ﬂk)(x]' A X5 1|Zi). (123)
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