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Abstract
We report themeasurement of collisions between twoBose–Einstein condensates with strong dipolar
interactions. The collision velocity is significantly larger than the internal velocity distributionwidths
of the individual condensates, and thus, with the condensates being sufficiently dilute, a halo
corresponding to the two-body differential scattering cross section is observed. The results
demonstrate a novel regime of quantum scattering, relevant to dipolar interactions, inwhich a large
number of angularmomentum states become coupled during the collision.We performMonte-Carlo
simulations to provide a detailed comparison between theoretical two-body cross sections and the
experimental observations.

1. Introduction

In general, the description of quantummechanical scattering becomes simpler when the relative kinetic energy
between the collision partners is negligibly small. Specifically, in this limit the de Broglie wavelength of relative
motion greatly exceeds the length scale over which the two particles exert forces on one another, rendering
details of their interaction, if not insignificant, at least fairly simple to account for [1]. This concept wasfirst
articulated by Enrico Fermi in the context of collisional broadening of spectral lines in a gas of Rydberg atoms
[2]; was instrumental in the understanding of low-energy scattering of neutrons fromnuclei [3]; and has found
expression inmodern times as the bedrock uponwhich our understanding of ultracold gases is based [4].
Ordinarily, the key aspect of this simplicity is that the scattered state contains only a single (or very few)
eigenstate(s) of angularmomentum, i.e., one or only a few partial waves. Ultracold identical bosons have a
differential cross sectionwhich is isotropic and independent of the collision energy such that a single length
scale, referred to as the scattering length, suffices for its description. The situation is onlymarginallymore

complicated for ultracold identical fermions inwhich the differential cross section isµ ¢∣ ˆ · ˆ ∣k k k4 2, where k is the

magnitude of the relative wave vector and k̂ ( ¢k̂ ) is a unit vector along the direction of relative incoming
(outgoing)momentum [5]. Once again, a single scalar quantity, the scattering volume, sufficiently characterises
the underlying potential. These simple results dictatemany important dynamical properties of quantum gases
such as the efficiency of evaporative cooling [6–9] and the speed of sound [10].

However, this situation is radically alteredwhen the potential energy between the collision partners does not
decay suitably fast. If the interaction potential decays as r1 n, where r is the distance separating the two particles,
then for n 3 a different scenario emerges [11, 12]. Ultracold gases containing atoms ormolecules which
possessmagnetic [13–18] or electric [19–22] dipolemoments therefore provide amagnificent opportunity to
observe a novel regime of low-energy quantum scattering.When the dipoles are aligned along a chosen axis by
an externally applied field, the overallmagnitude of the cross section is still determined by a characteristic length
scale, the dipole length, which depends on the dipolemoment [23]. However, the dipole alignment direction and
the r1 3 asymptotic decay of the interaction potential conspire to create a differential cross sectionwhich now

OPEN ACCESS

RECEIVED

22 July 2016

REVISED

12October 2016

ACCEPTED FOR PUBLICATION

17October 2016

PUBLISHED

4November 2016

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2016 IOPPublishing Ltd andDeutsche PhysikalischeGesellschaft

http://dx.doi.org/10.1088/1367-2630/18/11/113004
mailto:benlev@stanford.edu
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/18/11/113004&domain=pdf&date_stamp=2016-11-04
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/18/11/113004&domain=pdf&date_stamp=2016-11-04
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


involves a very large set of partial waves in an essential way due to the coupling between different angular
momentum states.Moreover, it presents a novelty in that such a differential cross section depends explicitly on
the relativemomenta before the collision (as well as after)with respect to the polarization axis of the dipoles [24].
The consequence of this dependence has beenmeasured indirectly through its effect on the equilibration rate of
a dipolar gas, which is taken out of equilibriumby diabatically changing the trap along a certain direction
[25, 26]. It was seen that the equilibration rate can vary by asmuch as a factor of four, depending on the angle
between the dipole alignment direction and the dynamic axis of the trap.

We report a directmeasurement of the differential scattering cross section of 162Dy, which has an
exceptionally largemagneticmoment of m9.93 B, where mB is the Bohrmagneton.We obtain thismeasurement
by colliding twoBose–Einstein condensates (BECs) at a relative velocity significantly greater than thewidth of
their respective internal velocity distributions. Furthermore,most of thesemeasurements aremade in the dilute
limit where themajority of particles pass through the opposing condensate without experiencing a collision. In
this situation, scattered particles emerge on a spherical halo defined by the constraints of conserved energy and
momentum. The angular distribution of the particles on the sphere is almost entirely determined by the
differential cross section.We vary the dipole alignment direction relative to the collision axis and take
absorption images of the post-collision number density after a long time-of-flight (TOF). To obtain a detailed
theoretical understanding of these images, we performMonte-Carlo simulations, which capture the essential
features of the experiment. Such simulations yield an approximate understanding of howmultiple-collisions
(definedwhen an individual atom collides again after it has been ejected from its original condensate) can
corrupt the direct correspondence between the observed halo and the differential cross section.

Related experiments on bosonic alkali gases which also observed halo-like structures due to atomic collisions
were reported in [27–30] and recently in fermionic 40K [31, 32]. Remarkably beautiful experiments were
reported in [33] inwhichmetastable heliumwas employed. In addition to the halo structure, the internal energy
ofmetastable helium allowed for pair correlations to bemeasured via spatially and temporally resolved single-
atom counting. This stimulated theoretical interest in the strength of such correlations [34–36]. All effects from
dipolar interactions are negligible in these experiments involving alkali andHe gases, and the reported halo is
well described by a very small set of partial waves. A unique experiment reported in [37] studied the creation of
artificial partial waves in 87RbBEC collisionsmediated by an optical potential whichmodifies the constraints
due to energy andmomentum conservation. Using this approach theywere able to engineer differential
scatteringwith several partial waves, in spite of the fact that a bare collisionwould have been entirely s-wave. Our
work presents a natural and intriguing extension of these experiments, demonstrating the nature of differential
scattering in the presence of dipolar interactions which are anisotropic and unavoidably couple to a large
number of angularmomentum states during the collision.

2. Experimental details

Weproduce a single BECof 162Dy spin polarized in the J=8, = -m 8J absolute ground state with
´( )6.3 4 104 atoms as described in [38]. An optical lattice is used to diffract the condensate into the n k2 L

momentum states, where the lattice wave vector p q l= ( )k 2 sin 2L depends on the lattice lasers wavelengthλ
and alignment angle θ, and n is an integer which labels the different diffraction orders. The optical lattice is
formed by twofiber-coupled beams derived from the sameTi:Sapphire laser with l = 741 nm that propagate
along +ˆ ˆx y and -ˆ ˆy x such that q p= 2, as shown infigure 1(a). Both beams are linearly polarized along ẑ .

The condensate is split into the  k2 L diffraction orders with high efficiency by using a precisely timed
two-pulse sequence [39]. Thus, two spatially overlapping condensates are produced and collide with relative
momentum = ˆk xp 4 Lrel as they separate. Immediately after applying the lattice grating, all trapping potentials
are removed, and the two condensates collide and expand. After a 22 msTOF, a column-integrated density
profile of the atoms in the x̂– ẑ plane ismeasured via absorption imaging along ŷ .Wemanipulate the dipole
alignment direction by applying a biasmagnetic field relative to both the collision axis and the imaging axis. In all
configurations, themagnetic fieldmagnitude is held at 1.58Gand away from any Feshbach resonance [40].
Three instructive cases are shown infigure 1, which provides a schematic of our experiment. The differential
cross section is isotropic when the dipole alignment is parallel to the relativemomentum, as infigure 1(a).
However, with the dipole alignment perpendicular to the relativemomentum, as infigures 1(b) and (c), the
differential cross section is clearly anisotropic.While the cross section is the same in panels (b) and (c), the
rotationwith respect to the imaging direction allows different projections of the 3Dhalo to be imaged.
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3. Theory and simulation

3.1. Two-body scattering theory
The central theoretical element is the differential scattering cross section for identical bosons interacting via a
combination of dipolar and short-range interactions. This is found by solving the two-body Schrödinger
equation in the center-of-mass rest frame,
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wherem is themass of a single particle and ÿ is the reduced Planck’s constant. The dipole–dipole potential
energy for aligned dipoles is   = -( ˆ ) ( )[ ( ˆ · ˆ) ]V a m r rr, 2 1 3dd

2 2 3, where ̂ is the direction of alignment.
The potential energy from short-range van derWaals interactions can be approximated by

p d=( ) ( ) ( )( )V a mr r4sr
2 3 , provided one stays within the first-order Born approximation. The strength of the

dipole interaction is determined by the length scale m m p=a m 8d 0
2 2, where m0 is the vacuumpermeability

andμ is themagneticmoment of a single particle [41]. Similarly, the strength of the short-range interaction is
determined by the s-wave scattering length a. This problem is solved in detail in [24], see also [12]. Briefly, in the
limit where ´ (∣ ∣ )a a kmax , 1d , a solution can be foundwhich takes the asymptotic form

y = + ¢( ) ( ˆ ˆ ˆ )· f k k rr e , , e krk ri i , where ·e k ri is an incomingwave and f is the scattering amplitude that depends

on the dipole alignment direction, the incomingwave vector = ˆkkk , and the outgoingwave vector ¢ = ¢ˆkkk .
The differential scattering cross section for identical bosons is given by  = ¢ + - ¢s
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where k̂ ( ¢k̂ ) is a unit vector along the direction of incoming (outgoing) relativemomentum.Note that our
formula for s

W
d

d
accounts for bosonic indistinguishability, relevant for our experiment. Alternatively, the

differential cross section for fermions would be found from  ¢ - - ¢∣ ( ˆ ˆ ˆ ) ( ˆ ˆ ˆ )∣f k k f k k, , , ,1

2
2. Plots of the

differential cross section for three different dipole alignments are shown infigures 1(d)–(f). For our experimental
parameters the dimensionless parameter p »( )ka 2 0.04d (corresponding to a de Broglie wavelengthmuch
larger than the dipole length). In [66]we calculated the correction due to the second-order term in the Born
approximation, fromwhichwe can estimate the effects to lie within the 0.6% level at our current collision
energy. The total cross section, found by integrating equation (2) over all possible outgoing directions, is given by
[24]

Figure 1. (a) Schematic of BEC lattice diffraction used to produce scattered halos. Two 741-nmbeams propagating along +ˆ ˆx y and
-ˆ ˆy x produce a lattice along x̂ which undergoes a precisely calculated two-pulse sequence to optimally split the BEC in half, with

each piece traveling alongx̂ . The 3D scattered halo ismeasured via absorption imaging along a ŷ-projection. The dipole alignment
̂ is set by a biasmagnetic fieldB. (b) and (c) 3D scattered halos and projections with the biasfield along ŷ and ẑ , respectively. (d) 2D
projection along ŷ of the differential cross section calculated from equation (2)with dipole alignment ̂ along x̂ and =a a140 0. (e)
and (f) Same as (d), butwith dipole alignment ̂ along ŷ and ẑ , respectively. The 2Dprojections presented in (d)-(f) correspond to the
halos in panels (a)–(c), respectively.
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where η is the angle between k̂ and ̂ .We note that the spatial anisotropy of this cross section is caused by ̂ .
Equations (2) and(3) are universal in the sense that they are insensitive to any details of the short-range
potential.

3.2.Many-body considerations:Monte-Carlo simulation
When two atoms fromdifferent condensates collide, their relative velocity ismuch larger than thewidth of each
condensate’s internal velocity distribution. Therefore, these primary collisions effectively occur at afixed angle
between k̂ and ̂ . However, each atom then has afinite probability of a secondary scattering event. These
secondary scattering events occurwith an essentially randomangle between k̂ and ̂ and corrupt the direct
correspondence between the observed halo and the differential scattering cross section. For this reasonwe use a
direct-simulationMonte Carlo (DSMC) algorithm,which is able to keep track of suchmultiple collision events,
in order to quantitatively understand the experimental data as accurately as possible.

The systemdynamics can be separated into a low energy part (relevant to the two condensates) and a high
energy part (relevant to the halo). These two parts have high and lowphase space densities, respectively. Because
we are primarily interested in the halo, we focus on the classical kinetic equation (the Boltzmann equation) for
the phase space distribution function, which is given by

¶ +  =( ) · ( ) [ ] ( )f t
m

f t C fr p
p

r p, , , , , 4t r

where the left-hand side contains free-streaming terms and the right-hand side includes effects from two-body
collisions. This is given by
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where = ( )f f r p, , = ( )f f r p,1 1 , ¢ = ¢( )f f r p, , and ¢ = ¢( )f f r p,
1 1 account for the fourmomenta (two

incoming, p, p1, and two outgoing, ¢p , ¢p1) associatedwith a two-body collision, and = -∣ ∣v mp pr 1 is the
relative velocity. Note that =p k connects themomentum to thewavevector, whichwas used in section 3.1.
Themomenta in equation (5) are related by energy andmomentum conservation such that + = ¢ + ¢p p p p1 1

and - = ¢ - ¢∣ ∣ ∣ ∣p p p p1 1 . The integration variable is W = ¢ - ¢ ¢ - ¢ˆ ( ) ∣ ∣p p p p1 1 . Equation (4) does not provide an
accurate description of the atomswithin the high-phase-space-density regions, i.e., the condensates. These
would presumably be describedwithin the context of aGross-Pitaevskii (GP)-type theory of BEC evolution [42–
44]. However, the goal of simulating both the high and low-phase-space-density components of the gas is
beyond the scope of our current work.We simplywish to approximately capture the density evolution of the
condensates. This in turn yields a reasonable prediction for the scattering rates and therefore the formation and
deformation of the scattering halo.

We solve equation (4)numerically using aDSMCalgorithm, details of which have been published in [45].
We use an initial condition corresponding to both spatial andmomentumdensities proportional to the
probability distribution function,
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where x (Rα) can denote either spatial ormomentum coordinates (widths). The spatial part corresponds to a
Thomas−Fermi condensate density, with thewidths calculated in themanner prescribed by [46, 47]. The
momentumwidths are found by fitting to the experimental image of the expanded condensate after a 22 ms
TOF. The system is then divided into two halves, which propagate along the positive and negative x-axis,
respectively.

For a detailed account of the simulationmethod, we refer the reader to [45], which adjusts the original
DSMCapproach [48] into a version appropriate to dipolar gases. Similarmethods have been employed in the
study of ultracold gases, see for instance [49–51]. In particular, [49] also studied halo formation in the case of s-
and d-wave collisional cross sections. Briefly, our computational algorithmuses test-particles with phase-space
coordinates which are sampled from the initial distribution in equation (6). The test particlesmove classically
fromone time-step to the next. At each time-step particles are binned in position space. The bin-size represents
thefinite resolution of the delta-functionwithin the numerics.Within each bin, the collision probability for each
pair of particles is evaluated according to equation (3) using the correct value of k̂ corresponding to each pair.
Collisions are then chosen to occur stochastically in accordancewith these probabilities. The post-collision
velocities are also chosen stochastically, in accordance with the differential scattering cross section in
equation (2).
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3.3. Validity and limitations of the theoreticalmodel
Thismodel contains amicroscopic quantummechanical description of two-body collisions between
indistinguishable bosons and a purely classical (particle-like) description of themany-body time evolution.We
measure the original dysprosium condensate (prior to splitting) to have a condensate fraction of greater than
90%, and therefore onemight expect theGP equation (or some related theory of coherent condensate dynamics)
to play a role in the time evolution. Before discussing the role of coherentmany-body dynamics, we note a
practical issue associatedwith its inclusion. TheGP equation on its own cannot account for halo formation
because the number of particles within each condensate is conserved [52]. TheGP theory needs to be extended
to include the process of four-wavemixing between the two condensates (themechanism responsible for halo
formation in the language of quantum field theory [43, 53–55]). This can be done, e.g., by linearizing
fluctuations about the condensate and treating them self consistently. To do this correctly however requires the
inclusion of Fock (exchange) termswhich present a considerable computational challenge in the case of long-
range dipolar interactions [56–58].

In our experimental scenario, the collision energy between the condensates is =E 860col nK, large
compared to the chemical potential of the condensate whichwe estimate to be in the range m ~c 4–20nK [59].
Therefore the inter-cloud collisions occur entirely within the free-particle-like region of the spectrum,well
above the linear (Bogoliubov) regime of phonon-like excitations. This supports our usage of a classical kinetic
(Boltzmann) equation to describe the formation of the halo. Furthermore, in order to accurately predict the
scattering rate, our simulations should ideally capture not just the initial density of the two condensates but also
their density during expansion, i.e., wemust accurately capture the condensate expansion dynamics. This is
problematic for our theoretical treatment since the dynamics of Bose condensate expansion lie beyond the scope
of the classical Boltzmann equation.However, by initializing themomentumdistributionwidthswithin our
simulations (see equation (6)) to thatmeasured in the experiment (via TOF expansion imaging)we aim to
capture this expansion dynamics as accurately as possible. This approach is inherently empirical and obviously
does not correspond to amicroscopic description of condensate expansion.

We conjecture that a potential shortcoming of our approach lies in its failure to capture stimulated
scattering.More concretely stated, our equation (5) does not include the bosonic stimulation factors
(proportional to the phase-space density in units of Planck’s constant h)which appear in theUehling-Uhlenbeck
equation [60] (the lowest-order quantum correction to the Boltzmann equation). However, the inclusion of
such termswill only have a direct effect on regions of high phase-space density, i.e., the two original condensates,
rather than the halo itself. Effectively one can think of the stimulated scattering as an augmentation of the
differential scattering in equation (2)near the regions =ˆ ˆk x and ¢ = ˆ ˆk x where the two original condensates
lie.We note that the rapid expansion rate of the gas, which is roughly the inverse of the trap frequency [59, 61],
ensures that these stimulated processes are very short-lived.Within the halo but away from the condensates, we
estimate that this stimulation factor ( )f t hr p, , 3 never exceeds 10−3. A fully quantitative theory including these
stimulated scattering processes presents an obvious avenue for further research, but is beyond the scope of our
current work.

We are also hampered by an apparently incomplete understanding of the initial density profile, the direct in-
situ imaging of which is unfeasible.We use [46, 47] to predict the Thomas–Fermiwidths, however, we note that
this same theory fails to accurately capture the TOF expansion [14, 38], thereby calling into question the exact
accuracy of thesewidths.

4. Results

The experimental absorption images are presented in thefirst columnoffigure 2, i.e., in panels (a1), (b1),K
(e1). Each image corresponds to the average of forty experimental runs at a fixed dipole alignment direction, as
stated in thefigure caption. Imperfections in the diffraction leaves residual atomswith amomentumnear  k0 L.
This was also observed in [62]. These atoms contribute noise to themeasurement both near  k0 L and in the
∣ ∣k2 L halos from collisions with the  k2 L BECs.However, the effect of the dipole alignment direction is clear

from the remarkable variation between images (a1), (b1),K (e1).We run a family of simulations for each value
of the dipole alignment direction, butwith varying s-wave scattering length5. These families of simulation results
are shown as the smaller images infigure 2 panels (a2)–(a9), (b2)–(b9),K (e2)–(e9). In addition to the
simulationswhichwe present here, we have also looked at initializing the test particles usingGaussian
distribution functions in place of equation (6), and also small variations inmomentum and spatial widthsRα.
However, we found that such variations have very little effect on our conclusions.

5
We allow scattering length to vary because the large number of internal degrees of freedomwithin open-shell lanthanide atoms [63, 64]

restricts our ability tomicroscopically determine the scattering lengths of these atoms, though previousmeasurements have restricted the
range of likely values [26, 65, 66].

5
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Figure 2.Absorption images in the x̂– ẑ plane after 22 msTOF and averaged forty times each. The larger images labeled (a1), (b1),
etcshow the experimental data and the dipole alignment configuration, while the smaller images (a2)–(a9), (b2)–(b9), etcshow
simulation images, eachwith a different contribution from the s-wave (short-range) interaction. This contribution varies from
=a a40 0 in (a2), (b2), etcto =a a180 0 in (a9), (b9), etc, with uniform steps of 20a0 in between.Dipoles are aligned along the

direction: ( )1, 0, 0 in (a), ( )0, 1, 0 in (b), ( )0, 0, 1 in (c), ( )1, 0, 1 2 in (d), and ( )0, 1, 1 2 in (e). The colour scale to the right
shows the number of atoms per pixel for all data sets.

6
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Weperform a pixel-by-pixel comparison between the experimental and simulated scattering images. Each
pixel corresponds to an area of 2.6μm× 2.6μm. For each dipole alignment direction, the average experimental
image  is obtained as well as the standard error for each pixel s. The experimental image and each simulation
image  (including unscattered atoms) is normalized to suppress the effects of atomnumber variations, and a
mask is then applied to the images to exclude the unscattered BECs and atoms not diffracted by the lattice. An
example of amasked image is shown infigure 3(f). Theweighted sumof the squared residuals is calculated for
each simulated image   = å - s( ) ( )S ij ij ij ij

2 2, where the subscript ij denotes the pixel in the ith row and jth

columnof an image. This corresponds to the cost function for aweighted least squares regression. The results of
this analysis are shown infigures 3(a)–(e). Though a particular choice of scattering length, a, minimizes S for
each dipole alignment direction, the analysis is not sensitive enough to define a 1σ confidence interval. However,
as seen infigure 3, all theminima fall within the range of 120a0–160a0, which is consistent withmeasurements
reported in our previouswork [26, 66].We believe that thefluctuations in the location of theminima infigure 3
are primarily due to an incomplete knowledge of the initial density of the BEC. Recent results suggest that
dipolar interactions in strongly dipolar BECs can result in the formation of droplets which require beyond-
mean-field effects to be quantitatively understood, see [67–69].While we expect an initial peak density of

´( )2.1 2 1014 cm−3 within themean-field theory, we have run additional simulationswith slight variations in
the spatial widths of equation (6)which determines initial density. These variations lead to the density increasing
(decreasing) by asmuch a factor of 1.37 (0.67). The results (for dipoles aligned along the x̂-axis) are shown in
figure 3(a). As can be observed by the green line in figure 3(a), running a simulation at a higher density generates
a small but noticeable shift in theminimum towards a lower scattering length. This occurs because the increased
density generates a larger number of scattered atoms in the halo, and therefore a shift toward a lower scattering
length compensates against this change. Similar statements can bemade about the simulations at a reduced
density.

We also analyze the collision frequency and, through a detailed comparison between simulation and
experiment, establish the relevance ofmultiple collisions. These are collisions involving atoms that have already
been scattered out of the original condensates. Onemight expect that a simple prediction for themean number
of collisionsmight be sG = á ñn p mc rel , where á ñn is themean density. However, because the expansion occurs

Figure 3. (a)Pixel-by-pixel comparison of the experimental and simulated absorption images with dipole alignment along ( )1, 0, 0 .
Blue points are simulationswith the expected initial atomic density; green (red) points are simulationswith∼33%higher (lower)
density. The shift in theminimum caused by altering the density is discussed further in the text. (b)–(e)Pixel-by-pixel comparison of
the experimental and simulated absorption images for different dipole alignment directions: ( )0, 1, 0 in (b), ( )0, 0, 1 in (c),
( )1, 0, 1 2 in (d), and ( )0, 1, 1 2 in (e). The points denote the value of theweighted least squares cost function for each simulated
s-wave scattering length a (see text for details). (f)Example of themasking used for pixel-by-pixel comparisons. The grey regions to the
left and rightmask the unscattered BECs, and the central grey regionmasks atoms not diffracted by the lattice.
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over a time scale comparable with the time scale over which the clouds overlap, this formula significantly over-
predicts the number of collisions. Unfortunately, a simple analytic theory of expansion in dipolar condensates is
not yet available, sowemust turn to the simulationswhich account empirically for condensate expansion. The
nature of theDSMCmethod allows one to label particles and keep track of collisions as they occur. The results
are shown infigure 4 for dipoles aligned along x̂, a case inwhich the presence ofmultiple collisions is strong.
Figure 5 shows results where the dipoles are aligned along both +( ˆ ˆ)x z 2 and ẑ , and the presence ofmultiple
collisions is less relevant. The data can be reasonably well understood starting from equation (3) and noting that,
when =a a140 0, the total cross section has amaximumat h = 0 (corresponding to dipoles aligned along x̂)
and aminimumat h = 90 (corresponding to dipoles aligned anywhere in the ŷ– ẑ plane). Specifically, we have

Figure 4.Analysis ofmultiple collision effects in the case where dipoles are aligned along the x̂ axis. (a)The experimental absorption
image. (b)–(f)Analysis of simulation data: (b) shows the population of atoms separated by the number of scattering events each atom
incurred; (c) shows the full simulation of the absorption image; (d) an absorption imagewith only the atomswhich scattered once, and
is therefore in perfect correspondence with the two-body differential cross section; (e) shows an absorption imagewith only the atoms
which scattered twice; (f) shows an absorption imagewith only the atomswhich scattered three times. The simulationswere donewith
an s-wave scattering length =a a140 0. The colour-scale (defining the number of atoms per pixel) is the same in panels (a) and (c) and
shown beneath panel (a). The remaining panels correspond to the colour-scale shown on the right.

Figure 5. Similar to figure 4, except with dipoles aligned along the +( ˆ ˆ)x z 2 axis (shown in the top row, (a)–(d)) and the ẑ axis
(shown in the bottom row, (e)–(h)). (a) and (e)The experimental absorption images associatedwith their own colour-scale at left,
indicating number of atoms per pixel. (b)–(d) and (f)–(h)Analysis of simulation data: (b) and (f) show the population of atoms
separated by the number of scattering events each atom incurred; (c) and (g) show an absorption imagewith only the atomswhich
scattered once, and is therefore in perfect correspondence with the two-body differential cross section; (d) and (h) show an absorption
imagewith only the atomswhich scattered twice. The simulationswere donewith an s-wave scattering length =a a140 0. The
presence ofmultiple collisions is less pronounced for these dipole alignment directions than infigure 4.
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s s  »( ) ( )0 90 2.6 and6 s s  »( ) ( )0 45 1.6. For this reason, we observe the unscattered fraction of the gas
increases from∼40% infigure 4(b), to∼60% infigure 5(b), and to∼80% infigure 5(f). From this, we conclude
that the experimental absorption imagewith dipoles aligned along the x̂ axis is strongly affected by atomswhich
have undergonemultiple collisions. Indeed, these atoms appear to constitute themajority of the absorption
image in this case. Reducing the initial density to suppressmultiple collisions is not practicable due to the sharp
loss in signal-to-noise. However, for all other alignment directions the experimental absorption image (away
from the condensate regions) is dominated by a single scattering event, and is therefore in close correspondence
with the differential scattering cross section of equation (2).

5. Conclusion anddiscussion

In conclusion, we havemeasured the differential scattering between identical dipolar bosons in the low-energy
(universal) regime by imaging the halos of atoms scattering from two collidingDy BECs. The results depend
strongly on the angle between the dipole alignment direction and the collision axis and arewell described by the
analytic formula in equation (2), derived under the first-order Born approximation. Although it is not intended
to be entirely quantitative, a classicalMonte-Carlo simulation of themany-body dynamics provides a reasonable
higher-order approximation to account forfinite-density effects andfinite-momentumdistributionwidths.We
allow the s-wave scattering length to varywithin the simulations, and note that discrepancies between
simulation and experiment areminimized at a scattering lengthwhich remains consistent with previous
measurements [26, 66].

Themeasurements provide a beautiful demonstration of the theoretical prediction for a low energy
scattering amplitude, which dates back toO’Malley in 1964 [12]. The envisaged physical systemunder
consideration at that timewas not dipolar collisions, but rather the scattering of an electron by a non-spherical
atom, such as atomic oxygen.However, we see that the interaction potential is asymptotically equivalent in the
two cases. Futureworkmay use such experiments to probe the complex collisional physics of dipolar
condensates and degenerate Fermi gases near Feshbach resonances in and among the dense and ultradense
spectra observed in the dysprosium and erbium systems [17, 40, 65, 70–72].
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