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Abstract

We report the measurement of collisions between two Bose—Einstein condensates with strong dipolar
interactions. The collision velocity is significantly larger than the internal velocity distribution widths
of the individual condensates, and thus, with the condensates being sufficiently dilute, a halo
corresponding to the two-body differential scattering cross section is observed. The results
demonstrate a novel regime of quantum scattering, relevant to dipolar interactions, in which a large
number of angular momentum states become coupled during the collision. We perform Monte-Carlo
simulations to provide a detailed comparison between theoretical two-body cross sections and the
experimental observations.

1. Introduction

In general, the description of quantum mechanical scattering becomes simpler when the relative kinetic energy
between the collision partners is negligibly small. Specifically, in this limit the de Broglie wavelength of relative
motion greatly exceeds the length scale over which the two particles exert forces on one another, rendering
details of their interaction, if not insignificant, at least fairly simple to account for [1]. This concept was first
articulated by Enrico Fermi in the context of collisional broadening of spectral lines in a gas of Rydberg atoms
[2]; was instrumental in the understanding of low-energy scattering of neutrons from nuclei [3]; and has found
expression in modern times as the bedrock upon which our understanding of ultracold gases is based [4].
Ordinarily, the key aspect of this simplicity is that the scattered state contains only a single (or very few)
eigenstate(s) of angular momentum, i.e., one or only a few partial waves. Ultracold identical bosons have a
differential cross section which is isotropic and independent of the collision energy such that a single length
scale, referred to as the scattering length, suffices for its description. The situation is only marginally more
complicated for ultracold identical fermions in which the differential cross section is o<k4|12 k! |2, where kis the
magnitude of the relative wave vector and k (k')is a unit vector along the direction of relative incoming
(outgoing) momentum [5]. Once again, a single scalar quantity, the scattering volume, sufficiently characterises
the underlying potential. These simple results dictate many important dynamical properties of quantum gases
such as the efficiency of evaporative cooling [6—9] and the speed of sound [10].

However, this situation is radically altered when the potential energy between the collision partners does not
decay suitably fast. If the interaction potential decays as 1 /7", where r is the distance separating the two particles,
then for n < 3 adifferent scenario emerges [11, 12]. Ultracold gases containing atoms or molecules which
possess magnetic [13—18] or electric [19-22] dipole moments therefore provide a magnificent opportunity to
observe a novel regime of low-energy quantum scattering. When the dipoles are aligned along a chosen axis by
an externally applied field, the overall magnitude of the cross section is still determined by a characteristic length
scale, the dipole length, which depends on the dipole moment [23]. However, the dipole alignment direction and
the 1/r* asymptotic decay of the interaction potential conspire to create a differential cross section which now
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involves a very large set of partial waves in an essential way due to the coupling between different angular
momentum states. Moreover, it presents a novelty in that such a differential cross section depends explicitly on
the relative momenta before the collision (as well as after) with respect to the polarization axis of the dipoles [24].
The consequence of this dependence has been measured indirectly through its effect on the equilibration rate of
adipolar gas, which is taken out of equilibrium by diabatically changing the trap along a certain direction

[25, 26]. It was seen that the equilibration rate can vary by as much as a factor of four, depending on the angle
between the dipole alignment direction and the dynamic axis of the trap.

We report a direct measurement of the differential scattering cross section of **Dy, which has an
exceptionally large magnetic moment of 9.93 yi;,, where pu, is the Bohr magneton. We obtain this measurement
by colliding two Bose—Einstein condensates (BECs) at a relative velocity significantly greater than the width of
their respective internal velocity distributions. Furthermore, most of these measurements are made in the dilute
limit where the majority of particles pass through the opposing condensate without experiencing a collision. In
this situation, scattered particles emerge on a spherical halo defined by the constraints of conserved energy and
momentum. The angular distribution of the particles on the sphere is almost entirely determined by the
differential cross section. We vary the dipole alignment direction relative to the collision axis and take
absorption images of the post-collision number density after along time-of-flight (TOF). To obtain a detailed
theoretical understanding of these images, we perform Monte-Carlo simulations, which capture the essential
features of the experiment. Such simulations yield an approximate understanding of how multiple-collisions
(defined when an individual atom collides again after it has been ejected from its original condensate) can
corrupt the direct correspondence between the observed halo and the differential cross section.

Related experiments on bosonic alkali gases which also observed halo-like structures due to atomic collisions
were reported in [27-30] and recently in fermionic YK [31, 32]. Remarkably beautiful experiments were
reported in [33] in which metastable helium was employed. In addition to the halo structure, the internal energy
of metastable helium allowed for pair correlations to be measured via spatially and temporally resolved single-
atom counting. This stimulated theoretical interest in the strength of such correlations [34—36]. All effects from
dipolar interactions are negligible in these experiments involving alkali and He gases, and the reported halo is
well described by a very small set of partial waves. A unique experiment reported in [37] studied the creation of
artificial partial waves in ¥ Rb BEC collisions mediated by an optical potential which modifies the constraints
due to energy and momentum conservation. Using this approach they were able to engineer differential
scattering with several partial waves, in spite of the fact that a bare collision would have been entirely s-wave. Our
work presents a natural and intriguing extension of these experiments, demonstrating the nature of differential
scattering in the presence of dipolar interactions which are anisotropic and unavoidably couple to a large
number of angular momentum states during the collision.

2. Experimental details

We produce a single BEC of '®*Dy spin polarized in the ] = 8, m; = —8 absolute ground state with
6.3(4) x 10*atomsas described in [38]. An optical lattice is used to diffract the condensate into the 2n/ k;
momentum states, where the lattice wave vector k; = 27 sin(6/2)/ )\ depends on the lattice lasers wavelength A
and alignment angle 6, and n is an integer which labels the different diffraction orders. The optical lattice is
formed by two fiber-coupled beams derived from the same Ti:Sapphire laser with A = 741 nm that propagate
along X + yand § — % such that @ = 7/2,asshownin figure 1(a). Both beams are linearly polarized along Z.
The condensate is split into the £2/ k; diffraction orders with high efficiency by using a precisely timed
two-pulse sequence [39]. Thus, two spatially overlapping condensates are produced and collide with relative
momentum p,; = 4/k; X as they separate. Immediately after applying the lattice grating, all trapping potentials
are removed, and the two condensates collide and expand. After a 22 ms TOF, a column-integrated density
profile of the atoms in the X—Z plane is measured via absorption imaging along y. We manipulate the dipole
alignment direction by applying a bias magnetic field relative to both the collision axis and the imaging axis. In all
configurations, the magnetic field magnitude is held at 1.58 G and away from any Feshbach resonance [40].
Three instructive cases are shown in figure 1, which provides a schematic of our experiment. The differential
cross section is isotropic when the dipole alignment is parallel to the relative momentum, as in figure 1(a).
However, with the dipole alignment perpendicular to the relative momentum, as in figures 1(b) and (), the
differential cross section is clearly anisotropic. While the cross section is the same in panels (b) and (c), the
rotation with respect to the imaging direction allows different projections of the 3D halo to be imaged.
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Figure 1. (a) Schematic of BEC lattice diffraction used to produce scattered halos. Two 741-nm beams propagating along £ + 7 and
# — & produce alattice along X which undergoes a precisely calculated two-pulse sequence to optimally split the BEC in half, with
each piece traveling along £X. The 3D scattered halo is measured via absorption imaging alonga y-projection. The dipole alignment
¢ is set by a bias magnetic field B. (b) and (c) 3D scattered halos and projections with the bias field along $ and Z, respectively. (d) 2D
projection along 7 of the differential cross section calculated from equation (2) with dipole alignment & along X and a = 140a,. (¢)
and (f) Same as (d), but with dipole alignment ¢ along y and Z, respectively. The 2D projections presented in (d)-(f) correspond to the
halos in panels (a)—(c), respectively.

3. Theory and simulation

3.1. Two-body scattering theory

The central theoretical element is the differential scattering cross section for identical bosons interacting viaa
combination of dipolar and short-range interactions. This is found by solving the two-body Schrédinger
equation in the center-of-mass rest frame,

7%k?
m

2
[—%Vi + Va2, 1) + %(r)]wm = P (1), )

where m is the mass of a single particle and # is the reduced Planck’s constant. The dipole—dipole potential
energy for aligned dipolesis V3 (¢, r) = (2/%a4/m)[1 — 3(¢ - #)?]/r3, where ¢ is the direction of alignment.
The potential energy from short-range van der Waals interactions can be approximated by

Vi (r) = (47/i%a/m) 5P (x), provided one stays within the first-order Born approximation. The strength of the
dipole interaction is determined by the length scale ay = 1, 4> m /87 /2, where fi, is the vacuum permeability
and ( is the magnetic moment of a single particle [41]. Similarly, the strength of the short-range interaction is
determined by the s-wave scattering length a. This problem is solved in detail in [24], see also [12]. Briefly, in the
limit where max(|a|, a;) X k < 1,asolution can be found which takes the asymptotic form

P (r) = kT + f (&, k, k'eikr / r, where e!* is an incoming wave and fis the scattering amplitude that depends
on the dipole alignment direction, the incoming wave vector k = kk, and the outgoing wave vector k/ = kk’.
The differential scattering cross section for identical bosons is given by j—g = %l f (&, k, k' )+ f (&, k, —k' )2,
which in the low energy limit and within the first-order Born approximation, is found to be

=2 = 24} Rk
1 — (k- k2 3 ay

dQ

do zl(lé PR 2k R kR 2 i]z’ ®

where k (k") is a unit vector along the direction of incoming (outgoing) relative momentum. Note that our
formula for :—g accounts for bosonic indistinguishability, relevant for our experiment. Alternatively, the

differential cross section for fermions would be found from %l f (&, k, k' ) — f (& k, —k' )|?. Plots of the
differential cross section for three different dipole alignments are shown in figures 1(d)—(f). For our experimental
parameters the dimensionless parameter ka;/(27) =~ 0.04 (corresponding to a de Broglie wavelength much
larger than the dipole length). In [66] we calculated the correction due to the second-order term in the Born
approximation, from which we can estimate the effects to lie within the 0.6% level at our current collision
energy. The total cross section, found by integrating equation (2) over all possible outgoing directions, is given by
[24]
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2

o) =alZ 72a_2 — 242 (1 — 3cos2()] + 11 — 30cos?(n) + 27 cos* (1)) ¢ 3)
9 ag aq

where 7)is the angle between k and ¢. We note that the spatial anisotropy of this cross section is caused by 2.

Equations (2) and (3) are universal in the sense that they are insensitive to any details of the short-range

potential.

3.2. Many-body considerations: Monte-Carlo simulation

When two atoms from different condensates collide, their relative velocity is much larger than the width of each
condensate’s internal velocity distribution. Therefore, these primary collisions effectively occur at a fixed angle
between k and ¢. However, each atom then has a finite probability of a secondary scattering event. These
secondary scattering events occur with an essentially random angle between k and ¢ and corrupt the direct
correspondence between the observed halo and the differential scattering cross section. For this reason we use a
direct-simulation Monte Carlo (DSMC) algorithm, which is able to keep track of such multiple collision events,
in order to quantitatively understand the experimental data as accurately as possible.

The system dynamics can be separated into a low energy part (relevant to the two condensates) and a high
energy part (relevant to the halo). These two parts have high and low phase space densities, respectively. Because
we are primarily interested in the halo, we focus on the classical kinetic equation (the Boltzmann equation) for
the phase space distribution function, which is given by

O.f (9 1) + - %f (5, p, 1) = CIf], “)
where the left-hand side contains free-streaming terms and the right-hand side includes effects from two-body
collisions. This is given by

_ d3p1 26) do 7
cfr = [ [ea vl — ) ®)

where f=f(r, p), f, = f(xr, p), f' = f (r, p),and f] = f (x, p) account for the four momenta (two
incoming, p, p;, and two outgoing, p’, p{) associated with a two-body collision, and v, = |p — p,|/m is the
relative velocity. Note that p = / k connects the momentum to the wavevector, which was used in section 3.1.
The momenta in equation (5) are related by energy and momentum conservation such that p + p, = p’ + pi
and|p — p| = |[p’ — p;l. The integration variable is Q=@ - p) / Ip" — p;l. Equation (4) does not provide an
accurate description of the atoms within the high-phase-space-density regions, i.e., the condensates. These
would presumably be described within the context of a Gross-Pitaevskii (GP)-type theory of BEC evolution [42—
44]. However, the goal of simulating both the high and low-phase-space-density components of the gas is
beyond the scope of our current work. We simply wish to approximately capture the density evolution of the
condensates. This in turn yields a reasonable prediction for the scattering rates and therefore the formation and
deformation of the scattering halo.

We solve equation (4) numerically usinga DSMC algorithm, details of which have been published in [45].
We use an initial condition corresponding to both spatial and momentum densities proportional to the
probability distribution function,

2

P(R; x):max{l—s[l —Z&], 0}, a={1,2,3}, (6)
8]

« RU{ e} Ra'

where x (R,,) can denote either spatial or momentum coordinates (widths). The spatial part corresponds to a
Thomas—Fermi condensate density, with the widths calculated in the manner prescribed by [46, 47]. The
momentum widths are found by fitting to the experimental image of the expanded condensate after a 22 ms
TOF. The system is then divided into two halves, which propagate along the positive and negative x-axis,
respectively.

For a detailed account of the simulation method, we refer the reader to [45], which adjusts the original
DSMC approach [48] into a version appropriate to dipolar gases. Similar methods have been employed in the
study of ultracold gases, see for instance [49—51]. In particular, [49] also studied halo formation in the case of s-
and d-wave collisional cross sections. Briefly, our computational algorithm uses test-particles with phase-space
coordinates which are sampled from the initial distribution in equation (6). The test particles move classically
from one time-step to the next. At each time-step particles are binned in position space. The bin-size represents
the finite resolution of the delta-function within the numerics. Within each bin, the collision probability for each
pair of particles is evaluated according to equation (3) using the correct value of k corresponding to each pair.
Collisions are then chosen to occur stochastically in accordance with these probabilities. The post-collision
velocities are also chosen stochastically, in accordance with the differential scattering cross section in
equation (2).




10P Publishing

NewJ. Phys. 18 (2016) 113004 N QBurdick et al

3.3. Validity and limitations of the theoretical model

This model contains a microscopic quantum mechanical description of two-body collisions between
indistinguishable bosons and a purely classical (particle-like) description of the many-body time evolution. We
measure the original dysprosium condensate (prior to splitting) to have a condensate fraction of greater than
90%, and therefore one might expect the GP equation (or some related theory of coherent condensate dynamics)
to playarole in the time evolution. Before discussing the role of coherent many-body dynamics, we note a
practical issue associated with its inclusion. The GP equation on its own cannot account for halo formation
because the number of particles within each condensate is conserved [52]. The GP theory needs to be extended
to include the process of four-wave mixing between the two condensates (the mechanism responsible for halo
formation in the language of quantum field theory [43, 53—55]). This can be done, e.g., by linearizing
fluctuations about the condensate and treating them self consistently. To do this correctly however requires the
inclusion of Fock (exchange) terms which present a considerable computational challenge in the case of long-
range dipolar interactions [56-58].

In our experimental scenario, the collision energy between the condensates is E.,) = 860 nK, large
compared to the chemical potential of the condensate which we estimate to be in the range 1. ~4-20 nK[59].
Therefore the inter-cloud collisions occur entirely within the free-particle-like region of the spectrum, well
above the linear (Bogoliubov) regime of phonon-like excitations. This supports our usage of a classical kinetic
(Boltzmann) equation to describe the formation of the halo. Furthermore, in order to accurately predict the
scattering rate, our simulations should ideally capture not just the initial density of the two condensates but also
their density during expansion, i.e., we must accurately capture the condensate expansion dynamics. This is
problematic for our theoretical treatment since the dynamics of Bose condensate expansion lie beyond the scope
of the classical Boltzmann equation. However, by initializing the momentum distribution widths within our
simulations (see equation (6)) to that measured in the experiment (via TOF expansion imaging) we aim to
capture this expansion dynamics as accurately as possible. This approach is inherently empirical and obviously
does not correspond to a microscopic description of condensate expansion.

We conjecture that a potential shortcoming of our approach lies in its failure to capture stimulated
scattering. More concretely stated, our equation (5) does not include the bosonic stimulation factors
(proportional to the phase-space density in units of Planck’s constant /) which appear in the Uehling-Uhlenbeck
equation [60] (the lowest-order quantum correction to the Boltzmann equation). However, the inclusion of
such terms will only have a direct effect on regions of high phase-space density, i.e., the two original condensates,
rather than the halo itself. Effectively one can think of the stimulated scattering as an augmentation of the
differential scattering in equation (2) near the regions k = % and k = + where the two original condensates
lie. We note that the rapid expansion rate of the gas, which is roughly the inverse of the trap frequency [59, 61],
ensures that these stimulated processes are very short-lived. Within the halo but away from the condensates, we
estimate that this stimulation factor f (r, p, t)h® never exceeds 10 . A fully quantitative theory including these
stimulated scattering processes presents an obvious avenue for further research, but is beyond the scope of our
current work.

We are also hampered by an apparently incomplete understanding of the initial density profile, the direct in-
situ imaging of which is unfeasible. We use [46, 47] to predict the Thomas—Fermi widths, however, we note that
this same theory fails to accurately capture the TOF expansion [ 14, 38], thereby calling into question the exact
accuracy of these widths.

4, Results

The experimental absorption images are presented in the first column of figure 2, i.e., in panels (al), (b1), ...
(e1). Each image corresponds to the average of forty experimental runs at a fixed dipole alignment direction, as
stated in the figure caption. Imperfections in the diffraction leaves residual atoms with a momentum near 04 k; .
This was also observed in [62]. These atoms contribute noise to the measurement both near 0/ k; and in the

|27 k;| halos from collisions with the +2/2k; BECs. However, the effect of the dipole alignment direction is clear
from the remarkable variation between images (al), (bl), ... (el). We run a family of simulations for each value
of the dipole alignment direction, but with varying s-wave scattering length’. These families of simulation results
are shown as the smaller images in figure 2 panels (a2)—(a9), (b2)-(b9), ... (e2)—(e9). In addition to the
simulations which we present here, we have also looked at initializing the test particles using Gaussian
distribution functions in place of equation (6), and also small variations in momentum and spatial widths R,,.
However, we found that such variations have very little effect on our conclusions.

> Weallow scattering length to vary because the large number of internal degrees of freedom within open-shell lanthanide atoms [63, 64]
restricts our ability to microscopically determine the scattering lengths of these atoms, though previous measurements have restricted the
range of likely values [26, 65, 66].
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Figure 2. Absorption images in the X—Z plane after 22 ms TOF and averaged forty times each. The larger images labeled (al), (b1),
etc show the experimental data and the dipole alignment configuration, while the smaller images (a2)-(a9), (b2)—(b9), etc show
simulation images, each with a different contribution from the s-wave (short-range) interaction. This contribution varies from

a = 40a in (a2), (b2), etc to a = 1804, in (a9), (b9), etc, with uniform steps of 20a, in between. Dipoles are aligned along the
direction: (1, 0, 0) in (a), (0, 1, 0) in (b), (0, 0, 1) in(c), (1, 0, 1)/~/2 in(d),and (0, 1, 1)/+/2 in (). The colour scale to the right
shows the number of atoms per pixel for all data sets.
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Figure 3. (a) Pixel-by-pixel comparison of the experimental and simulated absorption images with dipole alignment along (1, 0, 0).
Blue points are simulations with the expected initial atomic density; green (red) points are simulations with ~33% higher (lower)
density. The shift in the minimum caused by altering the density is discussed further in the text. (b)—(e) Pixel-by-pixel comparison of
the experimental and simulated absorption images for different dipole alignment directions: (0, 1, 0) in (b), (0, 0, 1) in (c),

(1, 0, 1)/+/2 in(d),and (0, 1, 1)/~/2 in (e). The points denote the value of the weighted least squares cost function for each simulated
s-wave scattering length a (see text for details). (f) Example of the masking used for pixel-by-pixel comparisons. The grey regions to the
left and right mask the unscattered BECs, and the central grey region masks atoms not diffracted by the lattice.

We perform a pixel-by-pixel comparison between the experimental and simulated scattering images. Each
pixel corresponds to an area of 2.6 ym x 2.6 pm. For each dipole alignment direction, the average experimental
image & is obtained as well as the standard error for each pixel £7. The experimental image and each simulation
image S (including unscattered atoms) is normalized to suppress the effects of atom number variations, and a
mask is then applied to the images to exclude the unscattered BECs and atoms not diffracted by the lattice. An
example of a masked image is shown in figure 3(f). The weighted sum of the squared residuals is calculated for
each simulated image S = 32,:(&;; — Sij)? / (£5)% where the subscript ij denotes the pixel in the ith row and jth
column of an image. This corresponds to the cost function for a weighted least squares regression. The results of
this analysis are shown in figures 3(a)—(e). Though a particular choice of scattering length, 4, minimizes S for
each dipole alignment direction, the analysis is not sensitive enough to define a 1o confidence interval. However,
as seen in figure 3, all the minima fall within the range of 120a,—160a,, which is consistent with measurements
reported in our previous work [26, 66]. We believe that the fluctuations in the location of the minima in figure 3
are primarily due to an incomplete knowledge of the initial density of the BEC. Recent results suggest that
dipolar interactions in strongly dipolar BECs can result in the formation of droplets which require beyond-
mean-field effects to be quantitatively understood, see [67—69]. While we expect an initial peak density of
2.1(2) x 10 cm > within the mean-field theory, we have run additional simulations with slight variations in
the spatial widths of equation (6) which determines initial density. These variations lead to the density increasing
(decreasing) by as much a factor of 1.37 (0.67). The results (for dipoles aligned along the %-axis) are shown in
figure 3(a). As can be observed by the green line in figure 3(a), running a simulation at a higher density generates
asmall but noticeable shift in the minimum towards a lower scattering length. This occurs because the increased
density generates a larger number of scattered atoms in the halo, and therefore a shift toward a lower scattering
length compensates against this change. Similar statements can be made about the simulations at a reduced
density.

We also analyze the collision frequency and, through a detailed comparison between simulation and
experiment, establish the relevance of multiple collisions. These are collisions involving atoms that have already
been scattered out of the original condensates. One might expect that a simple prediction for the mean number
of collisions might be I. = (1) op,,/m, where (1) is the mean density. However, because the expansion occurs

7
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Figure 4. Analysis of multiple collision effects in the case where dipoles are aligned along the % axis. (a) The experimental absorption
image. (b)—(f) Analysis of simulation data: (b) shows the population of atoms separated by the number of scattering events each atom
incurred; (c) shows the full simulation of the absorption image; (d) an absorption image with only the atoms which scattered once, and
is therefore in perfect correspondence with the two-body differential cross section; (e) shows an absorption image with only the atoms
which scattered twice; (f) shows an absorption image with only the atoms which scattered three times. The simulations were done with
an s-wave scatteringlength a = 140a,. The colour-scale (defining the number of atoms per pixel) is the same in panels (a) and (c) and
shown beneath panel (a). The remaining panels correspond to the colour-scale shown on the right.

00% (b)

40%

w

20%

0,
0% 01234=5

80%

=

60% ®

40%
20%

0%

01234=5

Figure 5. Similar to figure 4, except with dipoles aligned along the (& + 2)/~/2 axis (shown in the top row, (a)—(d)) and the 2 axis
(shown in the bottom row, (e)—(h)). (a) and (e) The experimental absorption images associated with their own colour-scale at left,
indicating number of atoms per pixel. (b)-(d) and (f)—(h) Analysis of simulation data: (b) and (f) show the population of atoms
separated by the number of scattering events each atom incurred; (c) and (g) show an absorption image with only the atoms which
scattered once, and is therefore in perfect correspondence with the two-body differential cross section; (d) and (h) show an absorption
image with only the atoms which scattered twice. The simulations were done with an s-wave scatteringlength a = 140a,. The
presence of multiple collisions is less pronounced for these dipole alignment directions than in figure 4.

over a time scale comparable with the time scale over which the clouds overlap, this formula significantly over-
predicts the number of collisions. Unfortunately, a simple analytic theory of expansion in dipolar condensates is
not yet available, so we must turn to the simulations which account empirically for condensate expansion. The
nature of the DSMC method allows one to label particles and keep track of collisions as they occur. The results
are shown in figure 4 for dipoles aligned along X, a case in which the presence of multiple collisions is strong.
Figure 5 shows results where the dipoles are aligned alongboth (£ + 2)/~/2 and 2, and the presence of multiple
collisions is less relevant. The data can be reasonably well understood starting from equation (3) and noting that,
when a = 140a,, the total cross section has a maximum at 7 = 0° (corresponding to dipoles aligned along X)
and a minimum at 77 = 90° (corresponding to dipoles aligned anywhere in the -2 plane). Specifically, we have
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a(0°)/0(90°) ~ 2.6and°® ¢ (0°)/0 (45°) ~ 1.6. For this reason, we observe the unscattered fraction of the gas
increases from ~40% in figure 4(b), to ~60% in figure 5(b), and to ~80% in figure 5(f). From this, we conclude
that the experimental absorption image with dipoles aligned along the X axis is strongly affected by atoms which
have undergone multiple collisions. Indeed, these atoms appear to constitute the majority of the absorption
image in this case. Reducing the initial density to suppress multiple collisions is not practicable due to the sharp
loss in signal-to-noise. However, for all other alignment directions the experimental absorption image (away
from the condensate regions) is dominated by a single scattering event, and is therefore in close correspondence
with the differential scattering cross section of equation (2).

5. Conclusion and discussion

In conclusion, we have measured the differential scattering between identical dipolar bosons in the low-energy
(universal) regime by imaging the halos of atoms scattering from two colliding Dy BECs. The results depend
strongly on the angle between the dipole alignment direction and the collision axis and are well described by the
analytic formula in equation (2), derived under the first-order Born approximation. Although it is not intended
to be entirely quantitative, a classical Monte-Carlo simulation of the many-body dynamics provides a reasonable
higher-order approximation to account for finite-density effects and finite-momentum distribution widths. We
allow the s-wave scattering length to vary within the simulations, and note that discrepancies between
simulation and experiment are minimized at a scattering length which remains consistent with previous
measurements [26, 66].

The measurements provide a beautiful demonstration of the theoretical prediction for alow energy
scattering amplitude, which dates back to O’Malley in 1964 [12]. The envisaged physical system under
consideration at that time was not dipolar collisions, but rather the scattering of an electron by a non-spherical
atom, such as atomic oxygen. However, we see that the interaction potential is asymptotically equivalent in the
two cases. Future work may use such experiments to probe the complex collisional physics of dipolar
condensates and degenerate Fermi gases near Feshbach resonances in and among the dense and ultradense
spectra observed in the dysprosium and erbium systems [17, 40, 65, 70-72].
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