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Abstract

Titanium dioxide, TiO,, has multiple applications in catalysis, energy conversion and memristive
devices because of its electronic structure. Most of these applications utilize the naturally existing
phases: rutile, anatase and brookite. Despite the simple form of TiO, and its wide uses, there is long-
standing disagreement between theory and experiment on the energetic ordering of these phases that
has never been resolved. We present the first analysis of phase stability at zero temperature using the
highly accurate many-body fixed node diffusion Quantum Monte Carlo (QMC) method. We also
include the effects of temperature by calculating the Helmholtz free energy including both internal
energy and vibrational contributions from density functional perturbation theory based quasi
harmonic phonon calculations. Our QMC calculations find that anatase is the most stable phase at
zero temperature, consistent with many previous mean-field calculations. However, at elevated
temperatures, rutile becomes the most stable phase. For all finite temperatures, brookite is always the
least stable phase.

1. Introduction

Transition metal oxides are versatile compounds with a number of actual and potential applications because of
their coupling between charge, spin, and lattice degrees of freedom [1]. Titanium dioxide, TiO,, is a particular 3d
transition metal oxide of great interest because of its wide range of applications. This versatility is partly due to
the many oxidation states of Tiand the different structural polymorphs of titanium oxides. In nature, TiO,
occurs in three different structural polymorphs at ambient conditions: rutile, anatase and brookite. Rutile is the
most abundant and is widely used as a white pigment, opacifier and ultraviolet radiation absorber, while anatase
is the most photocatalytically active polymorph [2, 3]. Numerous other phases have been identified or predicted,
particularly at high pressure [4, 5].

Nanocrystalline mixtures of anatase and rutile TiO, are used in dye-sensitized solar cells and water splitting
for hydrogen fuel production [2, 4, 6]. Brookite is also a good photocatalyst although it is more difficult to mine
or synthesize than rutile or anatase [7]. Because the functionality and applications of TiO, depends on the
structural polymorph, accurate characterization of the phase stability of the TiO, polymorphs is critical. The
most basic questions that need to be answered are which is the most stable of the three natural polymorphs, and
what are the energy differences between them.

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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The majority of experimental studies that have addressed these questions have concluded that the bulk
crystalline transition from anatase or brookite to rutile is irreversible, so that anatase and brookite are metastable
[4, 8, 9]. However, it is very challenging to accurately measure the subtle enthalpy differences between these
phases. For example, the measured difference between rutile and anatase ranges from 0.158 to 2.50 mHa per
TiO, formula unit (f.u.) [8, 10], while the JANAF tables give 2.3 £ 0.5 mHa/f.u. [11]. For nanoscale and
potentially hydrated samples, there are phase stability reversals due to the importance of surface contributions
and relative variation in surface energies [12—16].

Theoretical predictions based on density functional theory (DFT) [17, 18] do not give consistent results, and
are often in disagreement with experimental results on the energetic ordering of the rutile, anatase, and brookite
polymorphs. Conventional DFT-based on the local-density approximation (LDA) as well as many generalized
gradient approximation (GGA) functionals give the result that anatase is the lowest-energy phase [19, 20], and
that brookite has lower energy than rutile [20]. This is clearly in disagreement with experiments. LDA or GGA
functionals are typically inadequate to describe transition metal oxides because of the self-interaction error and
strong electronic correlations in them. Specifically, LDA or GGA unphysically delocalize the 3d electrons of
titanium atoms. To account for electronic correlations, methods beyond LDA or GGA have been used. DFT+U
methods can obtain the correct energetic ordering between rutile, anatase and brookite phases by tuning the U-
parameter [21, 22]. However, optimizing the U-parameter for one physical property can result in less accurate
values for other physical properties. Most importantly, by its nature this approach is not predictive. Hybrid
functionals with exact Hartree—Fock exchange (EXX) often improve the accuracy of semilocal DFTs. Given the
generally improved thermodynamic properties of materials when calculated with hybrid functionals, it is
notable that standard hybrids with typical (25%) fractions of exact exchange do not reproduce the experimental
ordering. Indeed, a Hartree—Fock fraction of over 70% is needed to reproduce the experimental ordering [22]. In
arecent study using a non-self-consistent random-phase approximation with EXX, it was found that rutile is
more stable than anatase [23]. The poor description of dispersion interactions afforded by DFT has also been
considered to be a reason for the disagreement of the energetic ordering between LDA/GGA methods and
experiments, and calculations using dispersive interactions within the DFT+D method were performed [20, 24].
However, this type of method also introduces empiricism.

Further clouding comparisons between calculations and experiments is the consideration that DFT-based
calculations are usually done at 0 K. Because of the small experimental enthalpy differences between the TiO,
phases, it is reasonable to expect that finite-temperature effects may play an important role and may further
complicate theoretical determination of the relative stability of TiO, phases.

In order to correctly and reliably treat these small energy differences, theoretical predictions must be based
on methods that are more accurate than DFT-based ones, and preferably be based on methods that provide
avenues for systematic improvements. Quantum Monte Carlo (QMC) methods, particularly fixed-node
diffusion Monte Carlo (EN-DMC) [25], offer such capability. FN-DMC has been successfully applied to a wide
range of molecules [26] and solids [25, 27, 28]. Studies of transition metal oxides using the FN-DMC method,
including Ti O, [29], VO, [30], MnO [31], FeO [32], Cuprates [33, 34], NiO [35], ZnO [36, 37], have
demonstrated its outstanding capability of characterizing strong electron correlation in solids. Recent works
have also demonstrated the accuracy of FN-DMC when dealing with systems dominated by dispersion
interactions [38—40]. Moreover, the cost to calculate the energy per atom with QMC scales as N° where Nis the
number of electrons, and thus allows application to much larger systems than other correlated or many-body
methods, such as configuration interaction (CI) and coupled cluster (CC). Because it is a Monte Carlo method,
the FN-DMC algorithm can be easily parallelized and efficiently uses hundreds of thousands of processors,
including both CPUs and GPUs [41, 42]. In brief, FN-DMC is a very promising empirical parameter-free
method for simulating materials accurately and efficiently using supercomputers.

In this work, we first study the phase stability of rutile, anatase and brookite polymorphs at zero temperature
using the highly accurate FN-DMC. We determine the energetic ordering after considering all sources of
systematic errors, which can potentially contaminate the high accuracy required in order to unambiguously
determine the subtle energy difference between these different phases. We find anatase to be the most stable
polymorph at0 K, but we find the energy difference between anatase and rutile only to be 1.5 mHa per formula
unit (f.u.) with a statistical uncertainty of 0.1 mHa/f.u., while rutile and brookite have the same energy within
statistical errors in the absence of zero point motion. In order to account for finite temperature and to determine
the phase stability of the polymorphs at finite temperatures, we also study the phonon contributions to the phase
stability of all the three polymorphs at finite temperatures using density functional perturbation theory (DFPT)
[43]. Temperature has a profound effect on the phase stability, producing a different ordering than at zero
temperature. Taking phonon contributions into account, we find that the free energy of rutile becomes lower
than that of anatase at 650 + 150 K. This is consistent with the experimental observations that rutile can easily
be synthesized from anatase by keeping it at above 870 K for a few minutes up to a day or at 663 K after one week
[4]. We also find that the free energy of brookite is higher than that of rutile and anatase at all finite temperatures.

2



10P Publishing

NewJ. Phys. 18 (2016) 113049 Y Luoetal

Table 1. Lattice parameters of the unit cells and Wigner—Seitz radii of supercells for rutile, anatase and brookite. Rutile, anatase, and brookite
has unit cells of 2, 4, and 8 f.u., respectively. The last three columns show the Wigner—Seitz radius for each computational cell containing 16,
32 (brookite), 36 (rutile and anatase), and 72 formula units.

. WS radii (Bohr)
Polymorph Lattice parameters (A)
S16 $32/36 S72
rutile [48] (RT) a,c = 4.5938,2.9586 7.0780 9.7057 12.2768
anatase [49] (298K) a,c = 3.78512,9.51185 7.1528 8.9874 12.0303
brookite [50] (RT) a,b,c = 9.184,5.447,5.145 7.0796 9.7226 11.3836

RT: Room temperature.

Table 2. FN-DMC energies of rutile and anatase (TiO,)s¢ with (SD
+J123) and without (SD+J12) a three-body Jastrow factor for a
36-formula unit unit cell; a time step 0.004 Ha lisused in these

calculations.
E(TiO,) (Ha)
Wy AE (Ha)
Rutile Anatase
SD-+J12 —90.6192(2) —90.6217(2) —0.0025(3)
SD-J123 ~90.6220(2) —90.6242(2) ~0.0022(3)

2. Computational methods

2.1. Quantum Monte Carlo methods

The QMC calculations reported here are carried out within the variational Monte Carlo (VMC) and FN-DMC
frameworks implemented in the QMCPACK code [41, 42] with a Slater—Jastrow type trial wave function. The
single-particle orbitals used to construct the Slater determinants are extracted from LDA+U [44] calculations
obtained from the Quantum ESPRESSO [45] electronic structure code. The plane-wave cutoffin DFT/LDA
calculations was 150 Ha which is much higher than conventional DFT calculations because of the hard
pseudopotentials we use here. Total energies were converged to 0.01 mHa/f.u. with respect to this cutoff. The
Monkhorst-Pack meshes of k-pointsare 8 x 8 x 8,12 x 12 x 6and 6 x 8 x 8 forrutile, anatase and
brookite primitive cells respectively. Total energies were converged to 0.0005 mHa/f.u. with these k-point
samplings. The Hubbard U parameter is chosen variationally by FN-DMC [29] (see section 2.2), which provides
an un-biased way of determining this parameter. Note that this method does not guarantee that DFT+ U
calculations with this value of U will yield any better agreement with experiments than other methods [44, 46].
This method instead is a limited way to optimize the nodal surface of the FN-DMC wave function. Within
QMCPACK, the orbitals are evaluated on a real space mesh using B-splines to achieve a constant-time per
orbital evaluation of the orbitals independent of the basis set size. The Jastrow part of the trial wave function
contains both one- and two-body Jastrow factors with a total of 40 parameters optimized by energy
minimization [47] within VMC. The one-body Jastrow has a cutoff radius as large as the Wigner—Seitz (WS)
radius ofa 16 f.u. cell, listed in table 1. The two-body Jastrow cutoff is the same as the WS radius of the supercell.
To test the sensitivity of the DMC energy to the Jastrow factor, we also used a three-body Jastrow factor to
capture additional ion-electron-electron correlations; this calculation was however limited to 36 f.u. supercells
because of its higher computational expense. The three-body Jastrow factor lowers the final DMC energies, but
the energy difference between rutile and anatase remains consistent with the calculation with only one and two
body Jastrow factors, 2.2(3) versus 2.5(3) mHa, see table 2. All the optimized Jastrow factors are provided in the
supplemental material.

In our calculations, the core electrons, (1s, 2s, 2p) of Tiand (1s) of O, respectively, are removed by using
scalar relativistic norm-conserving pseudopotentials(PPs) generated by DFT-LDA atomic calculations and
customized for QMC by using very small cutoff radii for more accurate core description (labeled as PP-QMC)
[51, 52]. These pseudopotentials are provided together with benchmark results [51, 52] in the supplemental
material. To assess the pseudopotential bias on phase stability, we have calculated the energy difference between
anatase and rutilein 16 f.u. supercells using both high-fidelity Burkatzki, Filippi, Dolg (BFD) Hartree—Fock PPs
[53, 54] and our state-of-art LDA PPs. Both set of PPs give the same energy difference between the phases with
our target accuracy, see table 3. This indicates that the difference between these potentials is not biasing the
results. Therefore our findings about phase stability are reliable.
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Table 3. DMC energy values of anatase and rutile with the Chiesa
correction calculated in 16 f.u. supercell and time step 0.01 Ha ™'
using BFD and our PPs. The error bars of calculations with BFD
PPs are smaller due to more statistics collected. Though the abso-
lute energy values are different, the energy difference is consistent
within statistical error below our accuracy criteria 0.37 mHa.

PP Anatase (Ha) Rutile (Ha) diff (mHa)
Ours —90.63490(24) —90.63243(12) 2.47(27)
BFD ~90.7077(1) ~90.7052(1) 2.50(13)
2.5
20 B

1.5 1 Anatase (TiOp)7, —B— |
Anatase (T|02)3 —E—
1.0 | Anatase (TiOp)1g —E=— |
: Rutile (T|02)72 —e—
Rutile (T|O )35 —O—
05 | Rutile (TiO5)1g —o— |
) Brookite (TiOy)7o +—2

0.0 &

VMC LDA+U E(TiO,) / mHa

-0.5

-1.0 ‘ ‘ ‘
1x1x1 2x2x2 3x3x3 4x4x4

Twists

Figure 1. The VMC energy difference per formula unit between the multiple twist grids and the Gamma point. The energy value of
(Ti0,)¢ anatase converges usinga 2 x 2 x 2 twist grid; all the other energy values of anatase, rutile and brookite calculated at the
Gamma point are well converged within 0.3 mHa (shaded gray region).

To allow the use of non-local pseudopotentials, the locality approximation [55] is often applied. However, it
results in non-variational energies and can result in dynamical instabilities in the walker population. Therefore,
we instead use T-moves [56], which are devised to directly treat the negative sign from non-local operators by an
effective Hamiltonian, restoring the variational nature of the method and regaining a stable walker population.

The accuracy of DMC calculations applied to periodic solids are affected by two types of finite size errors.
These arise whenever the thermodynamic-limit behavior of a solid is approximated from calculations on a finite
size simulation cell with periodic boundary conditions. The first type are errors from one-body finite-size
effects. These can be mitigated using twist-averaged boundary conditions [57]. By comparing the ground state
VMC energies averaged on different twist grids, we find that the energy evaluated with only the gamma point has
already converged to our required accuracy of 0.37 mHa per f.u. for all of the three gapped TiO, polymorphs
when using medium and large supercells, see figure 1. In the simulations with the smallest 16 formula unit
supercell, the Gamma point is sufficient for rutilebuta 2 x 2 X 2 twist grid is needed for anatase. All of the
following FN-DMC calculations obey this choice of twists.

The other type of finite-size errors in DMC calculations are from two-body effects that arise from artificial
periodic images of an electron’s exchange-correlation hole. This error is more difficult to control than the one-
body ones. Many different schemes have been devised to control these errors, including the modified periodic
Coulomb (MPC) [58—60] and Chiesa [61] corrections to mitigate the two-body potential or kinetic energy
errors. The former modifies the Coulomb potential while the latter directly analyzes the long range Jastrow
factor and electronic structure factor to determine corrections. Unless otherwise specified, the latter one is used
in all our calculations for the reason explained in figure 4. We perform calculations with three supercell sizes and
extrapolate values to infinite size. Finite size extrapolation is essential, regardless of the finite size correction
scheme used, and at least three cell sizes are needed to judge the accuracy of the extrapolation. The shapes of the
supercells are generated in an effort to maximize simulation cell radius for a given number of atoms in the
supercell in order to further reduce two-body finite-size effects. The tiling matrices used to construct the
different supercells are given in the supplemental material.

We perform FN-DMC calculations of rutile, anatase and brookite solids each in three supercell sizes
specified in table 1. The largest supercell, 72 formula units, contains 216 atoms and 1728 electrons. The lattice
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Table 4. Atomic positions of rutile, anatase, and brookite. (a)
relaxed with LDA, (a) relaxed with PBE [20], (c) experiment [62],

(d) experiment [63].

Polymorph Wryckoff positions

rutile Ti2a(0,0,0)

(P4,/mnm) 0 4f(x,x,0): x = 0.305170.3052”,0.3047(1)°
anatase Ti4a(0,0,0)

(I4,/amd) 08e(0,0,2): z = 0.2074%, 0.2068%, 0.2081(1)°
brookite Ti8c(x, y,2): x = 0.1289°,0.1290%, 0.1290¢
(Pbca) y = 0.0951%0.0906",0.0972%

z = 0.8624%,0.8623%, 0.8629¢
01 8c(x, y,2): x = 0.0116°,0.0100%,0.0101°
y = 0.1469“,0.1483%,0.1486"
z = 0.1826",0.1833%,0.1824¢
028c(x, y,2): x = 0.2294°,0.2298",0.2304"
y = 0.1073%,0.1081%,0.11307
z = 0.5354%,0.5365%, 0.5371¢

constants of the primitive cells were taken from experiments [48—50]. For consistency with our later phonon
calculations, the coordinates of all the atoms in the unit cell are relaxed with DFT/LDA. The residual forces are
smaller than 0.1 mHa/a.u. on each atom after the relaxation. For rutile and anatase, the Wyckoff positions,
listed in table 4, given by DFT/LDA, DFT/PBE [20], and the experiment [62] differ by less than 0.001. The
Wyckoff positions of brookite given by DFT/LDA, DFT/PBE [20], and the experiment [63] have slightly larger
differences, but are still within 0.005. The DFT/LDA energy differences between the experimentally determined
structures and the ones relaxed with LDA are 0.005, 0.03, and 0.1 mHa/f.u. for rutile, anatase, and brookite,
respectively. These differences are substantially smaller than our target accuracy 0.37 mHa, indicating that use
of LDA relaxed structures will not significantly influence the phase stability.

2.2. Trial wave function optimization

When studying fermionic systems, the fixed-node approximation is applied in order to ensure the antisymmetry
of the trial wave function in the DMC calculations. The FN-DMC total energy is variational with respect to the
quality of the nodes of the trial wave function. With the Slater—Jastrow trial wave functions used here, the trial
wave function consists of a single Slater determinant multiplied by Jastrow factors. The Jastrow factors are never
zero and therefore do not alter the nodal structure. The nodes are controlled by the single particle orbitals within
the Slater determinant. Currently, the complete optimization of these orbitals within Quantum Monte Carlo is
not practical for our simulation sizes. Instead, we use orbitals extracted from LDA+- U calculations. The best set
of orbitals gives the lowest DMC energy.

Within DFT studies using the DFT+U framework, it is always a big challenge to justify the right value of
parameter U as different methods may yield very distinct values even when the same system is studied. A value of
U can be computed in a self-consistent manner through alinear response method [44, 46], or by using an
iterative scheme combining DFT+U and GW calculations to minimize the quasi-particle corrections [64].
Another route is to empirically select the Uvalue so as to reproduce experimental results of a physical property,
such as band gaps [65], or reaction energy [66]. Because of the complexity (and ambiguity) of choosing a value
for U, awide range of Ufrom 2.5 eV to 7.5 eV has been reported in previous studies on TiO, polymorphs
[20,21, 64, 65].

In contrast, within the FN-DMC framework U is a variational parameter in the total energy. When the
T-move scheme is used for their evaluation [56], the total energy evaluated by FN-DMC is fully variational even
when pseudopotentials are used. A better nodal surface described by a more accurate trial wave function yields a
lower FN-DMC energy. Therefore, the value of Uwhich minimizes the FN-DMC energy gives the best orbitals
for constructing the trial wave function. This practice has been applied in many previous studies on transition
metal oxides, e.g. [29, 33, 36]. Other works using orbitals obtained from hybrid functionals show that varying the
weight of the exact exchange has the similar effect as varying Uin DFT+ U for optimizing the nodal structure,
e.g.[30-32, 34, 37]. This quality of wave function is sufficient to reproduce phase transitions in FeO [32], the
metal-insulator transition in VO, [30], magnetic properties of cuprates [33, 34], the phase diagram of MnO [31],
the properties of ZnSe and ZnO [36, 37], and group IIA and I1IB binary oxides [28]. We therefore expect this
quality of wave function to be sufficient for the study of TiO,.

In this work, for each of the three polymorphs, we constructed a set of trial wave functions varying the value
of Ufrom 1.0 eV t09.0 eV in DMC calculations using cells of 32 or 36 f.u. (figure 2). The energy minimum is
reached at Uequal t0 4.86(19), 4.86(20) and 4.83(6) eV for rutile, anatase and brookite, respectively. Because all
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Ahatase —e—
B Rutile —=—
Brookite —&—

DMC E(TiO,) / mHa

0 2 4 6 8 10
U/eV

Figure 2. FN-DMC energy per TiO, formula unit as a function of the U parameter with a time step 0.01 Ha™'. The calculations of
rutile and anatase are performed with 36 f.u. supercells, and brookite has a different supercell with 32 formula units. The curves show a
fit using a quartic polynomial function. The values of U corresponding to the energy minimum of rutile, anatase and brookite are 4.86
(19),4.86(20) and 4.83(6) eV respectively. The energy values are shifted by —90.6369 Ha to place the energy minimum of anatase at
Zero energy.

three values are consistent within error bars we use U = 4.86 eV in all of the following calculations. We note
that this data already clearly shows anatase as lowest in energy.

3. Results

3.1. Time step error

As a Green’s function projector method for solving the Schrodinger equation in imaginary time, the DMC
algorithm is accurate only in the limit of small time steps 7. However, the computational effort required to
achieve a given error bar scales with 1 /7 and the straightforward use of infinitesimally small time steps is not
possible. In practice, three or more sufficiently small time steps {7;} are used and the ground-state energy is
obtained by extrapolating to the limit 7 = 0. Because of the subtle energy difference between rutile and anatase,
the most valuable calculations are performed on the large supercells in order to reduce all sources of finite size
error while a statistical error below 0.37 mHa per formula unit is required. Hence, using very small time steps
(reaching the linear regime) becomes extremely expensive in terms of computational cost. Instead, we monitor
the convergence of the energy differences between the phases as the time step is reduced. We calculate the FN-
DMC total energy difference between rutile and anatase in the three supercell sizes with

7 = 0.004, 0.007, 0.010, 0.013 Ha !, as well as 0.001 for the small and medium sizes and 0.002 for the large size;
see data points and fits to linear functions in figure 3. This figure shows that the energy differences in all the three
sizes are very robust as 7 decreases and the time step error with our chosen time steps does not affect the energy
ordering: anatase is always lowest in energy and not sensitive to the cell size or time step used.

3.2. Finite-size effects

FN-DMC s a real space method and therefore suffers from finite-size effects when applied within periodic
boundary conditions. We therefore perform calculations on a series of different sized supercells and extrapolate
to infinite cell size. Figure 4 shows the FN-DMC energy difference between rutile and anatase calculated using
the uncorrected Coulomb interaction, MPC and Chiesa schemes for multiple cell sizes. In our largest
calculations of 72 formula units the different finite-size correction schemes agree to within 0.4 mHa.
Calculations on smaller cell sizes are more sensitive to the finite-size correction schemes. However, the sign of
the energy difference is insensitive to cell size and to the finite size correction scheme.

To reduce the computational cost of studying brookite, we performed the calculation of brookite solid only
at 7 = 0.004 Ha™ ' ina 72 formula unit supercell because the largest supercells have energies very close to the
value obtained when extrapolated to infinite cell size. The total energy values of rutile, anatase and brookite for
final comparison are reported in table 5. Anatase has the lowest energy while rutile and brookite have the same
energy within statistical errors. Therefore, anatase is the most stable phase at zero temperature based on our FN-
DMC calculations. This is the same qualitative result as is obtained using conventional DFT with LDA/GGA
functionals and the ‘incorrect’ order as compared to many experimental reports. FN-DMC predicts that rutile
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respectively.

DMC+Chiesa E(Antase)-E(Rutile) / mHa

-1.0 |

1.5 |

I

A l ]

(T|02)72 —B—
(Ti02)gg —o—
(mozlie

-3.5 :

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
Time step / Hartree™

Figure 3. FN-DMC energy difference per formula unit between anatase and rutile as a function of the DMC time step. The
extrapolated energy differences at zero time step are —1.77(9), —1.92(7) and —2.49(16) mHa for supercell sizes 72, 36 and 16

E(Antase)-E(Rutile) / mHa

0.0

-1.0

-1.5

No corr.
MPC corr.
Chiesa corr.

1/72

1/36

Figure 4. FN-DMC energy difference per formula unit between anatase and rutile as a function of supercell size. The zero time step
data points are fitted linearly and extrapolated to infinite supercell size. MPC and Chiesa corrections are both added individually to
correct the finite size error. The extrapolated energy values with Chiesa and without correction are consistent within error bars but the
MPC one is higher. For this reason, we choose Chiesa correction as our scheme used in all the calculations. The energy difference
Eanatase — Erutile extrapolated to both zero time-step and infinite supercell is —1.5(1) mHa.

1/16
1/ Size

Table 5. FN-DMC energies of rutile, anatase and brookite (TiO,)7, calcu-
lated with a time step 0.004 Ha™ ', and zero point energy (ZPE) calculated
using DFPT. Energy values with (labeled with *) and without Chiesa cor-
rection are provided. Because the energy difference between anatase and
rutile without correction are consistent with the extrapolated value
obtained in figure 4, we use all the three DMC energy values without
Chiesa correction for the internal energy correction in the phonon study.
The energy values given by DFT with PP-GBRYV are also listed here.

E(TiO,)/Ha

Energy

Rutile Anatase Brookite
LDA (TiO,) —92.10711 —92.10852 —92.10826
DMC (TiO,) %, —90.6285(2) —90.6302(2) —90.6289(1)
DMC (TiO,), —90.6300(2) —90.6315(2) —90.6300(1)
ZPE 0.00766 0.00798 0.00800
Total —90.6223(2) —90.6235(2) —90.6220(1)
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and brookite are very competitive in stability at zero temperature while DFT favors brookite [20]. Additional
discussion is given in section 3.3, after considering the role of lattice dynamics at zero and elevated temperatures.

3.3. Lattice dynamics and finite-temperature enthalpies
While our DMC calculations help to establish the energy ordering of the rutile and anatase phases at 0 K
(neglecting zero point energy), our results are in disagreement with experimental observations at finite
temperature [4, 8—10] in which rutile is the most stable phase. We therefore investigate the role of lattice
vibrations at finite temperature on the phase stability to see if the ordering is influenced more by the entropy
than the electronic contribution to the free energy at finite temperatures. The use of QMC for studying lattice
dynamics would be desirable, but such calculations are not yet possible because of the lack of developed
algorithms. We therefore utilize DFT for the finite temperature study.

We calculate the Helmholtz free energy H (V, T) atatemperature T and volume V within the quasi-
harmonic approximation (QHA), in which

HV, D)= UW) + 2 (V)
9,
+ kTS In[1 — exp(—hwj(V, §)/ks T)1,
4,

where the first, second and third terms are, respectively, the internal, zero-point and thermal contributions. In
our calculations, the internal energy is calculated as

U (V) = UPFH(V) + UMC (V) — UPHT (Veyp),

where UPFT (V) is the DFT internal energy, amended by adding the energy difference between FN-DMC and
DFT on the experimental structure. In general this energy correction should be volume dependent, but this
approximation is accurate for the very small volume range considered here. The zero-point and thermal
contribution terms are obtained using density functional perturbation theory (DFPT) as implemented in the
phonon code of the Quantum ESPRESSO package [45]. The accuracy of DFT is sufficient for computing the
inter-atomic force constants (IFC) used by phonon calculations because the phonon dispersion relations of
rutile calculated by DFT and measured by inelastic neutron scattering are in a good agreement [67].

For these calculations we utilize GBRV ultra-soft LDA pseudopotentials [68] and 40 Ha kinetic energy cutoff
for lower computational cost without compromising accuracy. Calculations with PP-GBRV and our much
harder PP-QMC (generated by DFT/LDA) indicate the consistency of pseudopotentials in DFT and QMC
calculations by showing no difference in the phonon dispersion relation and zero-point energy. DFPT
calculations with Helmholtz free energy converged to 0.05 mHa/f.u. are obtained with k- and g-point meshes of
8§ X 8 x 8and 6 x 6 x 6forrutile,12 X 12 x 6and 4 X 4 x 2foranatase,and4 X 6 X 6and2 X 4 X 4
for brookite. The final phonon density of states is recalculated from the IFC on a much denser g-mesh,

13 x 13 x 13.Toapply the QHA, phonon calculations are performed on eight volumes for each solid with the
shape of cell and atomic positions fully relaxed. Note that for rutile, given the instability caused by the soft modes
in large expansion [69], free energy values at large expansion are extrapolated. The fact that these DFT-predicted
soft phonon modes have been confirmed by inelastic x-ray scattering [70] strengthens the credibility of DFT
phonon calculations in these materials.

The zero point energy (ZPE) values of rutile, anatase and brookite are listed in table 5, and the Helmholtz free
energy as a function of temperature are shown in figure 5. At zero temperature, anatase remains the most stable
phase even though the larger ZPE of anatase reduces the energy difference between anatase and rutile, but it is
not enough to change the energetic ordering qualitatively. Because of alarger ZPE, brookite becomes less stable
than rutile, which is consistent with the experimental findings. As the temperature is increased, the Helmholtz
energy of rutile decreases much faster than that of anatase, and above 650 £ 150 K, rutile becomes the most
stable phase. This phase transition is consistent with many experimental observations [4, 9] that rutile can be
very easily synthesized by heating anatase above about 870 K. It was also reported that at 663 K, rutile became
detectable in anatase powder after one week [4]. In all temperatures up to the melting point, brookite remains
less stable than rutile and anatase.

We would like to emphasize that the QMC correction for the internal energy is crucial to improve the
theoretical prediction of the phase stability between rutile and brookite, although it does not change the relative
stability of anatase and rutile compared to pure DFPT. This experience clearly shows that a specific density
functional may work well in a few cases but is not guaranteed to work all the time. Thus methods like QMC
offering higher reliability and predictability are desired.
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Figure 5. The Helmholtz free energy of rutile, anatase and brookite as a function of temperature. All the values are shifted by
—90.6241 Ha, the Helmholtz free energy of anatase at 0 K. The energy differences between brookite and rutile at 0-400 K, and
between anatase and rutile at 450-850 K are provided in the insets (a) and (b). The energy of brookite is always larger than that of the
other two solids, while the energy of rutile becomes lower than that of anatase at 650 & 150 K. The error bars indicate the statistical
uncertainty due to the QMC data used for the 0 K energy differences.

4. Conclusions and outlook

We have studied the phase stability of rutile, anatase and brookite polymorphs of TiO, at 0 K using highly
accurate FN-DMC calculations. We also calculated the Helmholtz free energy of the polymorphs at finite
temperature by including a DFPT based quasi-harmonic treatment of the phonon contributions. Our results
show that at zero temperature, anatase is the most stable phase, while brookite is less stable than rutile when
zero-point energy is included. As the temperature is increased, the free energy of rutile decreases faster than that
of anatase, and rutile becomes the most stable bulk phase at temperatures above about 650 K. The effect of lattice
vibrations at finite temperature is therefore crucial to the bulk phase stability of all the phases.

The largest potential source of errors in our QMC calculations are the time step and finite size errors. We
have demonstrated that these are well converged, and our results are not sensitive to them. There are two sources
of systematic error remaining in the zero-temperature QMC calculations that prevents them from being exact.
First, our calculations are subject to the fermion sign problem and the fixed-node error that results from using
FN-DMC to control it. Ideally the nodal structure of the trial wave functions would be fully optimized in QMC.
This is becoming feasible for single Slater determinant wave functions in simple solids [71], but more flexible
many-body trial wave functions are also desirable. Today, we can not rigorously determine the relative nodal
error between the TiO, phases, although we believe it to be small. Second, because we utilize pseudopotentials
we must be concerned with the fundamental accuracy of the pseudopotential construction and the locality
errors that result when evaluated in QMC. We expect considerable error cancellation because all of the
polymorphs have, by definition, exactly the same composition. The locality error can be reduced by more
accurate trial wave functions, and the atom-specific nature of the locality error suggests that this error may be
targeted using methods inspired by quantum chemistry. Finally, the results for finite temperatures would
presumably be more accurate if QMC methods could be used for the lattice dynamics; however, this is at the
present not possible. In the future, improvements to those remaining systematic error should be achievable
when greater computational resources and improved methods are available. This would enable increased
confidence in our results. These improvements are desirable for all QMC calculations and are not restricted to
the current investigation.

In summary, our calculations indicate a potential resolution of the long-standing problem in reconciling
DFT-based calculations with experimental observations. The fact that our QMC and many conventional density
functional results obtain anatase as the most stable phase at 0 K suggests that these functionals might be
qualitatively correct in giving the energetic ordering between anatase and rutile: it should not be automatically
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assumed that these calculations are in error, and we caution against using prediction of rutile as most stable at
0 K to validate new electronic structure methods. Our finite temperature calculations show that the lattice-
dynamical contribution is important and should be taken into consideration when comparing with
experimental data. We hope that these results stimulate further computational and experimental work on the
phase diagram of this important material.
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