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Abstract
Building upon the recent pioneering work byMazenko and byDas andMazenko, we develop a
microscopic, non-equilibrium, statistical field theory for initially correlated canonical ensembles of
classicalmicroscopic particles obeyingHamiltonian dynamics. Our primary target is cosmic structure
formation, where initial Gaussian correlations in phase space are believed to be set by inflation.We
give an exact expression for the generating functional of this theory andwork out suitable
approximations.We specify the initial correlations by a power spectrum and derive general
expressions for the correlators of the density and the responsefield.We derive simple closed
expressions for the lowest-order contributions to the nonlinear cosmological power spectrum, valid
for arbitrary wave numbers.We further calculate the bispectrum expected in this theory within these
approximations and the power spectrumof cosmic densityfluctuations tofirst order in the
gravitational interaction, using a recent improvement of the Zel’dovich approximation.We show that,
with amodificationmotivated by the adhesion approximation, the nonlinear growth of the density
power spectrum found in numerical simulations of cosmic structure evolution is reproducedwell to
redshift zero and for arbitrary wave numbers evenwithinfirst-order perturbation theory. Our results
present the first fully analytic calculation of the nonlinear power spectrumof cosmic structures.

1. Introduction

1.1.Motivation and overview
In a sequence of pioneering papers,Mazenko andDas andMazenko [1–4] have recently shownhow the non-
equilibriumkinetic theory of classical particles can bemapped to the path-integral approach familiar from
statistical quantum field theory, in the spirit of [5, 6]. Besides the unifying formal analogy, this approach has a
multitude of advantages for the systematic development of perturbation theory and the calculation of
correlators. Another substantial advantage is that the theory begins with themicroscopic degrees of freedomof
the individual particles, which usually follow structurally simple equations ofmotion such as theHamiltonian
equations. Collective fields are introduced as operators extracting the desired informationwhen needed from
themicroscopic degrees of freedom in the generating functional of the theory.

This paper aims at building upon this approach tofind a new access to the theory of cosmological structure
formation.Despite heroic efforts and ingenious new developments, it has been notoriously difficult to calculate
into the nonlinear regime of second- or higher-order statistics of cosmic structures, such as the power spectrum
of the cosmic density field (see [7–28] for an inevitably eclectic list, and [29] for an extensive, impressive and
complete review).

One of the cardinal difficulties in conventional approaches to cosmological structure formation, both
Lagrangian and Eulerian, is that the perturbed quantities are the density and the velocityfields.With
dissipationless darkmatter dominating cosmic structures, however, particle trajectories can cross and form
multiple streams, at which point of the evolution the description by unique and smooth density and velocity
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fields breaks down. This difference betweenfluid and particle dynamics seems to be the decisive reason for the
difficulty in higher-order, standard cosmological perturbation theory.

Numerical simulations of cosmic structure formation do not encounter this problembecause they follow
the trajectories of large numbers of individual tracer particles. The density or other collective information is
calculatedwhen needed from the actual positions of these tracer particles.

A statistical, non-equilibrium field theory for classical particles can be seen as the analytic analog to a
numerical simulation based on particles. As in simulations, following particle trajectories has the decisive
advantages that the equations ofmotion are as simple as possible and that crossing trajectories pose no difficulty
at all for the analytic treatment.

With the foundation of the theoryworked out in [2, 4], the next step towards cosmological structure
formation is the definition of a suitable initial particle ensemble in phase space.Working this out is the first
purpose of this paper. For rendering our discussionmore accessible and self-contained, we shall begin in
section 2 by summarising the non-equibrium field theory for classical particles. In section 3, we include
operators for collective fields and for the particle interactions.We ask the expert readers for patience, butwe
believe that this paper ismore useful if it contains an outline of the theoretical foundations even though they
have already been developed and described in detail elsewhere. In section 4, we construct the free generating
functional for particle ensembles initially correlated in phase space. Section 5 discusses first-order perturbation
theory in canonical particle ensembles. In section 6, we derive specific expressions for low-order correlators of
the density and response fields, whichwe then specialise in section 7 to derive density power spectra for cosmic
structures atfirst order in the gravitational interaction. This section presents the first fully analytic calculation of
the nonlinear power spectrumof cosmic density fluctuations. Section 8 summarises the paper and presents our
conclusions.

Even though cosmic structure formation is ourmainmotivation, we believe that both the approach and our
central results, the generating functional for correlated classical particle ensembles and approximations to it,
may be useful for other areas of statistical physics.We thus intend to lay out the formalism as generally as
possible, with little or no reference to cosmology until section 7. To streamline the notation, we use the
abbreviations

≔ ≔
( )

( )ò ò ò ò p
x t

k
d d and

d

2
, 1

x

d

k

d

d

where d is the number of spatial dimensions.

1.2. Summary ofmain concepts and results
This paper is quite technical. To provide a compact overview, we summarise here the concepts, the
approximationsmade and themain results. Essentially, the theory laid out here on the foundations of [1–6]
begins with an initial phase-space distribution of classical particles followingHamiltonian dynamics. Like in
thermodynamics, the statistical properties of this ensemble are characterised by a free generating functional (or
partition function)Z0 given in (31). This generating functional assigns a probability ( )P q p, for each initial
phase-space position ( )q p, to be occupied by a particle of the ensemble. The phase-space points are then
evolved forward in time. A phase factor containing the retardedGreen’s function of the freeHamiltonian
ensures that particlesmove along their free, classical trajectories.

This free generating functionalZ0 is then extended in twoways. First, in complete analogy to quantumfield
theory, the particle interactions arewritten in formof amultiplicative, exponential operator acting onZ0.
Second, since the fullmicroscopic information contained in the particle ensemble is rarely required,
macroscopic or collective fields are introduced as superpositions ofmicroscopic fields. Theminimum set of
collective fields consists of the number density ρ of the ensemble particles and the so-called response-fieldB,
with the latter describing how the evolution of the particle ensemble responds to changes in the particle
coordinates bymeans of an interaction potential. This leads to the generating functionalZ in (58)which contains
all interactions and the collective fields required.

So far, the theory is independent of the specific particle ensemble to be studied.With an eye on cosmological
structure formation, the initial phase-space probability distribution ( )P q p, is then constructed to incorporate
the appropriate auto-correlations of particle positions andmomenta, and the cross-correlations between
particle positions andmomenta required by continuity. This results in the probability distribution (65), which
contains a correlation operator shown in (A.43).

Up to this point, the theory is exact. As (65) shows, the probability distribution contains themomentum
auto-correlationmatrix of the particles in the argument of an exponential. The dependence of the auto-
correlation on the particle positions needs to be integrated out, which is not generally possible analytically.
Therefore, we shall expand this exponential up to the second order in themomentum auto-correlations, which
is justified in cosmology because the amplitude of these correlations is low.

2
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Similarly, the particle interactions are expressed by an exponential interaction operator. Like in quantum
field theory, the series expansion of this interaction operator leads to the Feynman graphs of the theory.We shall
expand the interaction operator tofirst order only, leaving the (tedious, but ultimately inevitable) higher-order
perturbation theory to later work.

Thus, apart from the general foundations of the theory, we apply two types of approximation in this paper,
viz. the Taylor expansions in themomentum auto-correlations to second order, and in the interaction operator
tofirst order. In addition, butwithout invoking further approximations, we describe the free particle dynamics
in terms of an improved version of the Zel’dovich propagation [30]. Since the improved, free Zel’dovich
trajectories already incorporate part of the gravitational interaction, it is interesting to see the nonlinear growth
of the density power spectrumpossible even before explicitly including the particle interactions. This result,
which is of zeroth order in the interaction operator, is found in (182). The contributions to the nonlinear power-
spectrum evolution tofirst order in the interaction are summarised in (190).

2.Non-equilibrium statistical theory for classicalfields

2.1. Transition probability for classicalfields
Let ( )j t q,a be a classical fieldwith n components,  a n1 , at time t and position


q , living in d space–time

dimensions. Further, let the dynamics of this field be described by some equation ofmotion, written here
symbolically as

( ) ( )j =E 0. 2a

Any classicalfield ( )j t q,a needs to satisfy (2) everywhere in the space–time domain considered.
Among all classical field configurations satisfying (2), one particular configuration is singled out by

specifying suitable initial conditions, ( ) ≕ ( )( ) 
j jt q q,a ai

i , defined at some initial instant of time ti whichwe
choose to be zerowithout loss of generality, =t 0i . The initialfield configuration ismapped on a laterfield
configuration by the classicalflow ( )Ft

cl ,

( ) ( ) ( ( )) ( )( ) ( ) ( ) ( )   j j j= F F =q t q q, , with id. 3a a t a
i cl i

0
cl

Since a classical field evolves deterministically, afield configuration ( )j t q,a can be reached at t 0 beginning
with an initial field configuration ( )( ) j qa

i if and only if ( )j t q,a satisfies (3).
In analogy to quantumfield theory, we aim tofind the probability for the transition of an initial field

configuration ( )( ) j qa
i to afield configuration ( )j t q,a at a later time t. This probabilitymust be unity if and only

if the evolution from ( )( ) j qa
i to ( )j t q,a follows the classical path determined by theflow ( )Ft

cl .
Introducing the functionalDirac delta distribution [·]dD , wewrite the transition probability as a path

integral

[ ] [ ( )] ( )( ) òj j j d j=P E, . 4a a a a
i

D

Themeaning of expression (4) is straightforward: a path integration over all possible field configurationsja

beginningwith ( )ja
i is being carried out, but the functional delta distribution allows only that particular path to

contributewhich satisfies the equation ofmotion.
Wenow introduce a conjugatefield ĉa to express the delta distribution by a functional Fourier transform

{ }[ ( )] ˆ ˆ ( ) ( )ò òd j c c j=E Eexp i , 5a a
x

a aD

where the integrationwithin the exponential function proceeds in general over all d space–time coordinates that
thefieldsja and ĉa depend on, and a summation over a is implied. Note that ĉa plays the role of the ‘hatted’

field ŷ introduced by [5]. Even thoughwe shall later connote operators with hats, we also add a hat here to
emphasise the relation to [5]. The transition probability (4) then reads

{ }[ ] ˆ ˆ ( ) ( )( )  ò ò òj j j c c j=P E, exp i . 6a a a a
x

a a
i

Identifying the integral in the exponential with the action S and its integrandwith the Lagrange density , we
define

[ ˆ ] ≔ ( ) ( ) ≔ ˆ ( ) ( ( )) ( ) òj c c jS x x x E x, , . 7a a
x

a a

The functional derivative of Swith respect to the conjugatefield ĉa, set to zero, reproduces the equation of
motion (2)

3
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[ ˆ ]
ˆ ( )

( ( )) ( )
ˆ

d j c
dc

j= =
c =

S

x
E x

,
0. 8a a

a
a

0a

2.2. Generating functional for a classical theory
Agenerating functional is now readily constructed from the transition probability Pfi. Since the path beginning
with afixed initialfield configuration is deterministic in a classical field theory, the only possible random
element in such a theory is the configuration of the initial states. The configuration space to be summed or
integrated over in the construction of the generating functional is thus the space of initialfield configurations.

Therefore, we integrate over all possible configurations of initial states, weighted by an initial probability
distribution [ ]( )jP a0

i .We shall abbreviate the path integral over the initial field configurations by

[ ] ≕ ( )( ) ( ) ò òj j GP . 9a a
i

0
i

i

Later, whenwe shall specify classicalmicroscopic degrees of freedom for the fields, the initial states will be
defined by a point set rather than by a set of functions. Then, the probability distribution P0 for the initial
conditionswill be a function rather than a functional, and the path integrations over the initial states will turn
into ordinary integrations.

Finally, we introduce auxiliary source fields Ja forja andKa for ĉa into the Lagrangian and thus arrive at the
generating functional

[ ] [ ]

ˆ ( ˆ ) ( )

( )

   

ò

ò ò ò ò

j j

j c j c

= G

= G + +
⎡
⎣⎢

⎤
⎦⎥

Z J K P

J K

, ,

exp i . 10

a a a a

a a
x

a a a a

i
i

i

Functional derivatives ofZwith respect to the source field Ja, taken at = =J K0a a, give

ˆ

[ ( )] ( )

[ ˆ ]  

 

ò ò ò

ò ò

d
d

j c j

j j d j j

= G

= G = á ñ

j c

= =

Z

J

E

1

i
e

, 11

a J K
a a a

S

a a a a P

0

i
i ,

i D

a a

0

which is the classical solution to the equation ofmotion, averaged over all possible initial field configurations ( )ja
i

drawn from the distribution [ ]( )jP a0
i . Field correlators are given as in quantum field theory,

( ) ( ) ˆ ( ) ˆ ( )

( ) ( )
[ ] ( )

     j j c c

d
d

d
d

á ¼ ¼ñ

= ¼

+ +

+ = =

+ +

+

x x x x

J x K x
Z J K

i i
, , 12

a a

m

a m a m

n

a a m n
a a

J K

1 2

times

1 2

times

1 0

m m

m n

1 2 1 2

1

ifZ is normalised, [ ] =Z 0, 0 1. Sincewe have obtainedZ by integration over a functional delta distribution,
normalisation is ensured. Likewise, as in quantumfield theory, the functional =W Zln is the generating
functional for the connected correlators, i.e.the cumulants.

2.3. Generating functional for the non-interacting theory
Suppose now that the equation ofmotion can be brought into the form

( ) ˙ ( ) ( ) ( )j j j j= + + =E E E 0, 13a a a a0 I

where E0 represents the freemotionwhile EI is due to any interaction.We can then split the action and the
Lagrangian into a free part

ˆ [ ˙ ( )] ( ) ò c j j= = +S E, 14
x

a a a0 0 0 0

and an interacting part

ˆ ( ) ( ) ò c j= =S E, . 15
x

a aI I I I

We shall proceedwith the free part first, ignoring for now any interactions between thefieldsja themselves or
between the fieldsja and any external field. This will lead us to a free generating functional [ ]Z J K,a a0 .We shall
later include the interaction part of the action in operator form,writing

[ ] [ ] ( )ˆ=Z J K Z J K, e , 16a a
S

a a
i

0
I

for the generating functional including interactions; see section 3.

4

New J. Phys. 18 (2016) 043020 MBartelmann et al



Restricting the action to its free part S0, we obtain the generating functional for the free theory from (10),

{ }
{ }

[ ] ˆ [ ˆ ( ˙ ( ) ) ]

[ ˙ ( ) ] ( )

  

 

ò ò ò ò

ò ò ò

j c c j j j

j d j j j

= G + + +

= G + +

Z J K E K J

E K J

, exp i

exp i . 17

a a a a
x

a a a a a a

a a a a
x

a a

0 i 0

i D 0

For any given initial field configuration ( )ja
i , the delta distribution in (17) singles out the solution ¯ ( )j xa of the

free equation ofmotion, augmented by the inhomogeneous source termKa. Let ( )¢G x x,ab be the propagator
(Green’s function) of the free equation ofmotion, then this solution is

¯ ( ) ( ) ( ) ( ) ( ) ( )( ) òj j= - ¢ ¢
¢

x G x x x G x x K x, , . 18a ab b
x

ab bi
i

i

Absorbing a constant functional determinant into the normalisation of the generating functional, we can
replace the delta distribution in (17) by

[ ˙ ( ) ] [ ¯ ] ( )d j j d j j+ +  -E K 19a a a a aD 0 D

andwrite the free generating functional as

{ }[ ] ¯ ( )ò ò j= GZ J K J, exp i , 20a a
x

a a0 i

whereja was replaced by the free solution j̄a from (18) by integrating over the delta distribution.

3.Microscopic and collectivefields

3.1. Introductory remarks
So far, the formalism chosen for classical fields is independent of the specific equations ofmotion and of the
general properties of the fields. For the following discussion, the distinction betweenmacroscopic and
microscopic fields or degrees of freedomwill be important. Instead of amacroscopic field such as an
electromagnetic field, we can also use the formalism for describing the kinematics of point particles under the
influence ofHamiltonian dynamics in three spatial dimensions. Then, delta distributions at the phase-space
coordinates ≔ ( )  x q p,j j j for all particles  j N1 replace the fieldsja. The equations ofmotion of the phase-

space points

xj areHamilton’s equations

( )  ¶ = ¶x , 21t j j

where is theHamiltonian, is the symplecticmatrix

( )



=

-
⎛
⎝⎜

⎞
⎠⎟

0
0

, 223

3

and the derivative ¶j acts upon all six phase-space coordinates xj of the jth particle. Thematrix d is the unit
matrix in d dimensions.Withmicroscopic degrees of freedom, the action S in (7) simplifies to a time integral, as
in classicalmechanics. Similarly, theGreen’s functionwill then also depend on time only.

3.2.Data structure
For notational as well as conceptual simplicity, we follow [31] and organise the positions { }qj and themomenta

{ }

pj ofNmicroscopic particles bymeans of the tensor product into the phase-space coordinate tensors

( )   
= Ä = Äq pq e p e, , 23j j j j

where summation over repeated indices is implied, and

ej is theN-dimensional column vector whose only non-

vanishing entry is 1 at component j. Recall that the tensor product has the convenient properties

( ) · ( ) ( ) ( )
( )
( ) · ( )

  
Ä Ä = Ä

Ä = Ä
Ä =

A B C D AC BD

A B A B
A B A B

,

,
Tr Tr Tr . 24

We further introduce the scalar product

≔ ( ) · ( ) · · ( )       
dá ñ Ä Ä = =a b a e b e a b a b, , 25j j k k j k jk j j
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where the sumover the repeated indices is again implied. Bundling the phase-space points accordingly

≔ ( ) 





Ä = Ä
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟x x e

q

p
e , 26j j

j

j
j

we canwriteHamilton’s equations for allN particles in the compact form

( ) · ( ) ( )  ¶ = Ä ¶ Äx e . 27t N j j

Like the phase-space coordinates, we bundle the source fields J andK as

( )











= Ä = Ä
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟J K

J

J
e

K

K
e, . 28

q

p
j

q

p
j

j

j

j

j

We then need to introduce an analogous tensor product for the propagators

( ) = ÄG , 29N

whereG is a 6×6 dimensionalmatrix describing the free propagation of an individual phase-space point.
With this notation, we canwrite the free solution (18) as

¯ ( ) ( ) ( ) ( ) ( )( ) ò= - ¢ ¢ ¢x x Kt t t t t t, 0 d , 30
t

i

0

for all particles together, and the free generating functional assumes the form

[ ] ( ) ¯ ( ) ( )ò ò= G á ñ
⎧⎨⎩

⎫⎬⎭J K J xZ t t t, d exp i d , . 310 i
i

f

Note that the integral over the initial phase-space configurations is now an ordinary rather than a path integral.

3.3. Collectivefields
If thefieldsja representmicroscopic degrees of freedom, such as the phase-space coordinates of point particles,
it will be appropriate to introduce collective fields in addition, i.e.fields representing collective properties of the
particle ensemble. Perhaps themost obvious example of such a collective field is the density ( )r t q, ,

( ) ( ( )) ( )  år d= -
=

t q q q t, , 32
j

N

j
1

D

here assumed to be composed ofN point-particle contributions.
The potential ( )V t q, experienced by any particle at time t and at position


q is the sumover all point-

particle potentials v,

( ) ( ( )) ( )  å= -
=

V t q v q q t, , 33
j

N

j
1

whichwe can re-write in terms of an integral over the density (32),

( ) ( ) ( ( )) ( ) ( ) ( )       
ò òå d r= - - = -

=

V t q y v q y y q t y v q y t y, d d , . 34
j

N

j
3

1
D

3

According toHamilton’s equations, and given the interaction potential ( )V t q, , the interaction
contribution to the equations ofmotion of the particle ensemble is

( ) ( )( ) ( ) ( ) ( )    = - Ä ¶ Ä = ¶ Ä
⎛
⎝⎜

⎞
⎠⎟E q e V t q V t q e,

0
, , 35N j j

q
jI

j

where ¶qj
is the spatial derivative of ( )V t q, taken at

 
=q qj,

( ) ( )∣ ( ) ( )

[ ( )] ( ) ( )

    

  

  ò
ò

d

d

¶ = ¶ = - ¶

=- ¶ -

=V t q V t q q q q V t q

q q q V t q

, , d ,

d , , 36

q q q q j q

q j

3
D

3
D

j j

where the last stepwas taken by partial integration to remove the gradient from the potential for later
convenience.With this result andwith the conjugate field ˆ ≔ ˆ 

c c Ä ej j, we can thuswrite the interaction
contribution to the Lagrange density I from (15) as

6
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ˆ ( ) ˆ · ( ( )) ( ) ( )   ò åc c d= á ñ = - ¶ -
=

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥E q q q q t V t q, d , . 37

j

N

p q jI I
3

1
D

j

The term in brackets defines the response field

( ) ≔ ˆ · ( ( )) ( )  åc d¶ -
=

B t q q q t, 38
j

N

p q j
1

D
j

in terms of the conjugate ‘hatted’field ĉ. Introducing this into (37), we canwrite the interaction part of the
Lagrange density as

( ) ( ) ( ) ( ) ( ) ( )      ò ò ò r= - = - -q B t q V t q q y B t q v q y t yd , , d d , , . 39I
3 3 3

Expressing the responsefieldB, the potential v and the density ρ by their Fourier transforms, we can re-write the
interaction Lagrangian as

( ) ( ) ( ) ( )
  

 ò r= - -B t k v k t k, , , 40
k

I

wherewe have assumed that the potential v in (39) is translation invariant and thus depends on the difference 
-q y only.

We now combine the two collective fields ( )


r t k, and ( )


B t k, into thefield doublet

( ) ≔ ( )
( )

( )





r

F
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟t k

t k

B t k
,

,

,
41

andwrite the interaction part of the action in the compact form

( ) ( ) ( ) ( ) ( )ò ò s= F - FS t
1

2
d1 d2 1 12 2 , 42I

where the conventional abbreviations = t kd1 d d1
3

1 and ( ) ( )


F = F t k1 ,1 1 are being used.We furtherwrite
( ) ( )


F - = F -t k1 ,1 1 . The quantity ( )s 12 is defined to be the interactionmatrix

( )( ) ( ) ( ) ( )s d= - -v12 1 1 2 0 1
1 0

, 43D

where the delta distribution ( )d -1 2D enters because of the spatial translation invariance of the potential v and
the assumed instantaneous interaction. The doublet ( )rF = B, of collective fieldsmust be pairedwith a
doublet ( )= rH H H, B of conjugate source fields in the Lagrangian and in the action.We thus extend the free
part of the action as

· ( ) + FS S H , 440 0

where the product is understood as an implicit sumover the collective-field indices and integral over the space–
time coordinates

· ( ) ( ) ( )òåF = FH Hd1 1 1 . 45
a

a a

3.4.Operator expressions for the collectivefields
The collective fieldsΦ typically contain thefield variables x or ĉ. These are obtained from the free functional

[ ]J KZ ,0 by functional derivatives with respect to the sources J or K ,

( )
( )

ˆ ( )
( )

( )cd
d

d
d

 x
J K

t
t

t
ti

,
i

. 46

For introducing the values of x and ĉ intoΦ, we replaceΦ by an operator F̂ acting on the free functional
[ ]J KZ ,0 , with all occurrences of x and ĉ replaced by functional derivatives according to (46). Then, the free

generating functional including the collective fields is expressed by

[ ] ( · ˆ ) [ ] ( )= FJ K J KZ H H Z, , exp i , . 470 0

Theminimum set of collective fields thatwe require are the density ρ and the responsefieldB.We shall now
construct their operator expressions.

The density ρ is assumed to be composed of delta contributions, see (32). In Fourier space, the one-particle
contribution of particle j to the density at the space–time position ( )


= t k1 ,1 1 is

( ) ( · ( )) ( )
 r = - k q t1 exp i , 48j j1 1
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where ( )
q tj 1 is the position of particle number j in configuration space at time t1. In this expression for the

density, we replace the particle position

qj by a functional derivative with respect to ( )


J 1qj

, obtaining the one-
particle density operator

ˆ ( ) ·
( )

( )



 d

d
F = -r

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟k

J
1 exp i

i 1
. 49

q
1j

j

The action of the density operator (49) on the free generating functional (31) becomes clear by expanding the
exponential into a series. This immediately leads to

ˆ ( ) [ ] [ ( ) ] ( )F = +r J K J L KZ Z1 , 1 , , 50j0 0j

where the tensor ( )L 1j is defined by

( ) ≔ · ( )
( )

( ) ( )



 d

d
d- = - - Ä

⎛
⎝⎜

⎞
⎠⎟L

J
k

t

J
t t k e1

1 0
. 51j

q
j1 D 1

1

j

Thus, the application of the density operator ˆ ( )Fr 1
j

amounts to a shift of the source field J in the free generating
functional by the tensor ( )L 1j .

According to (38), the one-particle contribution ( )B 1j of particle j to the collective fieldB(1) is determined
by the gradient of the density

( ) ˆ · ( ( )) ( ) c d= ¶ -B q q t1 . 52j p q jD 1 1
j 1

Taken into Fourier space, the one-particle response-field operator thus turns into

ˆ ( ) ·
( )

ˆ ( ) ≕ ˆ ( ) ˆ ( ) ( )



 d

d
F = F Fr r

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟k

K
b1 i

i 1
1 1 1 . 53B

p
j1j

j

j j

Since F̂rj
involves functional derivatives with respect to


Jqj
while the response-field operator takes functional

derivatives with respect to

Kpj

, the relevant functional derivatives commute.We can thus reorder the operators
and apply all required response-field operators after all density operators.

3.5.Operator expression for the interaction part of the action
Wehave seen in (42) and (43) that the interaction between the particles can be included by adding the expression

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ò ò òd r r= - - - = - -S B v B vd1 d2 1 1 1 2 2 d1 1 1 1 54I D

to the free action. Bymeans of the operator expressions (49) and (53) for the two collective fields ρ andB, we can
write this action contribution in the operator form

ˆ ˆ ( ) ( ) ˆ ( ) ( )ò= - F - FrS vd1 1 1 1 , 55BI

where the operators F̂r and F̂B will nowbe responsible for acquiring the respective collective-field values from
the free generating functional [ ]J KZ H , ,0 .

Written in the form (47), this free generating functional contains the collective fields in operator form
already, pairedwith their conjugate source fieldsHρ andHB. The collective-field operators themselves are thus
obtained from [ ]J KZ H , ,0 by functional derivatives with respect to the conjugateHfields

ˆ ( )
( )

ˆ ( )
( )

( )d
d

d
d

F  F - 
-

r
rH H

1
i 1

, 1
i 1

56B
B

applied to [ ]J KZ H , ,0 . Therefore, the interaction part of the action is

ˆ
( )

( )
( )

( )ò
d

d
d

d
= -

- r
S

H
v

H
d1

i 1
1

i 1
, 57

B
I

allowing us to express the complete generating functional as

[ ] [ ] ( )ˆ · ˆ= FJ K J KZ H Z, , e e , , 58S Hi i
0

I

understanding that · F̂H abbreviates the expression

· ˆ ( ) ˆ ( ) ( )òåF = ¢ ¢ F ¢
r=

H Hd1 1 1 59
a B

a a
,

as noted in (45) before inmore general form.
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4.Generating functional for correlated initial conditions

Having developed the general formalism for a set ofHamiltonian point particles, the final step to be taken
towards defining the generating functional (58) completely concerns the initial phase-space distribution. In this
section, we consider points in a domain of phase space at an initial time only. For convenience, we shall drop the
superscript (i) on any quantity here, understanding that all quantities are to be taken at the initial time
throughout this section.

4.1. Initial phase-space distribution
So far, the construction of the non-equilibrium field theory for classical particles has been completely general,
with the one exception that we required themicroscopic degrees of freedom to follow theHamiltonian
equations ofmotion. To specify the generating functional completely, we nowhave to define the initial phase-
spacemeasure

( ) ( )G = q p q pPd , d d ; 60

that is, we have to construct the probability distribution ( )q pP , for initial particle positions in phase space.
Having cosmological structure formation inmind, we need the particles to be spatially correlated such that

their number density is a homogeneous and isotropicGaussian random field. By continuity, spatial correlations
imply correlations also inmomentum space aswell as cross-correlations between spatial andmomentum
coordinates. Ourmain goal here is thus to derive the probability distribution for the initial phase-space
coordinates under these requirements.

A central (and, aswe shall see, a sufficient) quantity characterising all required correlations is the power
spectrumof density fluctuations. Calling the number density of particles ρ and itsmean r̄, the density contrast is

≔ ¯
¯

( )d
r r
r
-

, 61

and its power spectrum ( )dP k is defined as

( ) ( ) ( ) ( ) ( ) ( )
   

d d p dá ¢ ñ = + ¢
dk k k k P k2 , 623

D

where the density contrast ( )


d k as a function of thewave vector

k implicitly denotes the Fourier transform. The

delta distribution ensures translation invariance and thus the statistical homogeneity of the density contrast. If it
is statistically isotropic as well, the power spectrumdepends on thewave number k only and not on the direction
of thewave vector


k .

The cosmologicalmotivation aside for now,we are thus aiming to derive the probability distribution for
correlated phase-space points drawn from a statistically homogeneous and isotropicGaussian random field
characterised by the power spectrumof the density fluctuations. Such initial conditionsmay be interesting far
beyond cosmology.

For clarity of the discussion in themain part of this paper, we shall develop the probability distribution
( )q pP , in the appendix. The central variables in the derivation of this probability distributionwill be the values

dj of the density contrast and

pj of themomentum at the positions of all particles j.We organise these variables at

allN particle positions into a data tensor

≔ ( ) d
Ä

⎛
⎝⎜

⎞
⎠⎟d

p
e 63

j
j

bymeans of the tensor product with the vectors

ej defined in (23). Amajor intermediate result will be the

covariancematrix

¯ ≔ ( )á Ä ñd dC 64

of this data tensor, which contains the density-contrast andmomentum auto-correlations d dá ñj k and
 
á Ä ñp pj k ,

respectively, and the density–momentum cross-correlation


dá ñpj k . The entries of the covariancematrix are
detailed in the appendix. As derived there, the initial phase-space probability distribution is

( )
( ) ¯

( ) ¯ ( ) 

p
= -

-
-⎜ ⎟⎛

⎝
⎞
⎠q p p p pP

V

C
C,

2 det
exp

1

2
, 65

N

N
pp

pp
3

1

with q and p as defined in (23). The correlation operator ( ) p appearing here is given in (A.43). It contains the
correlationmatrices ddC and dC p introduced above and defined in (A.31).

If the correlations ddC and dC p areweak, as we can expect them to be early in time, the probability
distribution (65) can be approximated by
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( )
( ) ¯

¯ ( )
 å å

p
» - + +d d d

-
-

= ¹

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟q p p pP

V

C
C M p C,

2 det
exp

1

2
1

1

2
66

N

N
pp

pp
j

N

p k
j k

3

1

1
j k j k

with

≔ ¯ ( )
d d

-M C C . 67p p p p
1

j k j a a k

4.2. General expressions for density correlators
Weare aiming at calculatingm-point correlators of collective fields, such as the density and responsefields.
Equation (53) shows that the response-field operator contains the density operator as a factor. Thus, for anm-
point correlator,m density operators will have to be applied to the free generating functional first. Since no
further derivatives with respect to J will be required afterwards, the source field J can then be set to zero.

The operator for the density contributions byN particles is the sumover the one-particle density operators

ˆ ( ) ˆ ( ) ( )åF = Fr r
=

1 1 . 68
j

N

1
j

As illustrated in (51) for a single one-particle density operator, the result of applyingm one-particle density
operators to the free generating functional is

ˆ ( ) ˆ ( ) [ ]∣ [ ] ( )F F =r r =J K L Km Z Z1 , , 69J0 0 0jm j1

with

( ) ( )
 åd= - - Ä

=

⎛
⎝⎜

⎞
⎠⎟L t t k e

0
. 70

s

m

s
s

j
1

D s

Following (53), a single one-particle response-field operator ˆ ( )b ljl applied subsequently then leads to

ˆ ( ) [ ]∣ ·
( )

[ ]

( ) · [ ] ( )




 



å

d
d

d

=

= -

=

=

=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

L K L K

L

b l Z k
K l

Z

g t t k k Z

, i
i

,

i , , 0 . 71

K

K

j l
p

s

m

qp s l l s j j

0 0 0

0

1
0

l

jl

s l

According to (68) and (69), anm-point density correlator ( )¼r r¼G m1 is found by summing over all
particle indices

( ) ˆ ˆ [ ]∣ [ ] ( )å å¼ = F F =r r r r¼
¼ =

= =
¼ =

J K LG m Z Z1 , , 0 . 72J K
j j

N

j j

N

1
0 0

1
0

m

j jm

m1

1

1

This shows that all we have to evaluate form-point correlators of the density and response fields is the free
generating functional taken at =J L and =K 0,

{ }[ ] ¯ ( )ò ò= G á ñL L xZ t, 0 d exp i d , , 730 0

where the free phase-space trajectory

¯ ( ) ( ) ( )( )=x xt t, 0 740
i

appears because the term containing the source K disappears.With (70), the phase in the exponential in (73) is

¯ ( · · ) ( )( ) ( )   
ò åá ñ = - +

=

L xt k q T pd , , 75
s

m

s j s j0
1

i i

s s

where ≔ ( )
 

T g t k, 0s qp s s was defined for brevity. If we introduce the tensors

≔ ≔ ( )
   å å- Ä - Ä

= =

L Lk e T eand , 76q
s

m

s j p
s

m

s j
1 1

s s

we can brieflywrite

[ ] ( )ò= G á ñ+ á ñLZ , 0 d e 77L q L p
0 i

i , i ,q p

for the free generating functional evaluated at =J L and =K 0.
The shift tensors Lq p, have non-vanishing components only for the particles specified by the indices js set by

the one-particle density operators applied to the free generating functional. For any shift tensor specified by a
complete set ofm particle indices ¼j jm1 , wewrite briefly
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[ ] ( ) ( )å= ¼ =r r r r r r¼ ¼
¼ =

¼LZ G G m G, 0 , 1 . 78
j j

N

0
1

j jm

m

j jm1

1

1

The integral over the initial phase-space configuration remaining in the free generating functional [ ]LZ , 00 still
has to be carried out.

4.3. Integration over the initial phase-space distribution
Inserting (66) into (77), wefirst find

[ ]
( ) ¯

¯

· ( )


òò

å å

p
= -

+ +d d d

- -

= ¹

á ñ+ á ñ

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

J
q p

p pZ V
C

C

M p C

, 0
d d

2 det
exp

1

2

1
1

2
e . 79L q L p

N

N
pp

pp

j

N

p k
j k

0
3

1

1

i , i ,
j k j k

q p

Since thefirst and the third term in parentheses in the second line do not depend on themomenta p, they can
easily be integrated over p using

( ) ¯
¯ ( )¯ò p

- =- á ñ -⎜ ⎟⎛
⎝

⎞
⎠

p
p p

C
C

d

2 det
exp

1

2
e e 80L p

N
pp

pp
Q

3

1 i , 2p

with the quadratic form

¯ ≔ ¯ ( )L LQ C . 81p pp p

The second term in parentheses can be integrated after pulling a factor p down by applying the derivative
- ¶ ¶Li p to the phase factor á ñe L pi ,p . Using further that ¯=d d

-M C Cp p pp
1 as defined in (67), this leads to

( ) ¯
¯ ( )¯ 

ò å å
p

- =d d
-

=

á ñ

=

-⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

p
p p

C
C M p C L

d

2 det
exp

1

2
e i e . 82L p

N
pp

pp
j

N

p k
j

N

p p
Q

3

1

1

i ,

1

2
j k

p
j k k

Combining the results (79), (80) and (82), wefind

[ ] ( )ò å å= + +d d d
- -

¹

- + á ñ
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟L qZ V C L C, 0 e d 1 i

1

2
e , 83L qN Q

j
p p

j k

Q
0

2 2 i ,
j k k j k

qD

wherewe have used (A.31) to split up the quadratic form Q̄ into ¯ = +Q Q QD , with

≔ ≔ [ ] ( )s
á ñ ÄL L L LQ Q C E

3
, and . 84p p p p p jk pD

1
2

j k

For later convenience, we introduce one-particle shift vectors

Lqj

and

L pj

by the projection

≔ ( ) ≔ ( ) ( )
    Ä ÄL LL e L e, , 85q j q p j p3 3j j

which, with (76), turn out to be

( )
   

å åd d= - = -
= =

L k L T, . 86q
s

m

s jj p
s

m

s jj
1 1

j s j s

In terms of

L pj

, we canwrite the quadratic forms in (84) as

( )
  å

s
= =

=

Q L Q L C L
3

and . 87
j

N

p p p p pD
1
2

1

2

j j j k k

4.4.Damping
The exponential prefactor ( )-Qexp 2D with the quadratic formQD from (83) or (87) appearing in the free
generating functional (83) requires a separate consideration. As the derivation of [ ]J KZ ,0 shows, it originates
from the initial one-pointmomentum variance and thus arises from the free streaming of the particles with the
initial rootmean square velocity quantified by s1. In absence ofmomentum correlations, it would lead to a
Maxwellian or thermal velocity distribution of the particles.

In the cold-darkmatter cosmogony, free streaming is suppressed by the long-ranged gravitational
interaction between themassive particles. In the free generating functional, gravitational interaction is not
included by definition. Later, we shall introduce gravitational interaction between the particles in a perturbative
approach. As long aswe neglect gravitational two-particle interaction, the damping expressed by ( )-Qexp 2D

will be unrealistic for cold darkmatter because it is counteracted by the gravitational interaction.
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The effect of the damping termdepends on its relation to the quadratic formQ, also defined in (84), which
contains the initialmomentum correlations between different particles. Aswe shall see later, these initial
momentum correlations will bemainly responsible for the growth of structures. Realising thatQwill commonly
be a small number, we shall approximate

( )» - +- Q Q
e 1

2 8
, 88Q 2

2

i.e. we shall expand in powers of the initialmomentum correlations. For appropriately suppressing the damping
term relative to the growth of structures, we shall approximate the damping term ( )-Qexp 2D consistently at
one order less than the term (88). This implies that dampingwill only be included at loop order, but not at tree
order.While thismay appear arbitrary here, we shall show in a follow-up paper how the damping term is
counteractedwhen the complete hierarchy ofmomentum auto-correlations is taken into account. Since this
calculation is quite involved, we postpone it here.

Thus, whenwe derive results from the free generating functional restricted to linear initialmomentum
correlations, we shall ignore the damping term completely, approximating

( ) ( )- »Qexp 2 1. 89D

At the next higher order of the initialmomentum correlations, we shall include the damping term at linear
order, approximating

( ) ( )- » - » +
-

⎜ ⎟⎛
⎝

⎞
⎠Q

Q Q
exp 2 1

2
1

2
, 90D

D D
1

where the second approximation is advantageous because it remains positive definite.

4.5.One-point functional and normalisation
If we consider deriving free one-point ‘correlators’ of a collective field, e.g. of the density, from the generating
functional, we can ignore all correlation terms because they appear only if two ormore points are involved.
Then,Q=0, and the generating functional (83) shrinks to

[ ] ( )ò= - - á ñL qZ V, 0 e d e . 91L qN Q
0

2 i ,qD

If a single point is involved, Lq will have a single non-vanishing component, whichwe canwithout loss of
generality label with the index j=1. Then

· ( )
   

= Ä á ñ = -L L qL e k q, , . 92q q q1 1 11

This, inserted into (91), gives

[ ] ( ) ( ) ( )


p d= -LZ NV L, 0 2 93q0
1 3

D 1

because the delta distribution further ensures that


=L 0q1
and thus alsoQD=0. The factorN in (93) takes into

account that there areNpossibilities to select a particle from the ensemble. Since the remaining delta distribution
is the Fourier transformof unity

( ) ( ) ˆ ( )


p d =L2 1, 94q
3

D 1

we see that (93) simply reproduces themean particle density, as it should.

4.6. Low-order approximations
WecannowTaylor-expand the factor -e Q 2 in (83) in powers ofQ, for example tofirst or second order. This
gives the two contributions

[ ] [ ] [ ] ( )( ) ( )» +L L LZ Z Z, 0 , 0 , 0 950 0
1

0
2

with

[ ] ≔

[ ] ≔ ( )

( )

( )


ò

ò

å å- + +d d d
- -

¹

á ñ

-
- á ñ

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟L q

L q

Z V
Q

C L C

Z
V

Q

, 0 e d 1
2

i
1

2
e ,

, 0
8

e d e . 96

L q

L q

N Q

j
p p

j k

N
Q

0
1 2 i ,

0
2 2 2 i ,

j k k j k
q

q

D

D

Weonly consider higher-ordermomentum correlations here and ignore cross terms of the form d dQC
j k
or

dQC Lp pj k k
because terms containingmomentum correlations dominate at late times due to the time dependence

of themomentumpropagator ( )tg , 0qp .We shall now evaluate these expressions in detail.
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Thefirst integral in [ ]( ) LZ , 00
1 ,

≔ ( ) ò á ñqd e , 97L qi ,q

has a particularmeaning. It simply returns a delta distribution or products thereof, depending on Lq. Since it
does not incorporate any correlations, it can only represent shot-noise terms or powers of themean particle
density r̄. For a general discussion of shot-noise terms, see section 5 below. Besides, all other terms involve
double sums over = ¼j k N, 1 and thus dominate [ ]( ) LZ , 00

1 by far.We shall thus ignore  in [ ]( ) LZ , 00
1 .

In the terms remaining in (96), we pull the sums out of the integrals andwrite

[ ]

[ ] ( )

( ) ( )

( ) ( )

å

å

=

=

- -

¹ =

-
-

¹ ¹ =

L

L

Z V Z

Z
V

Z

, 0 e ,

, 0
8

e 98

N Q

j k

N

jk

N
Q

j k l m

N

jklm

0
1 2

1

1

0
2 2

, 1

2

D

D

with

{ }≔ ( ) ( )( )   
ò - +d d d

á ñqZ C L C L C Ld e
1

2
i 99L q

jk p p p p p p
1 i ,q

j k j j k k j k k

and

≔ ( )( ) ( )( )     
ò á ñqZ L C L L C Ld e . 100L q

jklm p p p p p p p p
2 i ,q

j j k k l l m m

Note that the ( )Zjk
1 are not necessarily symmetric in ( j, k) because of the dC pj k

correlation between densities and

momenta. In contrast, the ( )Zjklm
2 are symmetric under the permutations ( ) ( )jklm lmjk , ( ) ( )jklm kjlm

and ( ) ( )jklm jkml .

4.7. Linearmomentum correlations
With the explicit expressions (A.21)–(A.23) for the components of d dC

j k
, dC pj k

and Cp pj k
, and using that the power

spectra for the density and the velocity potential are related by (A.6)

( ) ( ) ( )
 

=d yP k k P k , 1014

we immediately obtain from (99) the result

( ) ( ) ( ) ( ) ( )( )    
p d= + ¢ dZ L L P L A L2 , 102jk q q jk q jk q

1 3
D

2
j k j j

where the abbreviations

( ) ≔ ( ( )) ( ) ( )
  

- -A L a L b L
1

2
1 103jk q jk q jk q

2 2
j j j

with

( ) ≔
( · )( · )

( ) ≔
·

( )


   




 

a L
L L L L

L
b L

L L

L
, , 104jk q

p q q p

q

jk q
q p

q

2
4 2j

j j j k

j

j

j k

j

aswell as

≔ ( ) ò¢ ¢ á ¢ñqd e 105L q
jk

i ,q

were defined. The prime on  ¢jk indicates that

qj and


qk are excluded from q here.

4.8.Quadraticmomentum correlations
For taking quadratic initialmomentum–momentum correlations into account, we need to evaluate different
terms contributing to ( )Zjklm

2 in (100). In view of the symmetries of ( )Zjklm
2 , wefind it convenient to distinguish

termswith two equal index pairs, ( )Zjkjk
2 , termswith one double index, ( )Zjkkl

2 , and termswith four different

indices, ( )Zjklm
2 .

For two equal index pairs, we find

( ) ( ) ( ) ( ) ( ) ( ) ( )( )        
 òp d= + ¢ - -d dZ L L P k P k L a k a k L2 , 106jkjk q q jk

k
q jk jk q

2 3
D

2 2
j k j j
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for one double index

( ) ( ) ( ) ( ) ( ) ( ) ( )( )       
p d= + + ¢ d dZ L L L P L P L a L a L2 , 107jkkl q q q jkl q q jk q kl q

2 3
D

2 2
j k l j l j l

and for four different indices

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )        
p d p d= + + ¢ d dZ L L L L P L P L a L a L2 2 . 108jklm q q q q jklm q q jk q lm q

2 3
D

3
D

2 2
j k l m j l j l

Given those expressions, the free generating functional is approximated by (95) and (96). Further progress can
bemade once the shift tensor L is specified, for examplewhen the density correlators are to be calculated; see
section 6 below.

5. First-order perturbation theory

5.1.One- and two-point correlators withfirst-order interaction
Wehave shown in (58) that the generating functional including interaction can be created from the free
generating functional [ ]J KZ ,0 bymeans of an interaction operator

[ ] [ ] ( )ˆ · ˆ= FJ K J KZ H Z, , e e , , 109S Hi i
0

I

with the interaction part of the action given by the operator

ˆ
( )

( )
( )

( )ò
d

d
d

d
= -

- r

⎛
⎝⎜

⎞
⎠⎟S

H
v

H
d1

i 1
1

i 1
, 110

B
I

definedwith slightlymore explicit notation in (57). Aswe have noted before, this expression for the interaction
part of the action contains the two assumptions that the potential is assumed to be translation invariant and acts
instantaneously.

Since the functional derivatives with respect toH in (110) act only on the collective-field operator ·F̂e Hi , the
effect of the interaction operator can be brought into the form

[ ] [ ] ( )· ˆ= FJ K J KZ H Z, , e e , 111H Si i
0

I

with

ˆ ˆ ( ) ( ) ˆ ( ) ( )ò= - F - FrS vd1 1 1 1 . 112BI

The density and response-field operators, F̂r and F̂B, in the interaction part SI of the action now act directly on
the free generating functional and produce correlators introduced in (72) before. To lowest non-trivial order,
the interaction operator is

ˆ ( ) ( ) ˆ ( ) ( )ˆ ò» - F - Frve 1 i d1 1 1 1 . 113S
B

i I

The corrections to the one- and two-point density correlators infirst non-trivial order are then

( ) ˆ ( )( ˆ [ ]) ( ) ( ) ( )( ) òd = F - = - ¢ ¢ - ¢ ¢r r rrJ KG S Z v G1 1 i , i d1 1 1 1 1 114B
1

I 0

and similarly

( ) ( ) ( ) ( )( ) òd = - ¢ ¢ - ¢ ¢rr rrrG v G12 i d1 1 1 1 21 . 115B
1

Note that wemarkwith primes the internal vertices of the interaction, which are integrated over in the
interaction operator.

For calculating thefirst-order approximation of the nonlinear density evolution and the nonlinear power
spectrum,we thus have towork out the three- and four-point correlators ( )- ¢ ¢rrG 1 1 1B and ( )- ¢ ¢rrrG 1 1 21B

from the free generating functional.
In view of our later cosmological application, we anticipate that the potential satisfies a Poisson equation of

the form

( ) ( ) ( ) d =v q t g t, 116v
2

with a function gv(t) to be specified, where δ is again the number-density contrast of the particles. Sincewe are
here aiming at the potential caused by a single particle, we can place this particle without loss of generality into
the origin of a coordinate system andwrite its contribution to the density contrast as

¯ ( ) ( )d r d= -- q 1, 1171
D
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with r̄ being themean particle number density. Fourier transforming (116) then gives

( )
( )

¯
ˆ ( )

r
= - -

⎛
⎝⎜

⎞
⎠⎟v

g t

k
1

1
1 . 118v 1

1
2

The Fourier-transformed unity 1̂ can be neglected later because the zeromode of the potential will not
contribute to any correlators.We can thus insert

( )
( )

¯
( )

r
= -v

g t

k
1 119v 1

1
2

for the Fourier-transformed, one-particle potential v. Notice in particular that this potential scales inversely with
themean particle density r̄. This is because, for afixedmeanmass per volume, the particlemass has to decrease
in inverse proportion to the particle numberN if that number is increased.

5.2. Shot noise and the relevance of terms
In ourmicroscopic approach, shot-noise terms appear because the density field is composed of discrete
particles. To identify these terms and to clarify their relevance, consider a statistically homogeneous density field

( ) ( ) ( )  år d= -
=

q q q 120
i

N

i
1

D

composed ofN point particles. In Fourier space, this density field is

( ) ( )·
  

år =
=

-k e . 121
i

N
k q

1

i i

In terms of the density contrast δ, the power spectrumof a continuous density field is

( ) ( ) ¯ ( ˆ ( ) ( ) ) ¯ ( ˆ ( ) ( ) ( )) ( )
     

r r r d d r p dá ¢ ñ = + á ¢ ñ = + + ¢
dk k k k k k P k1 1 2 1222 2 3

D

by definition of the density-contrast power spectrum ( )dP k . If the density fluctuations are uncorrelated

¯ ˆ ( )rr rá ¢ñ = 1. 1232

On the other hand, calculating the variance of (121) results in
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abbreviating the Fourier-transformed unity by 1̂ as in (94). Thefinal step follows by approximating
( )- »N N N1 2. Obviously, only the second term in (124) corresponds to the result (123) for the continuous

density field, while the first arises only because the density field is composed of discrete particles. Thus, the first
term in (124) is a shot-noise termwhich arises from summing over pairs of identical particles, as the calculation
shows.

More generally, form-point correlators of density fields composed of discrete particles, an analogous
calculation shows that terms proportional to all powers of r̄ occur, r̄s, with  s m1 . Only the term
proportional to r̄m is not a shot-noise term. It is the only term arising from summing over combinations of
particles which are all different. Terms proportional to powers of r̄s with <s m are all shot-noise terms in the
sense that they arise because of the discrete nature of the density field. In the thermodynamic limit  ¥N , the
shot-noise terms can be neglected relative to the dominant termproportional to r̄m.

In the case of gravitational interaction between themicroscopic particles, the interaction potential scales
with the particlemass. Resolving the density field into an increasing number of particles while keeping themass
density constant, the particlemassmust be decreased proportional to -N 1. This repeats the argumentmade
following (119): the Poisson equation then implies that the gravitational interaction potentialmust scale
inversely with themean number density of particles, i.e. like r̄-1.

According to (112), the interaction operator from the interaction part SI of the action increases the order of
the density ρ and the responsefieldB in the free correlators by one each andmultiplies with a potential. As (71)
shows, the response field identifies two particles, as expressed by theKronecker symbol d j jm s

there. Comparing
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this with our earlier result on the origin of shot-noise terms, we see that the identification of particles by the
responsefield only selects shot-noise terms from the free density correlators because the only non-shot noise
term in the free density correlators arises from combinations of different particles, for which d = 0j jm s

.
Specifically, for anm-point density correlator in nth order perturbation theory, free correlators of order up

to +m n2 need to be calculatedwhich are of ( )+m n th order in the density and nth order in the response field.
In these free correlators, terms proportional to all powers of r̄ up to r̄ +m n2 will occur. Their subsequent
multiplication by v nwill reduce the power of r̄ by n to r̄ +m n. Each response fieldwill identify particles pairwise
andwill thus further reduce the power of the leading term to r̄m, as expected for anm-point density correlator.

This shows that only such terms in the free correlators of order +m n2 need to be consideredwhich are
proportional to r̄ +m n. Terms proportional to lower powers of r̄ will vanish in the limit N 1, while terms
proportional to higher powers of r̄ disappear because of the identification of particles by the response fields.

6. Low-order correlators

6.1. Two-point correlator ( )rrG 12 from linearmomentum correlations
Since themicroscopic particles cannot be distinguished, it suffices to select any set ofm out of theN particles to
evaluate the remaining sum in (78). Thesem particles can be labelledwith indices from1 tomwithout loss of
generality. The generating functional [ ]LZ , 00 then needs to be calculated for this specific selection of particles,
and the resulting termsmultiplied by the number of possibilities for the particular subset ofm particles selected
from the canonical ensemble ofN particles.

If wewish to calculate density correlators takingmomentum correlations into account tofirst or second
order, we need to evaluate the expressions ( )Zjk

1 from (102) and ( )Zjklm
2 given in (102), (107) and (108).

For a two-point correlator,m=2, we can choose { }Îj j, 1, 21 2 . Since the particles have to be different for

the correlation terms in ( )Zjk
1 and ( )Zjklm

2 not to vanish, we set ( ) ( )=j j, 1, 21 2 . Then

( )
   

= - = -L k L k, , 125q q1 21 2

accordingly

( )
   

= - = -L T L T, , 126p q1 21 2

and no other components of Lq p, appear. Then, the remaining integrals over all positions except

q1 and


q2

simply give

( ) ¢ = -V . 127N
12

2

If we set =t t1 2, i.e. if the correlator is taken synchronously, we further have

( ) ( ( )) ( ) ( ( )) ( )


= + + = +A k g t g t g t
1

2
1 , 0 , 0

1

2
1 , 0 , 128

qp qp qp12
2

1
2

1 1 1
2

taking into account that the remaining delta distribution ensures
 
= -k k1 2. Therefore

( ) ( )( ( )) ( ) ( )( )   
p d= + + d

-
Z

V
k k g t P k

2
2 1 , 0 . 129

N

qp12
1

2
3

D 1 2 1
2

1

This expression is symmetric under the permutation ( ) ( )1, 2 2, 1 . Since the index pair ( )1, 2 can be selected
in ( )- »N N N1 2 ways from theN particles, we immediatelyfind

( ) ¯ ( ) ( )( ( )) ( ) ( )( )   
r p d= + +rr dG k k g t P k12 2 1 , 0 . 130qp

1 2 3
D 1 2 1

2
1

6.2. Two-point correlator ( )rrG 12 fromquadraticmomentum correlations
Proceeding to the contribution of quadraticmomentum correlations to the two-point correlator, we see
immediately that only terms of the form

( ) ( ) ( ) ( ) ( ) ( ) ( )( )        
 òp d= + ¢ - -d dZ L L P k P k L a k a k L2 131jkjk q q jk

k
q jk jk q

2 3
D

2 2
j k j j

derived in (106) can contribute because termswith three or four different particle indicesmust vanish for a two-
point correlator. Setting again ( ) ( )=j j, 1, 21 2 , and evaluating the factors =a ajk

2
12
2 with the appropriate

momentum shift vectors (126), we immediately arrive at

16

New J. Phys. 18 (2016) 043020 MBartelmann et al



( ) ( ) ( )

· ( ) ( ) · · ( )
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As discussed below (100), the terms ( )Zjklm
2 are symmetric in thefirst and second index pairs and under

exchanges of the two index pairs, and the indices in the first and in the second index pairsmust be different.
Under these requirements, the term (132) appears 4 times in the sumover particle indices: termswith the index
combinations ( )1212 , ( )2112 , ( )1221 and ( )2121 are all equivalent, and others do not appear. Furthermore, we
have tomultiply with the number ( )- »N N N1 2 ofways for selecting a pair from theN particles. Thus, by
(98), we arrive at the contribution

( ) ¯ ( ) ( ) ( )

· ( ) ( ) · · ( )
( )

( )

( )  

       
 ò

r
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d d
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2

of quadraticmomentum correlations to the two-point density correlator. The damping term is set to unity here
as discussed in section 4.4 before.

6.3.One- and two-point response-field correlators
The effect of a single, one-particle response-field operator on the free generating functional was shown in (53).
That expression, valid for a single response-field operator applied to the free generating functional, is easily
generalised. Supposewe applym operators in total, of which n are density andm−n are response-field
operators. Since each response-field operator contains a density operator to be executed first, wewill have to
applym density operators in total. The result will have to bemultiplied bym−n response-field factors. Thus,
we have

ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) [ ]∣

ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) [ ]∣
ˆ ( ) ˆ ( ) [ ]∣ ( )

     F ¼ F - F ¼ F

= ¼ - F ¼ F

= ¼ -

r r

r r

-

= =

= =

=

J K

J K

L K

m m n n Z

b m b m n m Z

b m b m n Z

1 ,

1 ,

, . 134

J K

J K

K

B B

m n nterms terms

0 0

0 0

0 0

Decomposing the density and the response-field operators into their single-particle contributions, wefirst
obtain the shift tensor L from (70). Then, any single-particle response-field operator ˆ ( )b ljl returns the factor

( ) ( ) · ( )
 

å d=
=

b l g t t k ki , . 135j
s

m

qp s l s l j j
1

l l s

Applying a single response-field operator to the generating functional, we obtain themean responsefield. In
the general approach outlined above, we setm=1 and n=0. Then, from (135), we have

( ) ( ) ( )= =b g t t k1 i , 0 136j qp 1 1 1
2

1

if the propagator ( )¢g t t,qp vanishes for = ¢t t , as it usually will. Then, themean response field vanishes
identically.

Form=2, we have the density-response correlator

( ) · ( ( ) ( ) ) ( ) ( )
  

d d= +r r rG k g t t k g t t k G12 i , , 12 137B qp j j qp j j1 1 1 1 1 2 2j j j j2 1 1 1 1 2 1 2

according to (135). Since ( ) =g t t, 0qp 1 1 , thefirst term in parentheses vanishes. The second term contributes
only if =j j1 2 because of theKronecker symbol, but then the correlation terms in (96) cannot contribute. Since

( ) ( ) ( )
 

 p d= + -k k V2 138N3
D 1 2

1

in this case and

( ( ) ( ) ) ( ( ) ( )) ( )
 s s

= + = -Q g t k g t k g t g t k
3

, 0 , 0
3

, 0 , 0 , 139qp qp qp qpD
1
2

1 1 2 2
2 1

2

1 2
2

1
2

taking
 
= -k k2 1 into account, we find

( ) ¯ ( ) ( ) ( ) ( ( ) ( )) ( )
 

r p d
s

= - + - -r
⎛
⎝⎜

⎞
⎠⎟G k k g t t k

k
g t g t12 i 2 , exp

6
, 0 , 0 140B qp qp qp

3
D 1 2 1 2 1
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1
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2

17

New J. Phys. 18 (2016) 043020 MBartelmann et al



after summing over all  j N1 1 . Changing the order ofB and ρ in (137) only changes the ordering of the
times t1 and t2, thus leading to

( ) ¯ ( ) ( ) ( ) ( ( ) ( )) ( )
 

r p d
s

= - + - -r
⎛
⎝⎜

⎞
⎠⎟G k k g t t k

k
g t g t12 i 2 , exp

6
, 0 , 0 . 141B qp qp qp

3
D 1 2 2 1 1

2 1
2

1
2

1 2
2

The cross-spectra ( )rG 12B and ( )rG 12B will obviously vanish if =t t1 2. Applying both ˆ ( )b 1j1 and ˆ ( )b 2j2 will
return a product of propagators with time orderings ( )t t,1 2 and ( )t t,2 1 , whichmust vanish for causality, hence

( ) ( )=G 12 0. 142BB

6.4. Three-point correlator ( )- ¢ ¢rrG 1 1 1B from linear and quadraticmomentum correlations
We shall nowproceed towork out the three- and four-point correlators ( )- ¢ ¢rrG 1 1 1B and ( )- ¢ ¢rrrG 1 1 21B we
require. For all calculations to be carried out below, it is important that the response field identifies two particles,
which ismathematically expressed by theKronecker delta in (135). Effectively, therefore,m-point correlators of
the form r r¼GB identify two particles. Accordingly, in the three- and four-point correlators that we are about to
calculate, only two and three particles are free, respectively. Since these particles are indistinguishable, we can
enumerate themwith indices ( ) ( )=j j, 1, 21 2 and ( ) ( )=j j j, , 1, 2, 31 2 3 andmultiply the results with the
number of ways to choose particle pairs and particle triples from an ensemble ofN particles.

We beginwith the correlators derived from the generating functional [ ]( ) LZ , 00
1 from (96), which contains

momentum correlations to linear order only. Form=3, the one-particle response-field factor in (135) reduces
to the single term

( ) ( ) · ( )
 

d¢ = - ¢ ¢
¢ ¢b g t t k k2 i , 143j qp j j1 1 1 1
2 1 2

because ¢ = ¢t t1 2 and therefore ( ) ( )¢ ¢ = ¢ ¢ =g t t g t t, , 0qp qp1 2 2 2 .Moreover, we have replaced
 ¢k2 by


- ¢k1 , expressing

the translation invariance of the potential v. Since theKronecker symbol in the response-field factor identifies
the particles j1 and ¢j

2
, only two particle indices are free, whichwe set without loss of generality to

( ) ( )¢ =j j, 1, 21 1
. The shift vectors


Lqj

are then

( ) ( )
   

d d= - - ¢ - ¢L k k k . 144q j j1 1 1 1 2j

For the two-particle term (102), we can label the two particles by ( ) ( )=j k, 1, 2 and thuswrite

( ) ( )
    

= - - ¢ = - ¢L k k L k, . 145q q1 1 11 2

Wecan stop here: the delta distribution in the two-particle term in (102) shrinks to

( ) ( ) ( )
  

d d+ =L L k 146q qD D 11 2

and ensures this way that

=k 01 , which sets the response-field factor (143) to zero.We can thus conclude that

( )- ¢ ¢rrG 1 1 1B cannot contribute at all to the one-point correlator, hence

( ) ( )( )d =rG 1 0 1471

tofirst order in the interaction and to linear order in themomentum correlations: to this order, the interaction
does not change themean density.

For the two-particle term (106) contributing to the quadraticmomentum correlation, we can also set
( ) ( )=j k, 1, 2 and arrive at the same conclusion: the delta distribution ensures


=k 01 and thus sets the

response to zero. The three-particle term (107) cannot contribute because


=L 0q3
according to (144), which

implies =a 023
2 .

Of course, this is not surprising: no internal interaction between identical particles can change themean
density in a statistically homogeneous, canonical ensemble. It ismerely reassuring to seewhy the individual
contributions disappear formally.

6.5. Three-point correlator ( )rrrG 123 from linear and quadraticmomentum correlations
The contribution to the three-point correlator ( )rrrG 123 due to linearmomentum correlations can be easily
read off (96). Ignoring the damping term and focussing on the correlated contribution to the free generating
functional [ ]( ) LZ , 00

1 in (96), wefirst notice that again neither

Lq1

nor

Lq2

must vanish because otherwise
individual wave vectors would be set to zero, causing the power spectrum to disappear. Therefore, at least one
each of the particle indices ( )j j j, ,1 2 3 must be set to 1 and 2, while the third particle index available for the three-
point correlator remains free.

If we set this third index to 1 or 2 as well, themultiplicity of the resulting term is∝N2, which is lower by a
factor ofN than themultiplicity∝N3 required for the three-point correlator. This term is thus negligible. Only
termswith the third index set to>2 will remain. Adopting ( ) ( )=j j j, , 1, 2, 31 2 3 implies

18

New J. Phys. 18 (2016) 043020 MBartelmann et al



( ) ( ) ( )
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Moreover, for a synchronous three-point correlator, = =t t t1 2 3. Thus
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where the latter step follows because one of the remaining delta distributions ensures
 
= -k k1 2. Combining

results, wefind
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The index combination ( ) ( )=j j j, , 2, 1, 31 2 3 adds the same expression. Taking the remaining cyclic index
permutations into account leads to the contribution

( ) ¯ ( ) ( ) { ( ) ( ) ( ) } ( )( )    
r p d d= + + +rrr dG t k k k P k123 2 1 cyc. 1511 3 6

1
2

D 1 2 D 3 1

to the three-point correlator from linearmomentum correlations.
The terms of second order in themomentum correlation can be read off (106) and (107). The two-particle

term in [ ]( ) LZ , 00
2 gives
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Since there are again four equivalent index configurations for this term, and since the three index combinations
( )1, 2 , ( )1, 3 and ( )2, 3 are possible for the three-point correlator, we arrive at the contribution

( ) ¯ ( ) { ( ) ( ) } ( )( ) ( )
r p d= +rrr rrG k G123 2 12 cyc. 153A2 3

D 3
2

of quadraticmomentum correlations to the three-point correlator, with ( )( )
rrG 122 taken from (133).

Finally, the three-particle term ( )Zjkkl
2 from (107) gives
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Due to the symmetries of the ( )Zjklm
2 terms, there are eight equivalent index combinations. This term thus

contributes

( ) ¯ ( ) ( ) ( )

· ( ) ( ) · · ( )
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to the three-point correlator. Since there are no interactions included at this level, we set the damping factor to
unity.

6.6. Four-point correlator ( )- ¢ ¢rrrG 1 1 21B from linearmomentum correlations
Turning to the effect offirst-order interactions on the density power spectrum,we need towork out the four-
point correlator ( )- ¢ ¢rrrG 1 1 21B . The response-field factor is

( ) ( )( · · ) ( )
   

d d¢ = - ¢ ¢ + ¢
¢ ¢ ¢b g t t k k k k2 i , , 156j qp j j j j1 1 1 1 2 1
2 1 2 2 2

setting
 ¢ = - ¢k k2 1 again. Other terms do not appear here because ( ) ( )¢ ¢ = = ¢ ¢g t t g t t, 0 ,qp qp1 2 2 2 .We shall further

consider synchronous correlations only and thus set =t t1 2. Of the two terms remaining in (156), we now focus
on thefirst, inwhich theKronecker symbol ensures that = ¢j j1 2

. The second termwill then be obtained from the

result by interchanging the indices j1 and j2 or, equivalently, thewave vectors

k1 and


k2.

Due to the coupling of two particles, three particles remain free, for whichwe choose the indices
( ) ( )¢ =j j j, , 1, 2, 31 2 1 without loss of generality. The shift vectors are then

( ) ( )
    

d d d= - - ¢ - - ¢L k k k k . 157q j j j1 1 1 2 2 1 3j

The three particles need to be placed on three different positions to achieve the largest possiblemultiplicity.
We choose three positions labelled by ( ) ( )=j k l, , 2, 3, 1 , obtain the shift vectors
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( ) ( )
      

= - = - ¢ = - - ¢L k L k L k k, , 158q q q2 1 1 1j k l

from (157) and
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p d p d= + ¢ - ¢

dZ k k k k P k A k2 2 159jk23
1 3

D 2 1
3

D 1 1 2
2

2

from (102). The second delta distribution arises from the factor  ¢jk in (105). Since it ensures
 ¢ =k k1 1, it allows

us towrite (159) as

( ) ( )( ) ( ) ( ) ( ) ( )( )      
p d p d= + - ¢

dZ k k k k P k A k2 2 , 160jk23
1 3

D 1 2
3

D 1 1 1
2

1

where ( )


A kjk
2

1 simplifies to

( ( ) ( )) ( ) ( )= + ¢ + ¢A g t g t g t
1

2
1 , 0 , 0 , 0 161jk qp qp qp

2
1 1 1

because
  
= ¢ = -k k k1 1 2 due to the delta distributions. For permutations of ( )j k l, , with ¹l 1, the factor  ¢jk

results in a delta distribution setting one individual wave vector to zero, which causes the result to vanish. The
only other permutation leading to a non-vanishing result is thus ( ) ( )=j k l, , 3, 2, 1 , for which

( ( ) ( )) ( ) ( )= + ¢ +A g t g t g t
1

2
1 , 0 , 0 , 0 . 162jk qp qp qp

2
1 1 1

After collecting results, the summation over particle indicesmultiplies the result by ( )-N N 1
( )- »N N2 3, and the relevant three-particle contribution to the four-point density correlator turns out to be

( ) ¯ ( ) ( ) ( )

· ( ( ))( ( )) ( ) ( )

( )    


r p d d- ¢ ¢ = + - ¢

+ ¢ +

rrrr

d

-G k k k k

g t g t P k

1 1 21 e 2

1 , 0 1 , 0 . 163

Q

qp qp

1 2 3 6
D 1 2 D 1 1

1 1 1

D

Recall that this result was obtained assuming = ¢j j1 2
. It is quite straightforward to see that the contribution

for = ¢j j2 2
is identical,multiplying the correlator by two. Thus, the four-point correlator required for thefirst-

order perturbation theory according to (115) is

( ) ( )( ( ))( ( ))

· ¯ ( ) ( ) ( ) ( ) ( )

( )

    
r p d d

- ¢ ¢ = - ¢ + ¢ +

+ - ¢
rrr

d

-G g t t g t g t

k k k k k P k

1 1 21 2i e , 1 , 0 1 , 0

2 . 164

B
Q

qp qp qp
1 2

1 1 1 1

3 6
D 1 2 D 1 1 1

2
1

D

With

¯ · ( )
 

å d=
=

L T T , 165p
r s

m

r s j j
2

, 1
r s

the damping term turns out to be

( · ) ( )
 s

= - ¢ + ¢Q T T T T
2

3
. 166D

1
2

1
2

1 1 1
2

According to (115), this implies the contribution

( ) ¯ ( ) ( ) ( )

· ( ) ( )( ( ))( ( )) ( )

( ) ( )   


ò

d r p d=- +

¢ ¢ ¢ + ¢ +

rr d

-

G k k k P k

t v t k g t t g t g t

12 2 2

d , e , 1 , 0 1 , 0 167
t

Q
qp qp qp

1 1 3 3
D 1 2 1

2
1

0
1 1 1

2
1 1 1 1

1
D

to the nonlinear power spectrum, where the potential ˆ ( )


v k1 was included in the time integral because its
amplitudemay depend on time, and the damping term -e Q 2D was included there because it does depend on
time according to (166).

6.7. Four-point correlator ( )- ¢ ¢rrrG 1 1 21B fromquadraticmomentum correlations
Wenow turn to evaluating the contributions to the density power spectrum fromquadratic initialmomentum
correlations, which are expressed by the free generating functional [ ]( ) LZ , 00

2 from (96). Since the response-field
prefactor in (156) identifies particle pairs, only three particle indices are free, which immediately implies that no
four-particle terms can contribute. The two- and three-particle terms from (106) and (107) are thus the only
ones to consider. Again, we label the particles by ( ) ( )¢ =j j j, , 1, 2, 31 2 1

without loss of generality.

Regarding the three-particle term ( )Zjkkl
2 , the position-index combination ( ) ( )=j k l, , 1, 2, 3 leads to

· · ( )( ) · ( )

( )
( ) ( ) ( ) ( ) ( )( )

        

 
    

p d=
¢

¢
- ¢ - ¢ - ¢

- ¢
+ - ¢ ¢

d dZ
T T

k

T k k T T k k

k k
k k P k k P k2 , 168A

1223
2 1 1

1
2

1 1 1 1 1 1 1

1 1
4

3
D 1 2 1 1 1
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the combination ( ) ( )=j k l, , 2, 3, 1 gives

· · ( )( ) · ( )

( )
( ) ( ) ( ) ( ) ( )( )

        

 
    

p d= -
¢ ¢ - ¢ - ¢ - ¢

- ¢
+ - ¢

d dZ
T T

k

T k k T T k k

k k
k k P k P k k2 , 169B

1332
2 1 1

1
2

1 1 1 1 1 1 1

1 1
4

3
D 1 2 1 1 1

and the combination ( ) ( )=j k l, , 3, 1, 2 produces

· ( ) · ( ) ( ) ( ) ( ) ( ) ( )( )
         

p d= -
- ¢ ¢ - ¢

¢
+ ¢

d dZ
T T T

k

T T T

k
k k P k P k2 . 170C

3112
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1
2

1 1 1

1
2

3
D 1 2 1 1

Finally, for the two-particle term in (106) to contribute, the factor  ¢jk returns a delta distribution for an
individual wave number except for the particle-index combinations ( ) ( )=j k l, , 2, 3, 1 or ( )3, 2, 1 . For these

( ) ( ) ( ) · · · ( ) · ( )
( )

( )( )               
 òd= - ¢ -

¢ - ¢ -

-
d dZ k k P k k P k

T k T k

k

T k k T k k

k k
. 171D

k
2323
2

D 1 1 1
1 1

4

1 1 1 1

1
4

For all terms in (168)–(171), the damping term agrees with (166).
The expressions (168)–(170) each have themultiplicity =2 83 due to the symmetry of the three-point term

(107), while the expression (171) has themultiplicity =2 42 . Summing over all particle indices further
multiplies the results by ( )( )- - »N N N N1 2 3. Taking the respective factors into account, we arrive at the
relevant contribution

( ) ¯ ( )( ) ( ) ( ) ( )
( )

r- ¢ ¢ = + + +rrrr
-

⎛
⎝⎜

⎞
⎠⎟G Z Z Z

Z
1 1 21 e

2
172Q A B C

D
2 3 2

1223
2

2331
2

3112
2 2323

2
D

to the four-point density correlator.
The contribution ( )( ) - ¢ ¢rrrG 1 1 21B

2 of these terms to the correlator ( )- ¢ ¢rrrG 1 1 21B follows again by
multiplyingwith the response-field factor (156), taking into account that both terms lead to same result. Thus

( ) ( ) · ( ) ( )( ) ( ) 
- ¢ ¢ = - ¢ ¢ - ¢ ¢rrr rrrrG g t t k k G1 1 21 2i , 1 1 21 . 173B qp

2
1 1 1 1

2

Inserting this into (115), wefind

( ) ( ) · ( ) ( ) ( )( ) ( ) ( ) 
òd = - ¢ ¢ ¢ ¢ - ¢ ¢rr rrrrG g t t k k v G12 2 d1 , 1 1 1 21 . 174

t

qp
1 2

0
1 1 1 1

2
1

7. Cosmological power spectra

7.1. Power-spectra contributions from the free generating functional
All results obtained so far for the generating functional, for the initially correlated phase-space distribution and
the low-order density- and response-field correlators are generally valid for systems of classical particles. The
free phase-space trajectories of these particles are characterised by a known retardedGreen’s function and they
interact with a two-particle potential v.

In this section, we shall specialise these results to classical point particles in cosmology. The essential
difference to common classical particle systems is that space is expandingwith time. The physical distance


r

between any two particles thus growswith time in proportion to a scale factor a(t). The spatial coordinates

q are

taken to be comoving coordinates, defined by ( ) 
=r a t q .

TheGreen’s function for particlesmoving freely in such an expanding space has been derived in [30].
Specifically, the free propagator ( )t t¢g ,qp has been shown to be

( ) ¯
( ¯ )

( )òt t
t
t

¢ =
t

t

¢
g

g
,

d
, 175qp

where ( )t = -+D a 1was introduced as a time coordinatemore convenient than the cosmological time t or the
cosmological scale factor a. The function ( )+D a is the linear growth factor, describing the increase in density-
fluctuation amplitudes as long as they remain linear. The growth factor is assumed to be normalised to unity at
the initial time such that t = 0 initially.Moreover, ( )tg is defined by

( ) ≔ ( ) ( ) ( ) ( ) ≔ ( )t +
+g a D a f a

H a

H
f a

D

a
with

dln

dln
, 1762

i

including theHubble functionH(a) and theHubble constantHi at the initial time t = 0. In (176), the scale
factor a is supposed to be normalised to unity at the initial time, hence g 1 for t  0.

As a consequence of the expanding space, the propagator ( )t t¢g ,qp remainsfinite even for t  ¥. For an

Einstein–de Sitter Universe, ( )t <g , 0 2qp . Clearly, therefore, inserting the freeHamiltonian propagator (175)
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into the free linear power-spectrum term (130) cannot reproduce the result well-known fromordinary
cosmological perturbation theory that thematter power spectrum evolves linearly as ( ) ( )µd +P k D a2 .

We can, however, achieve this behaviour bymimicking the Zel’dovich approximation, which implies
extrapolating thefirst-order solution of Lagrangian perturbation theory (LPT) beyond the linear regime. LPT
describes themotion offluid elements in terms of a displacement field ( ) ( )( ) ( )  

= Yb t u q t,i 0 whichmaps the
initial Lagrangian coordinate ( )

q 0 of anyfluid element to itsfinal position

q at a later time t. (See also appendix

for the notation.)
Applying thismap to the evolution offluidmass elements leads to the continuity equation

( ( )) ( ) ( )( ) ( ) ( )d d+ = + »q t q q q1 , d 1 d d , 1773 i 3 0 3 0

with ( ) ( )( ) ( )   
= + Yq t q q t,0 0 , assuming that the initial density field is nearly uniform, ( ) d 1i . Using the

Jacobian determinant of thismapping and linearising, one finds thefirst-order relation

· ( ) ( ( ) ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )
    d Y = - + Yq t q q t t, , , . 1780 1 0 1 0 1 0

Togetherwith the equation ofmotion for

Y [32] and assuming an irrotational flow, this equation is solved by

[33]

( ) ( ) ( ) ( )( ) ( ) ( ) · ( ) 
   

ò dY = +
-q t D t

k

k
k,

i
e . 179

k

k q1 0
2

i i 0

Thus, in this approximation, particles simplymove on straight trajectories with the time dependence given by
the linear growth factor. The Zel’dovich approximation now lies in extrapolating these trajectories to the present
day. In our approach, this entails replacing theHamiltonian propagator (175)with a Zel’dovich propagator

( ) ( )( ) t t t t¢ = - ¢g , . 180
qp

Z

Then, the time-evolution factor in the free two-point density cumulant (130) derived from linear initial
correlations turns into

( ) ( ) ( )( ) t t t+ = + = +g D1 , 0 1 . 181
qp

Z
1 1 1

Consequently, the free linear power-spectrum contribution scales as ( )µd +P D a2 , as expected fromEulerian

standard perturbation theory (SPT). This time evolution is due to the fact that the equation ofmotion for
( )

Y 1

has the same form as that for the linear density contrast in SPT. Since this equation ofmotion contains the
gravitational potential, the Zel’dovich trajectories already include part of the gravitational interaction between
particles. This interaction and the actual deviations from inertialmotion it causes are hidden in the time
dependence of straight Zel’dovich trajectories.

Tofirst and second order in the initial correlations, with theHamiltonian propagator replaced by the
Zel’dovich propagator and suitably approximated damping terms, we thusfind the following contributions to
the power spectrum in our free theory

( ) ( )( ) ( )

( ) ( ) ( ) · · ( )

( )
( )

( ) ( ) ( )

( ) ( ) ( )       
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t

t
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= + =
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¢ - ¢
¢

¢

- ¢

- ¢

d d d

d d d
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⎞
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⎛
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⎞
⎠
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⎛
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⎜⎜

⎞
⎠
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P k P k D P k

P k

k

P k P k k
k k

k

k k k

k k

1 ,

2 1
3

, 182
k

1 i
1

2 2 i

2 1
4

1
2

1
2 2

i i
2

2

2

2

wherewe have specified for clarity that the power spectra on the right-hand sides are the power spectra ( )
dP i

characterising the initial particle distribution.
As onewould expect, these expressions are also found in linear LPT by going to quadratic order in the initial

correlations of
( )

Y 1
(see the ( )Cij

11 terms in equation (35) of [32]). However, one should be aware of the fact that
the LPT formalism only includes pure initialmomentum correlations due to the assumption of a uniform initial
density in (177). In our approach, quadratic power-spectrum contributions coming fromdensity auto-
correlations and density–momentum cross-correlations are also present, as they should be. Asmentioned
before, we dropped themhere since they scale with lower powers of the propagator gqp. The assumption of a
uniform initial density field is also responsible for the slightly different time dependence of LPTwhen compared
with our approach.

Strictly speaking, the choice of LPT in (179) is inconsistent with this assumption and the boundary
condition ( )( )

 
Y =q , 0 00 if the linear growth is normalised as ( ) =+D 0 1 at the initial time t=0.However, it is

necessary in LPT to achieve the same growth of the linear power spectrumwith time as in Eulerian SPT, since
LPT lacks the density auto-correlation and the density–momentum cross-correlations which together lead to
the correct time evolution factor in (130) and (181).
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The two contributions (182) are shown in figure 1 for an initial CDMpower spectrum evolved in a standard
ΛCDMUniverse such that its present normalisation reaches s = 0.88 .

The integrals remaining in the expressions can quickly and accurately be carried out byMonte-Carlo
integration.With theMonte-Carlo integrator contained in theGnu Science Library, evaluating the integrand in
(182) 105 times, the curves in figure 1 require∼30 s on a single core of a slightly outdated desktop PC.

7.2. Bispectrum
Of the three-point terms ( )( )

rrrG 1231 , ( )( )
rrrG 123A2 and ( )( )

rrrG 123B2 in (151), (153) and (155), only ( )( )
rrrG 123B2 is a

connected contribution to the bispectrum. Interchanging

k 2 and


k 3 there, and taking into account that the

preceding delta distribution ensures ( )
  
= - +k k k3 1 2 , we canwrite

( ) ¯ ( ) ( ) { ( ) ( ) ( ) } ( )( )       
r p d t= + + +rrr d dG k k k P k P k F k k123 2 , cyc. 183B2 3 3

D 1 2 3 1
4

1 2 1 2

with the kernel Fdefined by
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This structurally reproduces the 2F2-kernel appearing in Eulerian perturbation theory of the density contrast

( ) · ( · ) ( )
     

= + + +
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⎝⎜
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2

1
2

2
2

(see equation (43) in [29]). Remaining differences are due to the different levels of self-gravity included here and
in Eulerian perturbation theory andwill be detailed in a future study.

7.3. First-order results for nonlinear evolution
Infirst-order perturbation theory, we have the free contributions ( )

rrG 1 and ( )
rrG 2 from (130) and (133) to the

power spectrum together, the contribution ( ) ( )d rrG1 1 from linearmomentum correlations given in (167), and the
contribution ( ) ( )d rrG2 2 fromquadraticmomentum correlations shown in (174)with the individual terms listed
in (172).

We have shown in [30] that the Zel’dovich propagator ( )g
qp

Z can be improved and replaced by

˜ ( ) ≔ ¯ ( ( ¯ ) ( )) ( )òt t t t t¢ - ¢
t

t

¢
g h h, d exp , 186qp

where the function ( )th is given by

( ) ≔ ( ) ( )t t --h g 1 1871

in terms of the function ( )tg from (176). Since ( )t g 1 for t  0, we have ( )t h 0 initially.
The potential acting on particles following the improved Zel’dovich trajectories was shown in [30] to satisfy

the Poisson equation

Figure 1.The contributions ( )( )
dP k1 and ( )( )

dP k2 to the density power spectrumobtained from the free generating functional with the
Zel’dovich propagator are shown for a CDM initial power spectrum, evolved to s = 0.88 .

23

New J. Phys. 18 (2016) 043020 MBartelmann et al



( )
( )d = Wv

a

g a

3

2
. 188q

2
2 mi

As detailed in [30], it is an important aspect of the improved Zel’dovich approximation that it clarifieswhat
fraction of gravity is captured already by the free trajectories andwhat gravitational potential acts on these
trajectories in addition. Since thematter-density parameter Wmi is also to be evaluated at the arbitrarily early
initial time here, we can set W = 1mi for any Friedman cosmology. Following (116) and (119), we can thenwrite
the Fourier transformof the one-particle potential as

( )
( )

¯
( )

( )
( )

t
r

t= - =v
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k
g

a
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3

2
. 189v
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1
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2 2

With the potential (189), the first-order perturbation contributions to the nonlinear power spectrum are
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with the terms ( )Zjkkl
A B C2 , , given in (168)–(170) and ( )Zjkjk

D2 from (171).

Clearly, the contributions ( )( )
dP k1

1 from ((182), now to be takenwith the improved Zel’dovich propagator

g̃qp) and ( )( ) ( )d dP k1 1
1 from (190) are both proportional to the initial power spectrum, at least for large scales or

small wave numbers k1. Together, they reproduce the linear growth of the power spectrum. Since this is simply
given by ( ) ( )=d d+P k D P1

2 i , we neglect these terms here and focus on the nonlinear term ( )( ) ( )d dP k1 2
1 from (190)

with its four contributions.
Figure 2 shows these four termsA, B, C andD togetherwith the linearly evolved density power spectrum.

Dashed curves indicate negative contributions. Clearly, termA is positive throughout and expresses how
structures growon small scales by gravitational collapse. TermC is negative. At large scales, its amplitude is
larger than that of termA,while it falls below at small scales. This reflects two important aspects of cosmological
structure formation. Gravitational contraction removes power from large scales and transports it to smaller
scales. However, the reduction of power on small scales by termC is exaggerated here because the improved
Zel’dovich propagators still overshoot and are only partly compensated by thefirst-order interaction. The power
on small scales is thus suppressed too strongly. The terms B andD aremuch lower in amplitude, except on the
smallest scales. There, however, the negative contribution by termB almost exactly cancels the positive
contribution by termD.While termD contributes to structure growth on small scales, termB adds power on
intermediate scales, but removes power on small scales, albeit at a low level.

The combined effect of termsA–D is shown infigure 3, togetherwith the sumof termsA–Dand the linearly
evolved power spectrum. For comparison, the approximation by theCoyote cosmic emulator [34] of the
nonlinearly evolved density power spectrumobtained in fully numerical simulations is also shown.Clearly, at
first order perturbation theory, our analytic result falls below the numerical result. The reduction of power on
large scales and the increase on small scales is clearly shown. Yet, the overshooting due to the improved

Figure 2.TermsA, B, C andD as defined in (168)–(171) contributing atfirst-order perturbation theory to the nonlinear evolution of
the density power spectrum.Dashed curves indicate negative terms For reference, the linearly evolved density power spectrum is also
shown, evolved to s = 0.88 .
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Zel’dovich propagator is not adequately compensated by the first-order gravitational interaction, causing a loss
of power on small scales, where structures are wiped out.

Clearly, this should be improved by going to second-order perturbation theory, as we shall do in a
subsequent paper. There is however, a simple remedy even atfirst order, following the idea of the adhesion
approximation [35–37]. This approximationwas introduced to compensate the effect of free streaming in the
Zel’dovich approximation once particle trajectories have crossed. This is achieved by adding a viscosity term to
the otherwise inertialmotion in the Zel’dovich approximation

( )
  
t t

n=  = 
v v

v
d

d
0

d

d
, 1912

where the viscosity needs to be adequately adapted. Since the velocity is initially the gradient of a velocity
potentialψ,


y= v , whose Laplacian is the negative density contrast, y d = -2 , the right-hand side of (191)

corresponds to a force proportional to the negative gradient of the density contrast δ. This is quite intuitive:
particles will be kept near steep density gradients. This force can be introduced by adding a termproportional to
the density contrast to the potential. The potential (119)would then change to

( )
( )
¯
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However, the adhesion approximation is known to yield razor-sharp dark-matter filaments which are
considerably narrower than those found in numerical simulations. They can be softened replacing (192) by

( )
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¯
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, 193v 1
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where n̄ is an amplitudewith the dimension of a length scale. As a suitable length scale, we choose twice the
velocity dispersion sv, propagated to the time τ by the improved Zel’dovich propagator ˜ ( )tg , 0qp ,

¯ ˜ ( ) ( )n t s= g , 0 ; 194qp v

note that ˜ ( )t s »g , 0 2qp v at late times. Inserting thismodified interaction potential into our formalism,we
obtain the nonlinear power spectrum shown infigure 4.We emphasise thatwe introduce the adhesion
approximation and set the viscosity parameter to overcome the limitations of the first-order perturbation
theory.We expect that, oncewe proceed to higher perturbative orders, the theory will be parameter-free.

Asfigure 4 shows, the amplitude and the shape of our nonlinear density power spectrum atfirst-order
perturbation theory now agrees verywell with the approximation by theCoyote cosmic emulator [34] of the
fully numerical density power spectrum.

To emphasise the remaining differences between ourfirst-order result and the density power spectrum
found in numerical simulations, we show the difference between our result and the power spectrum according
to theCoyote cosmic emulator with linear scaling in the upper panel offigure 5. The lower panel shows how the
baryonic acoustic oscillations are reproduced by our approach.

Of course, these are notfinal answers yet, but results whichwe believe to be very encouraging. Even at first
order in the perturbation theory, with amodification of the interaction potentialmodelled after the adhesion
approximation, the nonlinear power spectrum comes out very close to fully numerical result. This suggests that

Figure 3.The sumof termsA–D is shown together with the linearly evolved power spectrum and added to it. For reference, the
cosmic-density power spectrumnonlinearly evolved to the present in numerical simulations and reproduced by theCoyote cosmic
emulator [34] is overplotted. The spectra are are evolved to s = 0.88 for linear evolution.
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second-order perturbation theorymay already yield fully satisfactory results with theNewtonian interaction
potential (189). This will beworked out in a follow-up study.

8. Conclusions

Mazenko andDas,Mazenko have recently described how the evolution of classical point-particle ensembles can
be described as a non-equilibrium statistical field theory [2, 4]. The theory uses the phase-space coordinates of
theN particles in the ensemble as elementarymicroscopic fields. The central object of the theory is a generating
functional. This is a path integral over phase-space trajectories, weighed by a probability distribution for the
initial particle positions, inwhich each particle is represented by a phase factor containing the free particle
trajectory.

Figure 4.The combined contributions A–D to the first-order nonlinear density power spectrumare shown, calculatedwith the
modified interaction potential (194). Also shown is the sumof the linear power spectrum and the termsA–D, and the approximation
by theCoyote cosmic emulator [34] of the numerically simulated density power spectrum. Both the shape and the amplitude of the
power spectrumonnonlinear scales arewell reproduced. The spectra are are evolved to s = 0.88 for linear evolution.

Figure 5.Upper panel: linear plot of the region in k spacewhere the relative difference between our first-order analytic power
spectrum from the result of the Cosmic Emulator is largest. The relative difference reaches »35% near » -k h0.5 Mpc 1 and drops to
»-15% near » -k h3 Mpc 1. Lower panel: linear plot of the region in k spacewhere the baryonic acoustic oscillations (BAOs) are
most pronounced. To reduce the dynamic range, we normalise the linearly evolved power spectrum, the power spectrum evolvedwith
the cosmic emulator and ourfirst-order analytic solutionswith andwithout viscosity to the linear spectrum according to [31], which
has no BAOs. The spectra are are evolved to s = 0.88 for linear evolution.
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For expressing themicroscopic properties of theN-particle ensemble in a compact way, we have introduced
a notation bundling these properties in tensor-valued structures which appear straightforward to calculate with
(see also [31]).

Collective fields, such as the density and the response field, are described by operators extracting correlators
of the collective fields from the generating functional by functional derivatives. Likewise, interactions between
particles are described by an interaction operator containing the collective density and responsefields. This
theory closely resembles statistical quantumfield theory. Since the form for the equation ofmotion of the
microscopic degrees of freedom is assumed to be very general, the theory should bewidely applicable to
ensembles of classical point particles.

Using the theory of cosmic structure formation as amotivation, we have derived in section 4 a probability
distribution for the initial phase-space positions of the particles which accounts for auto-correlations of the
spatial positions and themomenta, as well as for cross-correlations between spatial positions andmomenta.

We argue that, under very general conditions, continuity requires themomenta to be correlated if the
positions are. If the particles are supposed to sample an initial Gaussian density field, a single initial power
spectrum, e.g. for the initial density field, suffices to specify the initial probability distribution.We derive its
exact form,which contains a correlation operator containing the complete correlation hierarchy of the
ensemble.We then approximate this correlation operator to low order in the correlations and give explicit
expressions for the generating functional containingmomentum correlations tofirst and second order.

Themain results of this derivation in section 4 are the exact equation (65) for the initial probability
distribution in phase space, the contributions (102) to the generating functional with linearmomentum
correlations, and the terms (102), (107) and (108) for the generating functional with quadraticmomentum
correlations. From these results, low-order density- and response-field correlators for correlated ensembles of
classical particles can be readily determined, as shown in section 6.

Based on this general formalismof the theory and on a free generating functional for initially correlated,
canonical particle ensembles, we have derived two- and three-point correlators of the cosmic density field
without interaction, and the two-point density correlator of the cosmic density fieldwith interaction included in
first-order perturbation theory. Our results of section 7 can be summarised as follows:

• Ifmomentum correlations are taken into account to linear order, and if the free particle propagator is taken
from the Zel’dovich approximation, the density power spectrum (130) reproduces the linear growthwell
known fromSPT.

• Evolving quadraticmomentum correlations with the free Zel’dovich propagator leads to afirst contribution
to the nonlinear evolution of the power spectrum, forwhich the simple, closed expression (133) can be given.
This contribution is a convolution of the initial power spectrumwith itself,multiplied by amode-coupling
kernel.

• Deriving the bispectrum,we obtain the connected term (183), containing the kernel (184). In this form, it
resembles the bispectrum result fromEulerian perturbation theory, but with a small difference in two
coefficients. The reasons for this difference are subtle andwill be explained in futurework.

• Proceeding tofirst-order perturbation theory, using the improved Zel’dovich propagator and the appropriate
interaction potential derived in [30], we showed that the shape of the first-order nonlinear terms reproduce
the shape of the nonlinear density power spectrumknown fromnumerical simulations rather well, while the
amplitude at largewave numbers turns out to be substantially too low. This reflects the fact that, in the
improved Zel’dovich approximation, the re-expansion of cosmic structures is still not fully suppressed by the
first-order interaction.

• While this calls for higher-order perturbation theory, an effective remedy is provided even atfirst order by an
adapted version of the adhesion approximation [35–37]. If wemodify the interaction potential accordingly,
the shape aswell as the amplitude of the nonlinear corrections to the power spectrum reproduce the numerical
results verywell.

Our calculation extends to redshift zero and to arbitrary wave numbers. Apart from the viscosity introduced
to strengthen gravity in ourfirst-order calculation, our theory has no free parameters once the power spectrum
of the initial phase-space particle distribution is fixed and normalised.We expect that, oncewe can proceed to
second-order perturbations, the theorywill have no free parameters. The formof the nonlinear terms and the
inevitable damping factor suggest that the expected asymptotic behaviour of the nonlinear power spectrum for
largewave numbers will be retained in higher-order calculations.
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Themain difference to conventional, Eulerian or LPTof cosmic-structure evolution is that we do not
require, solve or perturb a dynamical equation for the cosmic density. Rather, we study the statistical evolution
of a particle ensemble in phase space, weakly perturbing their trajectories, and read out any collective
information, such as the density, from the evolved phase-space distributionwhen needed. Since even small
perturbations of trajectories can lead to large increases in density, our approach is able to extend into the regime
of highly nonlinear density perturbations even at low perturbative orders. It also appears crucial to keep the
complete phase-space information of the particles because this allows us to use theHamiltonian equations of
motionwith their simple structure and their equally simpleGreen’s function.

While ourmainmotivation for this work has been the extension of this theory to cosmic structure formation
fromdark-matter particles, the results given heremay be useful for awider class of problems involving the non-
equilibrium statistics of correlated ensembles of classical particles.
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Appendix. Probability distribution for initial particle positions andmomenta

A.1. Velocity potential
Weassume that the particles are initially located at spatial positions ( )

q 0 , slightly displaced by an initial
displacementfield ( )u i . The particle trajectories near the initial time t=0 are

( ) ( ) ( )( ) ( )  
= +q t q b t u A.10 i

with a yet unknownmonotonic function of time b(t)which does not need to be further specified for now.
Without loss of generality, we set ( )= =b t 0 1.

If the initial particle velocities sample an irrotational velocity field, a velocity potentialψ exists such that

( )( ) ( ) y= ¶u . A.2q
i 0

Then, continuity implies that the density evolves as

( ) ¯
( )

¯ ( ) ( )( ) ( ) ( )


r r r d
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¶

¶ ¶
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i j
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If the elements of theHessian ofψ are small, the determinant can be expanded

( ) ¯ ( ) ¯ ( ( )( ) ) ( )( ) ( )
( )r r

y
r y» +

¶
¶ ¶

» - 

-⎛
⎝
⎜⎜

⎞
⎠
⎟⎟t b t

q q
b t1 tr 1 . A.4

i j

2

0 0

1

0 2

implying that the initial density contrast needs to satisfy the Poisson equation

( ) ( )( ) ( )d y= -  . A.5i 0 2

The power spectra ( )yP k for the velocity potential and ( )dP k for the density contrastmust thus be related by

( ) ( ) ( )=y d
-P k k P k . A.64

At the same time, the initial particle velocity is

˙ ˙ ( ) ˙ ( ) ( )( ) ( ) ( )  y= = = = q b t u b t0 0 . A.7i i 0

Finally choosing the time coordinate such that ˙ ( )= =b t 0 1and setting the particlemass to unity, we can
identify the gradient of the velocity potential with the initialmomentum

( )( ) ( )
y= p . A.8i 0

The initial density contrast and the initialmomentum are thus related by the velocity potential. For the
remainder of appendix, we shall drop the superscript (i) for the initial positions andmomenta, understanding
that all positions andmomenta are to be taken at the initial time for now.
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A.2. Probability for particle positions in phase space
Weaim at the probability forfinding a point particle j at position


qj withmomentum


pj. The point particles need

to sample the density ρ, hence the probability for finding a particle at position

qj, given the density ( )r r= qj j ,

must be proportional to rj ,

( ∣ ) ( ) r r= -P q N , A.9j j j
1

with the normalisation -N 1 set by the requirement ò r =V Ndj .
Expressing the initial density ρ by the density contrast δ and introducing the velocity potentialψ, we can

substitute ¯ ( )r r y= - 1 2 for the density. Note that ρmust be chosen to be a number density here sincewe
intend to drawparticles from it.

In a similarmanner, we need to account for the conditional probability for a particle at position

qj to have

momentum

pj. By (A.8), we have

( ∣ ) ( ) ( )
 

y d y = - P p p , A.10j j j jD

understanding that ( )y y =  qj j . For ease of notation, we now abbreviate the negative Laplacian and the

gradient of the potentialψ at position

qj by

≔ ≔ ( )d y y- y, . A.11j j j j
2

The probability forfinding a particle at position

qj withmomentum


pj can thus be related by

( ) ( ∣ ) ( ∣ ) ( )
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to the probability ( )


dP p,j j for the (negative) Laplacian and the gradient of the velocity potential.
Since the velocity potential is supposed to be aGaussian random field, its derivatives will also beGaussian

randomfields. At each point

qj, wewill thus have fourGaussian random variables ( ) ≕ ( )

 
d dp p, ,j j j, viz. the

negative Laplacian dj and the gradient

pj of the velocity potential.

We are searching for the probability distribution for a set { } 
q p,j j ofN particle positions andmomenta. It will

be given by

({ }) ( ) ({ }) ( )  
ò d d d= +
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N

j

N

j j j
1

The normalisation constantA is related to the normalisation in (A.9) by

≔ ( ¯) ( )r =- -A N V . A.14N N1

A.3. Covariancematrix
Given the data tensor
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defined in themain part of the paper, the covariancematrix of these data can be decomposed as
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contains the one-point variances, which are of course equal for all particles in a statistically homogenous
distribution. The 4×4-dimensionalmatrices

( )


  
d d d
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contain the two-point variances between different points

qj and


qk.

We beginworking out the one- and two-point variances defining

≔ ( ) ( ) ( )( )ò òs =y d
-k P k k P k A.20n

k

n

k

n2 2 2 2

in terms of the power spectrum ( )yP k for the velocity potentialψ, or the power spectrum ( )dP k of the density
contrast. By definition of the density-fluctuation power spectrum, wemust have

( ) ( ) ( )·( )
  

òd d xá ñ = =d dd
- -P k re , A.21j k
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with the density correlation function xdd evaluated at ∣ ∣ 
= -r q qjk j k . Evidently, for

j=k, ( ) ( )x x s= =dd ddr 0jk 2
2.

Similarly, we obtain
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which allows us towrite the one-point variances as
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Regarding the two-point variances, we decompose thematricesCjk as
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A.4. Initial phase-space probability distribution
Instead of evaluating ( )dP directly, we rather evaluate its characteristic function
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inspired by [38]. The tensor t is Fourier-conjugate to the data tensor d .Wewrite t in the form
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It will turn out to be convenient for our current purposes to define
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The probability distribution for the data tensor is then given by the inverse Fourier transform
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wherewe have implicitly defined

≔ ( )d d Ä e , A.33j j

recalled the definition of p in (23) and used the scalar product á ña b, defined in (25).

A.4.1. Particle distribution in phase space. According to (A.13), we need to integrate expression (A.32) over all dj
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After a partial integration tomove the derivatives with respect to dt j
away from the delta distribution in ( )dtI1 , we

arrive at
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where ( ) tp is a correlation operator to be evaluated.
Since the argument of the exponential in (A.39) is quadratic in the dt j

, the derivative operator in (A.39) can
only act up to two times.We have
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for the correlation operator. In the first line, the sum extends over all pairs ( )¹j k j, , and the product includes
all indices l except ( j, k). In the second line, the sum extends over products of pairs ( )¹j k j, and ( )¹a b a, ,
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where ( )¢a b, excludes the indices j and k, and the product includes all indices l except ( )j k a b, , , . Analogous
termswith products over three, four andmore pairs have to be added.

Now,we have to insert ( ) ( )=t tI p p2 into (A.32) and to integrate
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Here, we can express the remaining tp factors in the correlation operator by derivatives with respect to p, write
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and pull the correlation operator out of the integral tofind
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Given this result, wefinally obtain from (A.13) the probability distribution
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with q as defined in (23).
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