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Abstract

Building upon the recent pioneering work by Mazenko and by Das and Mazenko, we develop a
microscopic, non-equilibrium, statistical field theory for initially correlated canonical ensembles of
classical microscopic particles obeying Hamiltonian dynamics. Our primary target is cosmic structure
formation, where initial Gaussian correlations in phase space are believed to be set by inflation. We
give an exact expression for the generating functional of this theory and work out suitable
approximations. We specify the initial correlations by a power spectrum and derive general
expressions for the correlators of the density and the response field. We derive simple closed
expressions for the lowest-order contributions to the nonlinear cosmological power spectrum, valid
for arbitrary wave numbers. We further calculate the bispectrum expected in this theory within these
approximations and the power spectrum of cosmic density fluctuations to first order in the
gravitational interaction, using a recent improvement of the Zel’dovich approximation. We show that,
with a modification motivated by the adhesion approximation, the nonlinear growth of the density
power spectrum found in numerical simulations of cosmic structure evolution is reproduced well to
redshift zero and for arbitrary wave numbers even within first-order perturbation theory. Our results
present the first fully analytic calculation of the nonlinear power spectrum of cosmic structures.

1. Introduction

1.1. Motivation and overview

In a sequence of pioneering papers, Mazenko and Das and Mazenko [1-4] have recently shown how the non-
equilibrium kinetic theory of classical particles can be mapped to the path-integral approach familiar from
statistical quantum field theory, in the spirit of [5, 6]. Besides the unifying formal analogy, this approach hasa
multitude of advantages for the systematic development of perturbation theory and the calculation of
correlators. Another substantial advantage is that the theory begins with the microscopic degrees of freedom of
the individual particles, which usually follow structurally simple equations of motion such as the Hamiltonian
equations. Collective fields are introduced as operators extracting the desired information when needed from
the microscopic degrees of freedom in the generating functional of the theory.

This paper aims at building upon this approach to find a new access to the theory of cosmological structure
formation. Despite heroic efforts and ingenious new developments, it has been notoriously difficult to calculate
into the nonlinear regime of second- or higher-order statistics of cosmic structures, such as the power spectrum
of the cosmic density field (see [7—28] for an inevitably eclectic list, and [29] for an extensive, impressive and
complete review).

One of the cardinal difficulties in conventional approaches to cosmological structure formation, both
Lagrangian and Eulerian, is that the perturbed quantities are the density and the velocity fields. With
dissipationless dark matter dominating cosmic structures, however, particle trajectories can cross and form
multiple streams, at which point of the evolution the description by unique and smooth density and velocity
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fields breaks down. This difference between fluid and particle dynamics seems to be the decisive reason for the
difficulty in higher-order, standard cosmological perturbation theory.

Numerical simulations of cosmic structure formation do not encounter this problem because they follow
the trajectories of large numbers of individual tracer particles. The density or other collective information is
calculated when needed from the actual positions of these tracer particles.

A statistical, non-equilibrium field theory for classical particles can be seen as the analytic analogto a
numerical simulation based on particles. As in simulations, following particle trajectories has the decisive
advantages that the equations of motion are as simple as possible and that crossing trajectories pose no difficulty
at all for the analytic treatment.

With the foundation of the theory worked outin [2, 4], the next step towards cosmological structure
formation is the definition of a suitable initial particle ensemble in phase space. Working this out is the first
purpose of this paper. For rendering our discussion more accessible and self-contained, we shall begin in
section 2 by summarising the non-equibrium field theory for classical particles. In section 3, we include
operators for collective fields and for the particle interactions. We ask the expert readers for patience, but we
believe that this paper is more useful if it contains an outline of the theoretical foundations even though they
have already been developed and described in detail elsewhere. In section 4, we construct the free generating
functional for particle ensembles initially correlated in phase space. Section 5 discusses first-order perturbation
theory in canonical particle ensembles. In section 6, we derive specific expressions for low-order correlators of
the density and response fields, which we then specialise in section 7 to derive density power spectra for cosmic
structures at first order in the gravitational interaction. This section presents the first fully analytic calculation of
the nonlinear power spectrum of cosmic density fluctuations. Section 8 summarises the paper and presents our
conclusions.

Even though cosmic structure formation is our main motivation, we believe that both the approach and our
central results, the generating functional for correlated classical particle ensembles and approximations to it,
may be useful for other areas of statistical physics. We thus intend to lay out the formalism as generally as
possible, with little or no reference to cosmology until section 7. To streamline the notation, we use the

abbreviations
j;::fddxdt and szzf(;i];d, (1)

where d is the number of spatial dimensions.

1.2. Summary of main concepts and results

This paper is quite technical. To provide a compact overview, we summarise here the concepts, the
approximations made and the main results. Essentially, the theory laid out here on the foundations of [1-6]
begins with an initial phase-space distribution of classical particles following Hamiltonian dynamics. Like in
thermodynamics, the statistical properties of this ensemble are characterised by a free generating functional (or
partition function) Z, given in (31). This generating functional assigns a probability P (g, p) for each initial
phase-space position (g, p) to be occupied by a particle of the ensemble. The phase-space points are then
evolved forward in time. A phase factor containing the retarded Green’s function of the free Hamiltonian
ensures that particles move along their free, classical trajectories.

This free generating functional Z, is then extended in two ways. First, in complete analogy to quantum field
theory, the particle interactions are written in form of a multiplicative, exponential operator acting on Z,.
Second, since the full microscopic information contained in the particle ensemble is rarely required,
macroscopic or collective fields are introduced as superpositions of microscopic fields. The minimum set of
collective fields consists of the number density p of the ensemble particles and the so-called response-field B,
with the latter describing how the evolution of the particle ensemble responds to changes in the particle
coordinates by means of an interaction potential. This leads to the generating functional Z in (58) which contains
all interactions and the collective fields required.

So far, the theory is independent of the specific particle ensemble to be studied. With an eye on cosmological
structure formation, the initial phase-space probability distribution P (g, p) is then constructed to incorporate
the appropriate auto-correlations of particle positions and momenta, and the cross-correlations between
particle positions and momenta required by continuity. This results in the probability distribution (65), which
contains a correlation operator shown in (A.43).

Up to this point, the theory is exact. As (65) shows, the probability distribution contains the momentum
auto-correlation matrix of the particles in the argument of an exponential. The dependence of the auto-
correlation on the particle positions needs to be integrated out, which is not generally possible analytically.
Therefore, we shall expand this exponential up to the second order in the momentum auto-correlations, which
is justified in cosmology because the amplitude of these correlations is low.
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Similarly, the particle interactions are expressed by an exponential interaction operator. Like in quantum
field theory, the series expansion of this interaction operator leads to the Feynman graphs of the theory. We shall
expand the interaction operator to first order only, leaving the (tedious, but ultimately inevitable) higher-order
perturbation theory to later work.

Thus, apart from the general foundations of the theory, we apply two types of approximation in this paper,
viz. the Taylor expansions in the momentum auto-correlations to second order, and in the interaction operator
to first order. In addition, but without invoking further approximations, we describe the free particle dynamics
in terms of an improved version of the Zel’dovich propagation [30]. Since the improved, free Zel’dovich
trajectories already incorporate part of the gravitational interaction, it is interesting to see the nonlinear growth
of the density power spectrum possible even before explicitly including the particle interactions. This result,
which is of zeroth order in the interaction operator, is found in (182). The contributions to the nonlinear power-
spectrum evolution to first order in the interaction are summarised in (190).

2. Non-equilibrium statistical theory for classical fields

2.1. Transition probability for classical fields

Let ¢, (¢, 4) be a classical field with # components, 1 < a < n,attime tand position g, living in d space—time
dimensions. Further, let the dynamics of this field be described by some equation of motion, written here
symbolically as

E(g) = 0. (@)

Any classical field , (¢, §) needs to satisfy (2) everywhere in the space—time domain considered.
Amongall classical field configurations satisfying (2), one particular configuration is singled out by
specifying suitable initial conditions, ¢, (t;, §) =: gos) (q), defined at some initial instant of time #; which we
choose to be zero withoutloss of generality, t; = 0. The initial field configuration is mapped on a later field

configuration by the classical flow &<,

PG = 0t §) = DD (p(3)), with OfY = id. 3)

Since a classical field evolves deterministically, a field configuration ¢, (¢, §) can be reached at r > 0 beginning
with an initial field configuration cpg) () ifandonlyif ¢ (¢, 4) satisfies (3).

In analogy to quantum field theory, we aim to find the probability for the transition of an initial field
configuration <p§) (q) toafield configuration ¢, (¢, §) atalater time ¢. This probability must be unity ifand only
if the evolution from <ps) () to ¢, (t, ) follows the classical path determined by the flow ®{.

Introducing the functional Dirac delta distribution ép, [-], we write the transition probability as a path
integral

Play o1 = [ D, bo[E@)] @)

The meaning of expression (4) is straightforward: a path integration over all possible field configurations ¢,
beginning with gos) is being carried out, but the functional delta distribution allows only that particular path to
contribute which satisfies the equation of motion.

We now introduce a conjugate field %, to express the delta distribution by a functional Fourier transform

olEe)] = [P fi [t | )

where the integration within the exponential function proceeds in general over all d space—time coordinates that
the fields ¢, and %, depend on, and a summation over a is implied. Note that %, plays the role of the ‘hatted’

field ) introduced by [5]. Even though we shall later connote operators with hats, we also add a hat here to
emphasise the relation to [5]. The transition probability (4) then reads

Plg, ¢¥) = f D, f DX, exp {i f >2aE(<pu)}- (6)

Identifying the integral in the exponential with the action S and its integrand with the Lagrange density £, we
define

Slgw Xal = f L(x), Lx) =R, ()E (g, (x)). @)

The functional derivative of S with respect to the conjugate field ¥, set to zero, reproduces the equation of
motion (2)
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65 [(pa’ )ACa]

=E =0. 8
65\(51 (x) X.=0 (@a (X)) ( )

2.2. Generating functional for a classical theory

A generating functional is now readily constructed from the transition probability Pg. Since the path beginning

with a fixed initial field configuration is deterministic in a classical field theory, the only possible random

element in such a theory is the configuration of the initial states. The configuration space to be summed or

integrated over in the construction of the generating functional is thus the space of initial field configurations.
Therefore, we integrate over all possible configurations of initial states, weighted by an initial probability

distribution P, [cps)]. We shall abbreviate the path integral over the initial field configurations by

[DefPoe1 = [Dr. ©

Later, when we shall specify classical microscopic degrees of freedom for the fields, the initial states will be
defined by a point set rather than by a set of functions. Then, the probability distribution P for the initial
conditions will be a function rather than a functional, and the path integrations over the initial states will turn
into ordinary integrations.

Finally, we introduce auxiliary source fields J, for ¢, and K,, for ¥, into the Lagrangian and thus arrive at the
generating functional

ZUn Kl = [ DL PLg, ¢0)

:fpnfp%fmaexp[ifx L+ Jut +Ka5<a)]- (10)

Functional derivatives of Z with respect to the source field ], taken at J, = 0 = K,,, give

e :f an D%f DX, g1l
10Ja [j—o—k

_ fpnfma G0 [E@)] = (@,)py (1

which is the classical solution to the equation of motion, averaged over all possible initial field configurations c,os)

drawn from the distribution P, [gog)]. Field correlators are given as in quantum field theory,

(00, (1) s, (). X, G D K, , Km0 )
mtimes ntimes

6 B
16, (1) 16K, , ot

ZJa Kal

, (12)
J=0=K

if Zis normalised, Z [0, 0] = 1. Since we have obtained Z by integration over a functional delta distribution,
normalisation is ensured. Likewise, as in quantum field theory, the functional W = In Z is the generating
functional for the connected correlators, i.e. the cumulants.

2.3. Generating functional for the non-interacting theory
Suppose now that the equation of motion can be brought into the form

E(@) = @ + Eo(w) + Ei(g) =0, 13)

where E, represents the free motion while Ej is due to any interaction. We can then split the action and the
Lagrangian into a free part

So=[ Lo Lo=Rl& + Eo()] (14)
and an interacting part
Si= [ oo L= RE). (1s)

We shall proceed with the free part first, ignoring for now any interactions between the fields ¢, themselves or
between the fields ¢, and any external field. This will lead us to a free generating functional Z, [J,, K,]. We shall
later include the interaction part of the action in operator form, writing

Z U Kl = €524, K,] (16)

for the generating functional including interactions; see section 3.
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Restricting the action to its free part Sp, we obtain the generating functional for the free theory from (10),

Zull K= L [ D, [Digere {i [ (0o + Bata) + Ko + sl |

= [Dn [ Dedol, + Eoa) + Kilesp {1] Iasﬁu}- (17)

For any given initial field configuration gps) , the delta distribution in (17) singles out the solution @, (x) of the
free equation of motion, augmented by the inhomogeneous source term K. Let G, (x, x”) be the propagator
(Green’s function) of the free equation of motion, then this solution is

2u(x) = Ga (6 )@ (x) = [ Gunlx, XK (6. (1s)

Absorbing a constant functional determinant into the normalisation of the generating functional, we can
replace the delta distribution in (17) by

épl@, + Eo(@) + Kal — éply, — @l (19)
and write the free generating functional as
Zull &) = [Phewe {i [ 1} 20)

where ¢, was replaced by the free solution @, from (18) by integrating over the delta distribution.

3. Microscopic and collective fields

3.1.Introductory remarks

So far, the formalism chosen for classical fields is independent of the specific equations of motion and of the
general properties of the fields. For the following discussion, the distinction between macroscopic and
microscopic fields or degrees of freedom will be important. Instead of a macroscopic field such as an
electromagnetic field, we can also use the formalism for describing the kinematics of point particles under the
influence of Hamiltonian dynamics in three spatial dimensions. Then, delta distributions at the phase-space
coordinates 55; = (q;., ﬁj) forall particles 1 < j < N replace the fields ¢,. The equations of motion of the phase-
space points X; are Hamilton’s equations

where H is the Hamiltonian, 7 is the symplectic matrix
(0 I
J= (_ 7, 0 ), (22)

and the derivative 0; acts upon all six phase-space coordinates x; of the jth particle. The matrix Z; is the unit
matrix in d dimensions. With microscopic degrees of freedom, the action S in (7) simplifies to a time integral, as
in classical mechanics. Similarly, the Green’s function will then also depend on time only.

3.2. Data structure
For notational as well as conceptual simplicity, we follow [31] and organise the positions {cj}} and the momenta

{f)j} of N'microscopic particles by means of the tensor product into the phase-space coordinate tensors
where summation over repeated indices is implied, and ¢ is the N-dimensional column vector whose only non-
vanishing entry is 1 at component j. Recall that the tensor product has the convenient properties
(A® B) - (C® D)= (AC) ® (BD),
(A® B =AT ® BT,
Tr(A ® B)=TrA - TrB. (24)

We further introduce the scalar product

—

(a, b> = (E[j ® Ej) . (Ek ® €) = L_ij . Z_;k 6jk = l_ij . bj, (25)
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where the sum over the repeated indices is again implied. Bundling the phase-space points accordingly

I ]
X = X (Y e =1 (29 €j» (26)
b

we can write Hamilton’s equations for all N particles in the compact form

Ox = (T ®1In) - (0; ® €)H. (27)

Like the phase-space coordinates, we bundle the source fields Jand K as

-

Ta. K,

j=|"ee k=|."|oe. (28)
] K
by b

We then need to introduce an analogous tensor product for the propagators
g=G® I, (29)
where Gisa6 x 6 dimensional matrix describing the free propagation of an individual phase-space point.
With this notation, we can write the free solution (18) as

(1) = G(t, 0)x0 — j; L dt' GG, K (1) (30)
for all particles together, and the free generating functional assumes the form
ZolJ, K] = de exp{iff dtJ (o), J'c(t))}. 31)
Note that the integral over the initial phase-space configurations is now an ordinary rather than a path integral.

3.3. Collective fields

If the fields ¢, represent microscopic degrees of freedom, such as the phase-space coordinates of point particles,
it will be appropriate to introduce collective fields in addition, i.e. fields representing collective properties of the
particle ensemble. Perhaps the most obvious example of such a collective field is the density p (¢, 7),

N
p(t, @) =) 60 (qd — G;(1)), (32)
=1
here assumed to be composed of N point-particle contributions.

The potential V (¢, §) experienced by any particle at time tand at position g is the sum over all point-
particle potentials v,

N
V(t, §) = Y v@G — §0), (33)
j=1

which we can re-write in terms of an integral over the density (32),
N
Vi d) = [y v - oG - G0y = [Eyv@ - o ). (39
j=1

According to Hamilton’s equations, and given the interaction potential V (¢, ¢), the interaction
contribution to the equations of motion of the particle ensemble is

0
E(q) = —(T@ IO @ HV (t, ) = (3q_)V(t, q) @ €, (35)

where 9, is the spatial derivative of V(t, 4) takenat g = g,
OV (6. D) =0,V (t D= = [ &960@ — DO,V (1, D)
—— [ &q19,80G — GV (1, D, (36)

where the last step was taken by partial integration to remove the gradient from the potential for later
convenience. With this result and with the conjugate field X = §; ® €j, we can thus write the interaction
contribution to the Lagrange density £; from (15) as

6
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N
L= (% E(q) = —fd%lZij +Ogbp (§ — q;(1) |V (&, 9). (37)
=1
The term in brackets defines the response field
N
B(t @) =3 % - Jabp (@ — §;(1) (38)
=1

in terms of the conjugate ‘hatted’ field . Introducing this into (37), we can write the interaction part of the
Lagrange density as

L=~ [ @BV, =~ [ &g [ & B, @y G~ 7)o 7). (39)

Expressing the response field B, the potential v and the density p by their Fourier transforms, we can re-write the
interaction Lagrangian as

Li=-— fk B(t, —K)v () p(t, §), (40)

where we have assumed that the potential vin (39) is translation invariant and thus depends on the difference
q — ¥ only.
We now combine the two collective fields p (¢, k) and B(t, k ) into the field doublet

o, By = | PP (41)
B(t, k)
and write the interaction part of the action in the compact form
_ 1 W
OB fdl fd2<I>( Do (12)3(2), “2)
where the conventional abbreviations d1 = df;d*; and (1) = ®(1, 1?1) are being used. We further write
d(—1) = ®(#, —k). The quantity o (12) is defined to be the interaction matrix
o(12) = —v()ép (1 — 2)((1’ (1)) (43)

where the delta distribution ép (1 — 2) enters because of the spatial translation invariance of the potential v and
the assumed instantaneous interaction. The doublet ® = (p, B) of collective fields must be paired with a
doublet H = (H,, Hp) of conjugate source fields in the Lagrangian and in the action. We thus extend the free
part of the action as

So— S0+ H- 9, (44)

where the product is understood as an implicit sum over the collective-field indices and integral over the space—
time coordinates

H-® = Zfdl H,(1)®, (1). (45)

3.4. Operator expressions for the collective fields
The collective fields  typically contain the field variables x or . These are obtained from the free functional
Zy[J, K]by functional derivatives with respect to the sources J or K,

5 5
— — X — . 46
0= X0 T s (46)

For introducing the values of x and x into ®, we replace ® by an operator G acting on the free functional
Zy[J, K], withall occurrences of x and x replaced by functional derivatives according to (46). Then, the free
generating functional including the collective fields is expressed by

Zy[H, J, K] = exp (iH - ®)Z,[J, K1. (47)

The minimum set of collective fields that we require are the density p and the response field B. We shall now
construct their operator expressions.

The density p is assumed to be composed of delta contributions, see (32). In Fourier space, the one-particle
contribution of particle j to the density at the space—time position 1 = (#, k) is

py(1) = exp(—iki - (1)), (48)
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where é’] () is the position of particle number j in configuration space at time #;. In this expression for the

density, we replace the particle position q‘] by a functional derivative with respect to qu (1), obtaining the one-
particle density operator

A ST &
d,(1) = —ik;, - — . 49
) eXp[ . iéjqj(l)] @

The action of the density operator (49) on the free generating functional (31) becomes clear by expanding the
exponential into a series. This immediately leads to

b, (DZoJ, K1 = Zo[J + L;(1), K1, (50)

where the tensor L;(1) is defined by

IO
8], (1)

Thus, the application of the density operator <i>pj( 1) amounts to a shift of the source field J in the free generating
functional by the tensor L;(1).

According to (38), the one-particle contribution B; (1) of particle j to the collective field B(1) is determined
by the gradient of the density

Li(1) = —k

—p(t — tl)(lgl) ® & (51)

Bj(1) = X, - 94,60 (q) — q;(1))- (52)
Taken into Fourier space, the one-particle response-field operator thus turns into
by (1) = |1k - —2— |8, (1) = bV, (1) (53)
= |1 . - X =: 0; . .
Bj 1 ; 6Kpj 1) j J Pj

Since &)pj involves functional derivatives with respect to qu while the response-field operator takes functional

derivatives with respect to K [ the relevant functional derivatives commute. We can thus reorder the operators
and apply all required response-field operators after all density operators.

3.5. Operator expression for the interaction part of the action
We have seen in (42) and (43) that the interaction between the particles can be included by adding the expression

S = —fdl fdz B(—1)v()ép(1 — 2)p(2) = —fdl B(—1)v(1)p(1) (54)

to the free action. By means of the operator expressions (49) and (53) for the two collective fields p and B, we can
write this action contribution in the operator form

$ = —fdl dp(—1)v (1) b, (1), (55)

where the operators <i>,, and &5 will now be responsible for acquiring the respective collective-field values from
the free generating functional Z,[H, J, K].

Written in the form (47), this free generating functional contains the collective fields in operator form
already, paired with their conjugate source fields H,and Hp. The collective-field operators themselves are thus
obtained from Z,[H, J, K]by functional derivatives with respect to the conjugate H fields

WO~ O ey (56)
appliedto Zy[H, J, K]. Therefore, the interaction part of the action is
Si= _fdl iéHB(S(—l) v i(SPZ(l)’ 7
allowing us to express the complete generating functional as
Z[H, ], K] = el 7,7, K], (58)
understanding that H - d abbreviates the expression
H-&= % [dl (1) (59)

a=p,B

asnoted in (45) before in more general form.
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4. Generating functional for correlated initial conditions

Having developed the general formalism for a set of Hamiltonian point particles, the final step to be taken
towards defining the generating functional (58) completely concerns the initial phase-space distribution. In this
section, we consider points in a domain of phase space at an initial time only. For convenience, we shall drop the
superscript (i) on any quantity here, understanding that all quantities are to be taken at the initial time
throughout this section.

4.1. Initial phase-space distribution

So far, the construction of the non-equilibrium field theory for classical particles has been completely general,
with the one exception that we required the microscopic degrees of freedom to follow the Hamiltonian
equations of motion. To specify the generating functional completely, we now have to define the initial phase-
space measure

dI' = P(q, p)dqdp; (60)

that is, we have to construct the probability distribution P (q, p) for initial particle positions in phase space.

Having cosmological structure formation in mind, we need the particles to be spatially correlated such that
their number density is a homogeneous and isotropic Gaussian random field. By continuity, spatial correlations
imply correlations also in momentum space as well as cross-correlations between spatial and momentum
coordinates. Our main goal here is thus to derive the probability distribution for the initial phase-space
coordinates under these requirements.

A central (and, as we shall see, a sufficient) quantity characterising all required correlations is the power
spectrum of density fluctuations. Calling the number density of particles p and its mean p, the density contrast is

§=L"F (61)

P

and its power spectrum P; (k) is defined as
(8E)8K)) = @m)6p (K + K)Py(k), (62)

where the density contrast § (k) as a function of the wave vector k implicitly denotes the Fourier transform. The
delta distribution ensures translation invariance and thus the statistical homogeneity of the density contrast. Ifit
is statistically isotropic as well, the power spectrum depends on the wave number k only and not on the direction
of the wave vector k.

The cosmological motivation aside for now, we are thus aiming to derive the probability distribution for
correlated phase-space points drawn from a statistically homogeneous and isotropic Gaussian random field
characterised by the power spectrum of the density fluctuations. Such initial conditions may be interesting far
beyond cosmology.

For clarity of the discussion in the main part of this paper, we shall develop the probability distribution
P (q, p) inthe appendix. The central variables in the derivation of this probability distribution will be the values
0;j of the density contrast and f)} of the momentum at the positions of all particles j. We organise these variables at
all N particle positions into a data tensor

1) o
d:= (ﬁ)] ® € (63)

by means of the tensor product with the vectors €; defined in (23). A major intermediate result will be the
covariance matrix

Ci=(d® d) (64)

of this data tensor, which contains the density-contrast and momentum auto-correlations (6; ) and <f)] ® D)

respectively, and the density-momentum cross-correlation (§;p, ). The entries of the covariance matrix are
detailed in the appendix. As derived there, the initial phase-space probability distribution is

VN 1 +=
P(qp) = —— C(p)exp(—— Tc—lp), (65)
JemNdetC,, PR

with g and p as defined in (23). The correlation operator C(p) appearing here is given in (A.43). It contains the
correlation matrices Css and C, introduced above and defined in (A.31).

Ifthe correlations Css and Cy, are weak, as we can expect them to be early in time, the probability
distribution (65) can be approximated by
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-N 1 -~ N L1
P(q, p) =~ +3XP(_—PTC71P) 1+ > Mspp + =) Css (66)
J@m*N det C,, 2 ]; S ]; o
with
Msp, = Cip, Cppy 67

4.2. General expressions for density correlators
We are aiming at calculating m-point correlators of collective fields, such as the density and response fields.
Equation (53) shows that the response-field operator contains the density operator as a factor. Thus, for an m-
point correlator, m density operators will have to be applied to the free generating functional first. Since no
further derivatives with respect to J will be required afterwards, the source field J can then be set to zero.

The operator for the density contributions by N particles is the sum over the one-particle density operators

N
b, (1) = 3, (1. (68)
j=1

Asillustrated in (51) for a single one-particle density operator, the result of applying 1 one-particle density
operators to the free generating functional is

&, (m) -+ &, (NZolJ, Kllj=o = Z[L, K] (69)
with
L=-) ép(t— ts)(ks ® &j. (70)
s=1 0
Following (53), a single one-particle response-field operator b j (D) applied subsequently then leads to
~ 2T 6
b]](l)Zo[L, K] |K:O = lkl M Zo[L, K]
6K, (D)
a K=0
= ( iqup(ts, t)k; - 7_555]'51',]20 (L, 0]. (71)
s=1
According to (68) and (69), an m-point density correlator G, ,(1 ... m) is found by summing over all
particle indices
N . N
Gp.p(l.om)y =" Dy, o Py, Zols Kllj=o=k = > ZlL, 0]. (72)

Jieedm=1 =1

This shows that all we have to evaluate for m-point correlators of the density and response fields is the free
generating functional takenat J = Land K = 0,

Zo[L, 0] = f drexp{i f dt (L, %) } (73)

where the free phase-space trajectory

%o (1) = G(t, 0)x® (74)
appears because the term containing the source K disappears. With (70), the phase in the exponential in (73) is
[ar (L, %) Y- q + 1B, (75)
where T; =g (t, 0) I?S was defined for brevity. If we introduce the tensors
m m
Ly=->k®e and L,=-YT®¢E, (76)
s=1 s=1
we can briefly write
ZolL, 0] = [dniel(ea) ity (77)

for the free generating functional evaluated at J = Land K = 0.

The shift tensors L, , have non-vanishing components only for the particles specified by the indices j set by
the one-particle density operators applied to the free generating functional. For any shift tensor specified by a
complete set of m particle indices j, ... j,, we write briefly

10
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N
Zo[L, 01 =G, p» Gpp(l...m) = > Gy, - (78)
i =1

The integral over the initial phase-space configuration remaining in the free generating functional Z,[L, 0] still
has to be carried out.

4.3. Integration over the initial phase-space distribution
Inserting (66) into (77), we first find

_ dqdp 1+
zo,0=v [[ 2L exp(—g c, p)

JemN detC,,

[1 + ZMb]Pkpk + = ZC(M ] Leq)+i{Lpp) (79)

j=1 ]ik

Since the first and the third term in parentheses in the second line do not depend on the momenta p, they can
easily be integrated over p using

f 1/(z7r)3N detC,, eXp(_

= TC P) iLpp) — ¢—Q/2 (80)

with the quadratic form
Q:=L, CplL,. (81)

The second term in parentheses can be integrated after pulling a factor p down by applying the derivative
—i0/0L, to the phase factor el{lpP) Using further that Mg, = Gy, C‘ ~Las defined in (67), this leads to

exp| —— TC ) M, elllrp) =i 3 Csp Ly, e -Q2, (82)
f\/(zﬂ)wdetcpp P( i (Z 6pPk] (2 " p)

Combining the results (79), (80) and (82), we find
Zo[L, 0] = V" Ne QD/2qu(1 + IZC(sJPkka + — 5 ZC55 ] —Q/2+i(L, wd) (83)
j=k

where we have used (A.31) to split up the quadratic form Q into Q = Qp + Q, with
2

g
Qp = ?I(Lp, L) and Q:=L, [Cpp @ ExlLy (84)
For later convenience, we introduce one-particle shift vectors qu and L p, Dy the projection
qu = (I3 ® €))L, Ep] = (I3 ® €))L, (85)
which, with (76), turn out to be
- m = - n —
Lq]' = _Zk56jjs’ LP]' = _ZT—;(SJL (86)

s=1 s=1

Interms of L pp Wecan write the quadratic forms in (84) as

2 N
0'1 =2 =T -
D= 5 E ij and Q= ij ijPkka' (87)
—

4.4. Damping

The exponential prefactor exp (— Qp/2) with the quadratic form Qp, from (83) or (87) appearing in the free
generating functional (83) requires a separate consideration. As the derivation of Z[J, K]shows, it originates
from the initial one-point momentum variance and thus arises from the free streaming of the particles with the
initial root mean square velocity quantified by 0y. In absence of momentum correlations, it would lead to a
Maxwellian or thermal velocity distribution of the particles.

In the cold-dark matter cosmogony, free streaming is suppressed by the long-ranged gravitational
interaction between the massive particles. In the free generating functional, gravitational interaction is not
included by definition. Later, we shall introduce gravitational interaction between the particles in a perturbative
approach. Aslong as we neglect gravitational two-particle interaction, the damping expressed by exp (—Qp/2)
will be unrealistic for cold dark matter because it is counteracted by the gravitational interaction.

11
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The effect of the damping term depends on its relation to the quadratic form Q, also defined in (84), which
contains the initial momentum correlations between different particles. As we shall see later, these initial
momentum correlations will be mainly responsible for the growth of structures. Realising that Q will commonly
be a small number, we shall approximate

+ — (88)

i.e. we shall expand in powers of the initial momentum correlations. For appropriately suppressing the damping
term relative to the growth of structures, we shall approximate the damping term exp (— Qp/2) consistently at
one order less than the term (88). This implies that damping will only be included at loop order, but not at tree
order. While this may appear arbitrary here, we shall show in a follow-up paper how the damping term is
counteracted when the complete hierarchy of momentum auto-correlations is taken into account. Since this
calculation is quite involved, we postpone it here.

Thus, when we derive results from the free generating functional restricted to linear initial momentum
correlations, we shall ignore the damping term completely, approximating

exp(—Qp/2) ~ 1. (89)

Atthe next higher order of the initial momentum correlations, we shall include the damping term at linear
order, approximating

~1
exp(—Qp/2) = 1 — % ~ (1 + %) R (90)

where the second approximation is advantageous because it remains positive definite.

4.5. One-point functional and normalisation

If we consider deriving free one-point ‘correlators’ of a collective field, e.g. of the density, from the generating
functional, we can ignore all correlation terms because they appear only if two or more points are involved.
Then, Q = 0, and the generating functional (83) shrinks to

Zo[L, 0] = V-Ne=Qv/2 f dq ei(loa) 1)
Ifasingle point is involved, L, will have a single non-vanishing component, which we can without loss of
generality label with the indexj = 1. Then
L,=L,®& (L,q) =—k-4q. (92)
This, inserted into (91), gives
Zo[L, 01 = NV'27m)*ép (L) (93)

because the delta distribution further ensures that L, 4 = Oandthusalso Qp = 0.The factor Nin (93) takes into
account that there are N possibilities to select a particle from the ensemble. Since the remaining delta distribution
is the Fourier transform of unity

@m’ép(Ly) = 1, (94)
we see that (93) simply reproduces the mean particle density, as it should.
4.6. Low-order approximations

We can now Taylor-expand the factor e~2/2in (83) in powers of Q, for example to first or second order. This
gives the two contributions

Zo[L, 0] ~ Z{"[L, 0] + Z{[L, 0] (95)
with
ZOIL, 0= Ve @2 [dgf1 = & 4 i3¢s, Iy + L3 Cp [eion
0 > V1= ¢ ql1 — ; + IZ Sipp Py + 5 Z §io |€ >
j j=k

~-N
Zé2)[L, 0] = ‘/vTe*QD/2 f dq Q2 ei<Lqu>. (96)

We only consider higher-order momentum correlations here and ignore cross terms of the form QCj s, or

QCsp, L », because terms containing momentum correlations dominate at late times due to the time dependence
of the momentum propagator &, (7> 0). We shall now evaluate these expressions in detail.

12
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The first integral in Zél) [L, 0],
= qu eillod) (97)

has a particular meaning. It simply returns a delta distribution or products thereof, depending on L,. Since it

does not incorporate any correlations, it can only represent shot-noise terms or powers of the mean particle

density p. For a general discussion of shot-noise terms, see section 5 below. Besides, all other terms involve

double sums over j, k = 1 ... N and thus dominate Zél) [L, 0] by far. We shall thusignore N\ in Zél) [L, 0].
In the terms remaining in (96), we pull the sums out of the integrals and write

N
Z$OIL, 0] = V- Ne@o/2 37 700,
j=k=1
V- N
ZP[L, 0] = e e @2 3 Z](,fl)m (98)
j=kl=m=1
with
: 1 ST - . -
Z;Il) = qu ei(lepa) {E(Cb‘j&k — LP] CPijLPk) + IC[SijLPk} 99)
and
i =T - =T -
2§, = [dg et @, Cpply)(L, Cpp Ly): (100)

Note that the Z (,3) are not necessarily symmetric in (j, k) because of the Cj, correlation between densities and

momenta. In contrast, the Z](,fl)m are symmetric under the permutations (jklm) — (Imjk), (jkim) — (kjlm)

and (jklm) — (jkml).

4.7. Linear momentum correlations

With the explicit expressions (A.21)—-(A.23) for the components of Cy s, Cs and C ppe and using that the power
spectra for the density and the velocity potential are related by (A.6)

Ps(k) = k* B, (), (101)
we immediately obtain from (99) the result
ZQ = @mY6p (Ly + Ly NP5 (Lg)Aj (Ly), (102)
where the abbreviations
- 1 - -
Aje(Ly) = —( = ai (L) = bie(Ly) (103)
with
. (Ly, - L)Ly - Lp) . L, L,
a3 (Ly) = — "0 b (L) = (104)
L, L,
) )
aswell as
o= [dq’e (105)

were defined. The prime on N ;k indicates that g; and gj are excluded from g here.

4.8. Quadratic momentum correlations

For taking quadratic initial momentum—momentum correlations into account, we need to evaluate different

terms contributing to Z (,fl)m in (100). In view of the symmetries of Z{Z) ik We find it convenient to distinguish

terms with two equal index pairs, Z ](kj)k, terms with one double index, ZZ) jikl> and terms with four different

indices, Z](kl)m
For two equal index pairs, we find

Z% = @Yo Ly + Lo )N j; Ps (k)P (k — Ly)aj (K)aj (k — L), (106)

13
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for one double index
Z@y = @m)8p Ly, + Ly, + Ly NP (Ly)Ps (Ly)ay Ly aii (L), (107)
and for four different indices
Zg, = @mPép Ly, + L) m)*6p (Lg, + Lg, )N Ps Ly Ps (Ly ) a (L ) ay, (Ly). (108)

Given those expressions, the free generating functional is approximated by (95) and (96). Further progress can
be made once the shift tensor L is specified, for example when the density correlators are to be calculated; see
section 6 below.

5. First-order perturbation theory

5.1. One- and two-point correlators with first-order interaction
We have shown in (58) that the generating functional including interaction can be created from the free
generating functional Z,[J, K]by means of an interaction operator

Z[H, ], K] = eiSieit®z,[], K], (109)

with the interaction part of the action given by the operator

. 5 5
Si= _fdl(iéHB(—l)V(l) i(sHpa))’ (110)

defined with slightly more explicit notation in (57). As we have noted before, this expression for the interaction
part of the action contains the two assumptions that the potential is assumed to be translation invariant and acts
instantaneously.

Since the functional derivatives with respect to Hin (110) act only on the collective-field operator ' ¢ the
effect of the interaction operator can be brought into the form

Z[H, ], K] = eH¥iSi7,[], K] (111)
with
§ = —fdl dp(—1)v (1) d, (1. (112)

The density and response-field operators, <i>p and &g, in the interaction part S; of the action now act directly on
the free generating functional and produce correlators introduced in (72) before. To lowest non-trivial order,
the interaction operator is

S a 1 — ifdl(i)B(fl)v(l)i)p(l). (113)
The corrections to the one- and two-point density correlators in first non-trivial order are then
MG, (1) = &,(1)(—iS12Z[J, K1) = —i fdl’ v(1)Ggyy (—111) (114)
and similarly
510G, (12) = fifdl’ v(1) Gy (—121). (115)

Note that we mark with primes the internal vertices of the interaction, which are integrated over in the
interaction operator.

For calculating the first-order approximation of the nonlinear density evolution and the nonlinear power
spectrum, we thus have to work out the three- and four-point correlators Gg,, (— I'T'1)and GRppp (— I'121)
from the free generating functional.

In view of our later cosmological application, we anticipate that the potential satisfies a Poisson equation of
the form

Viv(g, t) =g, (1) (116)
with a function g,(¢) to be specified, where ¢ is again the number-density contrast of the particles. Since we are

here aiming at the potential caused by a single particle, we can place this particle without loss of generality into
the origin of a coordinate system and write its contribution to the density contrast as

§=p'p@) — 1, (117)

14
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with p being the mean particle number density. Fourier transforming (116) then gives

v(1l) = —gvk(f) (l _ i). (118)

1

The Fourier-transformed unity 1 can be neglected later because the zero mode of the potential will not
contribute to any correlators. We can thus insert
&)

)

Pki

v(l) = (119)

for the Fourier-transformed, one-particle potential v. Notice in particular that this potential scales inversely with
the mean particle density p. This is because, for a fixed mean mass per volume, the particle mass has to decrease
in inverse proportion to the particle number N if that number is increased.

5.2.Shot noise and the relevance of terms
In our microscopic approach, shot-noise terms appear because the density field is composed of discrete
particles. To identify these terms and to clarify their relevance, consider a statistically homogeneous density field

N
p@ =2 80 — ) (120)
i=1
composed of N point particles. In Fourier space, this density field is

N —
p(k) = > ek, (121)

i=1

In terms of the density contrast , the power spectrum of a continuous density field is

— - ~ - - ~ - =/
(pEpE)) = p*d + (5®8EN)) = p*(1 + @m*6p K + K)Ps (k) (122)
by definition of the density-contrast power spectrum P; (k). If the density fluctuations are uncorrelated
(pp) = p1. (123)

On the other hand, calculating the variance of (121) results in

(pp') = < i eil?-q,u?'-q;>

ij=1

N d3 N L N - B
(H fﬂ Zeﬂ(kﬂw).q",-Jr Z L
k=t v i=1 i=j=1
NN-1

= Senran @ + By + TEZD ety ®enren @)

= p@m36p(k + k') + p1%, (124)

abbreviating the Fourier-transformed unity by 1 as in (94). The final step follows by approximating

N (N — 1) = NZ2.Obviously, only the second term in (124) corresponds to the result (123) for the continuous
density field, while the first arises only because the density field is composed of discrete particles. Thus, the first
term in (124) is a shot-noise term which arises from summing over pairs of identical particles, as the calculation
shows.

More generally, for m-point correlators of density fields composed of discrete particles, an analogous
calculation shows that terms proportional to all powers of p occur, p*, with1 < s < m. Only the term
proportional to p™ is not a shot-noise term. It is the only term arising from summing over combinations of
particles which are all different. Terms proportional to powers of p° with s < m are all shot-noise terms in the
sense that they arise because of the discrete nature of the density field. In the thermodynamic limit N — oo, the
shot-noise terms can be neglected relative to the dominant term proportional to p™.

In the case of gravitational interaction between the microscopic particles, the interaction potential scales
with the particle mass. Resolving the density field into an increasing number of particles while keeping the mass
density constant, the particle mass must be decreased proportional to N~!. This repeats the argument made
following (119): the Poisson equation then implies that the gravitational interaction potential must scale
inversely with the mean number density of particles, i.e. like p~.

According to (112), the interaction operator from the interaction part S; of the action increases the order of
the density p and the response field B in the free correlators by one each and multiplies with a potential. As (71)
shows, the response field identifies two particles, as expressed by the Kronecker symbol ¢; ; there. Comparing
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this with our earlier result on the origin of shot-noise terms, we see that the identification of particles by the
response field only selects shot-noise terms from the free density correlators because the only non-shot noise
term in the free density correlators arises from combinations of different particles, for which 6 i =0
Specifically, for an m-point density correlator in nth order perturbation theory, free correlators of order up
to m + 2n need to be calculated which are of (m + 1) th order in the density and nth order in the response field.
In these free correlators, terms proportional to all powers of p up to p™*2" will occur. Their subsequent
multiplication by v" will reduce the power of p by nto p™*". Each response field will identify particles pairwise
and will thus further reduce the power of the leading term to p™, as expected for an m-point density correlator.
This shows that only such terms in the free correlators of order 1 + 2n need to be considered which are
proportional to p™*". Terms proportional to lower powers of p will vanish in the limit N >> 1, while terms
proportional to higher powers of p disappear because of the identification of particles by the response fields.

6. Low-order correlators

6.1. Two-point correlator G,,(12) from linear momentum correlations
Since the microscopic particles cannot be distinguished, it suffices to select any set of m out of the N particles to
evaluate the remaining sum in (78). These m particles can be labelled with indices from 1 to m without loss of
generality. The generating functional Z,[L, 0] then needs to be calculated for this specific selection of particles,
and the resulting terms multiplied by the number of possibilities for the particular subset of m particles selected
from the canonical ensemble of N particles.

If we wish to calculate density correlators taking momentum correlations into account to first or second
order, we need to evaluate the expressions Z}kD from (102) and Z]%)m given in (102), (107) and (108).

For a two-point correlator, m = 2, we can choose j, j, € {1, 2}. Since the particles have to be different for
the correlation terms in Z;,? and Z;,f,)m not to vanish, we set (ji, j,) = (1, 2). Then

L

o _I_él’ f‘qz = _Eb (125)

accordingly

Lpy=-T, L,=-T (126)

apd no o.ther components of L, , appear. Then, the remaining integrals over all positions except 4, and g,
simply give

N, = VN-2, (127)

Ifwesett; = t,,i.e.if the correlator is taken synchronously, we further have

- 1 1
A (k) = —(1+ g5, (1 0) + g, (1, 0) = —(1 + g, (1, 0))7, (128)
taking into account that the remaining delta distribution ensures ki = —k,. Therefore
1 VN—2 o - .
2y = ——@mp (ki + k) (L + g, (0 0P (k). (129)

This expression is symmetric under the permutation (1, 2) — (2, 1). Since the index pair (1, 2) can be selected
in N(N — 1) &~ N?ways from the N particles, we immediately find

Gip(12) = p2(2m)6p (ki + k) (1 + g, (8, 0))2Ps (K. (130)

6.2. Two-point correlator G,, (12) from quadratic momentum correlations
Proceeding to the contribution of quadratic momentum correlations to the two-point correlator, we see
immediately that only terms of the form

Z@ = @Y Ly + Ly )N, fk Ps(K)Ps (k — L,)aj (k)aj (k — L,) (131)

derived in (106) can contribute because terms with three or four different particle indices must vanish for a two-
point correlator. Setting again (j;, j,) = (1, 2), and evaluating the factors a]-zk = ap, with the appropriate
momentum shift vectors (126), we immediately arrive at
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Z1(22}2 = VN=2(271)*6p (E + ]_<'2)g;p (4, 0)

RN YA S
f pE)Ps (k- B| B 'zk (k- k)| (132)
k k (k — k)?

As discussed below (100), the terms Z]%)m are symmetric in the first and second index pairs and under
exchanges of the two index pairs, and the indices in the first and in the second index pairs must be different.
Under these requirements, the term (132) appears 4 times in the sum over particle indices: terms with the index
combinations (1212), (2112), (1221) and (2121) are all equivalent, and others do not appear. Furthermore, we
have to multiply with the number N (N — 1) ~ N?2 of ways for selecting a pair from the N particles. Thus, by
(98), we arrive at the contribution

-2 . R
Gl (12) = £-@m8n (k + kg, (6, 0)

W N2 s s \2
f Bk — Tl & 'zk bk — k) (133)
k k (k — k)?

of quadratic momentum correlations to the two-point density correlator. The damping term is set to unity here
as discussed in section 4.4 before.

6.3. One- and two-point response-field correlators

The effect of a single, one-particle response-field operator on the free generating functional was shown in (53).
That expression, valid for a single response-field operator applied to the free generating functional, is easily
generalised. Suppose we apply m operators in total, of which #n are density and m — n are response-field
operators. Since each response-field operator contains a density operator to be executed first, we will have to
apply m density operators in total. The result will have to be multiplied by m — n response-field factors. Thus,
we have

Py(m) ... Dy(m — ) B, (n) ... B,(1)ZolJ, K]lj=o—k

m—n terms n terms

=b(m) ... b(m — m)d,(m) ... &,()ZolJ, Klljmo-x
=b(m) ... b(m — n)Zy[L, K]|x—o. (134)

Decomposing the density and the response-field operators into their single-particle contributions, we first
obtain the shift tensor L from (70). Then, any single-particle response-field operator b; (I) returns the factor

m
bj(h =1 g, (t ks - ki 8. (135)
s=1

Applying a single response-field operator to the generating functional, we obtain the mean response field. In
the general approach outlined above, we setm = 1andn = 0. Then, from (135), we have

bj (1) = ig., (t, ki =0 (136)

if the propagator g, (¢, t") vanishes for t = t', as it usually will. Then, the mean response field vanishes
identically.
Form = 2, we have the density-response correlator

Gy, 5,(12) = ik - (g, (6, K6} + g, (8, )K:6;)G, , (12) (137)

according to (135). Since g » (#, 1) = 0, the first term in parentheses vanishes. The second term contributes
onlyif j, = j, because of the Kronecker symbol, but then the correlation terms in (96) cannot contribute. Since

N = @m)6p (ki + k) VN1 (138)
in this case and
0-12 7 7\2 012 21.2
Qp = ?(gqp(tl, 0k + g, (2, 0k)* = ?(gqp(tl, 0) — g, (t2, 0%k, (139)
taking Izz = —El into account, we find
- = 0_2k2
Go(12) = —ip(2m)*6p (ki + kz)gqp(tl, )k exp(— 16 1 (g, (1, 0) — g, (12, 0))2) (140)
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after summingoverall 1 < j; < N.Changing the order of Band pin (137) only changes the ordering of the
times #; and t,, thus leading to

27.2
oik

6

Gr, (12) = —ip(@m)*6p (ki + K2)g, (12 1)k7 exp (— (€ (1 0) — g (12 0))2). (141)
The cross-spectra G,3(12) and Gg,, (12) will obviously vanish if ; = t,. Applying both b j (D) and b i, () will
return a product of propagators with time orderings (#, t,) and (t,, #), which must vanish for causality, hence

Gpp(12) = 0. (142)

6.4. Three-point correlator Gg,, (— 1'1'1) from linear and quadratic momentum correlations
We shall now proceed to work out the three- and four-point correlators Gg,, (— 11)and Gg oo (— '121) we
require. For all calculations to be carried out below, it is important that the response field identifies two particles,
which is mathematically expressed by the Kronecker delta in (135). Effectively, therefore, m-point correlators of
the form Gg, ., identify two particles. Accordingly, in the three- and four-point correlators that we are about to
calculate, only two and three particles are free, respectively. Since these particles are indistinguishable, we can
enumerate them with indices (j;, j,) = (1, 2)and (j;, j,» j;) = (1, 2, 3) and multiply the results with the
number of ways to choose particle pairs and particle triples from an ensemble of N particles.

We begin with the correlators derived from the generating functional Z"[L, 0] from (96), which contains
momentum correlations to linear order only. For m = 3, the one-particle response-field factor in (135) reduces
to the single term

. N
by (@) = —ig,t, thk -k &, (143)

1 1

because t{ = t, and therefore Lo H, 1) = Lo (t;, t;) = 0.Moreover, we have replaced k, by —k; , expressing
the translation invariance of the potential v. Since the Kronecker symbol in the response-field factor identifies
the particles j; and ]2’ ,only two particle indices are free, which we set without loss of generality to

(Jp jll) = (1, 2). The shift vectors qu are then
= - =/ =/
Lq]_ = —(k — k) )oj — ky 62 (144)

For the two-particle term (102), we can label the two particles by (j, k) = (1, 2) and thus write
- - =/ - -/
Ly =~k — k), Ly =—k. (145)
We can stop here: the delta distribution in the two-particle term in (102) shrinks to
8p (Lg, + Ly) = b (k) (146)

and ensures this way that 1?1 = 0, which sets the response-field factor (143) to zero. We can thus conclude that
Ggpp (— 1'1'1) cannot contribute at all to the one-point correlator, hence

oWG,(1) =0 (147)

to first order in the interaction and to linear order in the momentum correlations: to this order, the interaction
does not change the mean density.

For the two-particle term (106) contributing to the quadratic momentum correlation, we can also set
(7, k) = (1, 2) and arrive at the same conclusion: the delta distribution ensures El = 0and thus sets the
response to zero. The three-particle term (107) cannot contribute because L =0 according to (144), which
implies az; = 0.

Of course, this is not surprising: no internal interaction between identical particles can change the mean
density in a statistically homogeneous, canonical ensemble. It is merely reassuring to see why the individual
contributions disappear formally.

6.5. Three-point correlator G,,,(123) from linear and quadratic momentum correlations
The contribution to the three-point correlator G,,, (123) due to linear momentum correlations can be easily
read off (96). Ignoring the damping term and focussing on the correlated contribution to the free generating
functional Zél) [L, 0]in (96), we first notice that again neither qu nor qu must vanish because otherwise
individual wave vectors would be set to zero, causing the power spectrum to disappear. Therefore, at least one
each of the particle indices (ji, j,, j;) mustbe set to 1 and 2, while the third particle index available for the three-
point correlator remains free.

Ifwe set this third index to 1 or 2 as well, the multiplicity of the resulting term is ccN?, which is lower by a
factor of N than the multiplicity ocN° required for the three-point correlator. This term is thus negligible. Only
terms with the third index set to >2 will remain. Adopting (j,, j,» j;) = (1, 2, 3) implies
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qu = —k, th = —k, 1, = (@m)*6p (’%)VN%- (148)

Moreover, for a synchronous three—point correlator, fj = t, = 3. Thus

1 l'c' k-k 1
Ab = —[1 - g, 0)2 2] = g (1, == = —(1 + g, (8, 0))%, (149)
2 ki k; 2
where the latter step follows because one of the remaining delta distributions ensures k= —k. Combining
results, we find
| VN73 N N N N
zy = + k) ép (k) (1 + g, (0, 0))* Py (k). (150)

The index combination (j, j,, j3) = (2, 1, 3) adds the same expression. Taking the remaining cyclic index
permutations into account leads to the contribution

G (123) = P> 2m)°(1 + 1)*{6p (ki + k) ép (k3) Ps (k) + cyc.} (151)

to the three-point correlator from linear momentum correlations.
The terms of second order in the momentum correlation can be read off (106) and (107). The two-particle
termin Zéz) [L, 0] gives

Z2, = VN3 2m)sép (ki + k) bp (E3)g;p(tl) 0)

f PPk — Ry B -2k bk —k)) (152)
k k (k — k)?

Since there are again four equivalent index configurations for this term, and since the three index combinations
1, 2), (1, 3)and (2, 3) are possible for the three-point correlator, we arrive at the contribution

G2A(123) = p(2m)* {8p (k3) GL(12) + cyc.} (153)

of quadratic momentum correlations to the three-point correlator, with Gl(,f,) (12) taken from (133).
Finally, the three-particle term Z %21 from (107) gives

k- k
Z5 = VN @y (R + K + k) gl (0, 0)Ps (k) Py (k3) o 2 2k2 2. (154)
3
Due to the symmetries of the Z]%% terms, there are eight equivalent index combinations. This term thus
contributes
Gipe (123) = p* 2m)6p (ki + ko + Ks)gl (8, 0)
kk-k
{Pﬁ(kl)P(s(kg) 222 cyc.} (155)
Kok

to the three-point correlator. Since there are no interactions included at this level, we set the damping factor to

unity.

6.6. Four-point correlator Gg,,,,(—1'1'21) from linear momentum correlations
Turning to the effect of first-order interactions on the density power spectrum, we need to work out the four-
point correlator Gz, (— 1'1'21). The response-field factor is

by (@) = —ig,, (1, t)) (ki - K S+ kK 8 (156)

setting EZI = 4?1’ again. Other terms do not appear here because Sop H,t)=0= Sop (4, t). We shall further
consider synchronous correlations only and thus set i = f,. Of the two terms remaining in (156), we now focus
on the first, in which the Kronecker symbol ensures that j, = ]2/ . The second term will then be obtained from the
result by interchanging the indices j; and j, or, equivalently, the wave vectors ki and k.

Due to the coupling of two particles, three particles remain free, for which we choose the indices
(jp J»» J) = (1, 2, 3) withoutloss of generality. The shift vectors are then

— -/ - =/
L, = — &8 — ko — K6 (157)

The three particles need to be placed on three different positions to achieve the largest possible multiplicity.
We choose three positions labelled by (j, k, I) = (2, 3, 1), obtain the shift vectors
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=3

- - =/ - — =/
Ly =~k, Lg=~k, Lg=-(—k) (158)
from (157) and
— =/ - =/ — -
ZE = @m)*6p (k + k) (@m)*6p (k — Ky ) Ps (k) A (ky) (159)

-/ -
from (102). The second delta distribution arises from the factor A\/° ;k in (105). Since it ensures k; = ky, itallows
us to write (159) as

N - - -/ N -
ZE = @m)>6p (ki + ko) (2m)*6p (ki — ky ) Ps (k) A (ky), (160)
where Aﬁc (1?1) simplifies to

1
A = S (Ut g4, (1, 0)g,, (¢ 0) + £, (1, 0) (161)

- -/ N
because k; = k;, = —k; due to the delta distributions. For permutations of ( j, k, 1) with [ = 1, the factor A/ ;k
results in a delta distribution setting one individual wave vector to zero, which causes the result to vanish. The
only other permutation leading to a non-vanishing result is thus (j, k, I) = (3, 2, 1), for which

1
A = (1t g, (1 02, (1, 0)) + g, (8, 0). (162)

After collecting results, the summation over particle indices multiplies the resultby N (N — 1)
(N — 2) = N3, and the relevant three-particle contribution to the four-point density correlator turns out to be

G (—1121) = =@/ 2m)58p (ki + k)b (ki — Ky)
(14 g, (1, 0)(1 + g, (8, 0))Ps (k). (163)

Recall that this result was obtained assuming j, = j2’ . Itis quite straightforward to see that the contribution
for j, = ]2/ is identical, multiplying the correlator by two. Thus, the four-point correlator required for the first-
order perturbation theory according to (115) is

Gppp(—1121) = 2i e~ /2 ¢ (1, 1)(1 + g, (1, 0))(1 + g, (4, 0))
- - - -1 -
- p*2m)°6p (ki + ko) 8p (ki — ky ki Ps (k). (164)
With
L= 2 T 1.8 (165)
r,s=1
the damping term turns out to be
2
W= 2%(TE ~ T+ T (166)

According to (115), this implies the contribution
610G (12) = — 25° @) (K + ko) k? Py (k)
f -
: f A v(t/, ke /2 g (4, ) (1 + g, (1, 0) (A + g, (5, 0) (167)
0

to the nonlinear power spectrum, where the potential ¢ (1?1) was included in the time integral because its
amplitude may depend on time, and the damping term e~?>/2 was included there because it does depend on
time according to (166).

6.7. Four-point correlator Gz, (— 1'121) from quadratic momentum correlations
We now turn to evaluating the contributions to the density power spectrum from quadratic initial momentum
correlations, which are expressed by the free generating functional Z{*[L, 0] from (96). Since the response-field
prefactor in (156) identifies particle pairs, only three particle indices are free, which immediately implies that no
four-particle terms can contribute. The two- and three-particle terms from (106) and (107) are thus the only
ones to consider. Again, we label the particles by (ji, j,, jll) = (1, 2, 3) withoutloss of generality.
Regarding the three-particle term Z](,f,gl, the position-index combination (j, k, ) = (1, 2, 3)leads to
PN N - =/ 5 —/ - =/
goy B L TG — k)G - T) (b~ k)
1223 = 2 O
K (k= k)

Q@Yo (k + k)P (ki — k)P (k) (168)
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the combination (j, k, [) = (2, 3, 1) gives
Y I YRS / . -/
T-TT -(k—k)TL—T) (k—k .
zZ8R =— lkzl L 1()12(1 12’)14) "= K s (4 BBy (BB (R — B, (169)
1 1 — Ky

and the combination (j, k, I) = (3, 1, 2) produces
— — == — —/
goo_ h-(h-1)T - (L —1)

3112 K2 e

Finally, for the two-particle term in (106) to contribute, the factor A/ ;-k returns a delta distribution for an
individual wave number except for the particle-index combinations (j, k, I) = (2, 3, 1) or (3, 2, 1). For these

Qr)6p (ki + k) Py (k) Py (k). (170)

TKT - KT-(h—0OT - k-5

Kt (k — k* v

- N - - -
Z8) = 6p (ki — ) fk Ps(k — B)Py (F)

For all terms in (168)—(171), the damping term agrees with (166).

The expressions (168)—(170) each have the multiplicity 2> = 8 due to the symmetry of the three-point term
(107), while the expression (171) has the multiplicity 2> = 4. Summing over all particle indices further
multiplies the resultsby N (N — 1)(N — 2) ~ N°. Taking the respective factors into account, we arrive at the
relevant contribution

B Z(ZD)
G2 (—1121) = pe @/ 2(2555‘3) + Z80 + Z60 + % (172)

to the four-point density correlator.
The contribution Gl(;?p (— 1'1'21) of these terms to the correlator Ggppp (— 1'121) follows again by
multiplying with the response-field factor (156), taking into account that both terms lead to same result. Thus

. -
G (—1121) = —2ig,, (1, ki - ki G, (~1121). (173)

Inserting this into (115), we find

4 - o
WGP (12) = —2f dr'g,, (, t)k - kl’v(r)G;;)pp(—rle). (174)
0

7. Cosmological power spectra

7.1. Power-spectra contributions from the free generating functional

All results obtained so far for the generating functional, for the initially correlated phase-space distribution and
the low-order density- and response-field correlators are generally valid for systems of classical particles. The
free phase-space trajectories of these particles are characterised by a known retarded Green’s function and they
interact with a two-particle potential v.

In this section, we shall specialise these results to classical point particles in cosmology. The essential
difference to common classical particle systems is that space is expanding with time. The physical distance 7
between any two particles thus grows with time in proportion to a scale factor a(t). The spatial coordinates g are
taken to be comoving coordinates, defined by ¥ = a (¢)q.

The Green’s function for particles moving freely in such an expanding space has been derived in [30].
Specifically, the free propagator &qp (T 7') has been shown to be

L dr
gqp(T,T)sz, g(;), (175)

where 7 = D, (a) — 1wasintroduced as a time coordinate more convenient than the cosmological time ¢ or the
cosmological scale factor a. The function D, (a) is the linear growth factor, describing the increase in density-
fluctuation amplitudes as long as they remain linear. The growth factor is assumed to be normalised to unity at
the initial time such that 7 = 0 initially. Moreover, g (7) is defined by

H(a . dinD,
th 1= ,
H; e f@ dlna

including the Hubble function H(a) and the Hubble constant H; at the initial time 7 = 0. In (176), the scale
factor a is supposed to be normalised to unity at the initial time, hence g — 1for 7 — 0.
As a consequence of the expanding space, the propagator &qp (T 7") remains finite even for 7 — 0. Foran

§(1) = a’D(a)f (a) (176)

Einstein—de Sitter Universe, g o (7, 0) < 2.Clearly, therefore, inserting the free Hamiltonian propagator (175)
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into the free linear power-spectrum term (130) cannot reproduce the result well-known from ordinary
cosmological perturbation theory that the matter power spectrum evolves linearly as Ps (k) o< Dz (a).

We can, however, achieve this behaviour by mimicking the Zel’dovich approximation, which implies
extrapolating the first-order solution of Lagrangian perturbation theory (LPT) beyond the linear regime. LPT
describes the motion of fluid elements in terms of a displacement field b (1) #® = W(§©, t) which maps the
initial Lagrangian coordinate §¥ of any fluid element to its final position 7 at alater time . (See also appendix
for the notation.)

Applying this map to the evolution of fluid mass elements leads to the continuity equation

1+ 6(F, ))dq =1 + §D)dq© ~ £q©, (177)

with g (t) = §© + \1"(51‘ ©, #), assuming that the initial density field is nearly uniform, §& < 1. Using the
Jacobian determinant of this mapping and linearising, one finds the first-order relation

vO VGO, 1) = —50 @GO + TV@GO, 1), 1. (178)
Together with the equation of motion for ¥ [32] and assuming an irrotational flow, this equation is solved by
[33]

TGO, 1) = Dy(r) ],: ~ 60(k)eka, (179)

ik
k
Thus, in this approximation, particles simply move on straight trajectories with the time dependence given by
the linear growth factor. The Zel’dovich approximation now lies in extrapolating these trajectories to the present
day. In our approach, this entails replacing the Hamiltonian propagator (175) with a Zel’dovich propagator

g;?(T, N=r—-171. (180)

Then, the time-evolution factor in the free two-point density cumulant (130) derived from linear initial
correlations turns into

L+ g(n, 00 =1+ 7= Di(n). (181)

Consequently, the free linear power-spectrum contribution scales as Ps oc D (a), as expected from Eulerian
standard perturbation theory (SPT). This time evolution is due to the fact that the equation of motion for g
has the same form as that for the linear density contrast in SPT. Since this equation of motion contains the
gravitational potential, the Zel’dovich trajectories already include part of the gravitational interaction between
particles. This interaction and the actual deviations from inertial motion it causes are hidden in the time
dependence of straight Zel’dovich trajectories.

To first and second order in the initial correlations, with the Hamiltonian propagator replaced by the
Zel’dovich propagator and suitably approximated damping terms, we thus find the following contributions to
the power spectrum in our free theory

PO (k) = PP () (1 + 1)* = D2 PY(k),

4 o oI\ o g 2
sz)(k) — +f/ Pgi) (k/)Pgi) % — kl)[k /zk ] [k H(k H/kz)] , (182)
k _
2(1 + ﬁﬁl&] k (k= k)
3
where we have specified for clarity that the power spectra on the right-hand sides are the power spectra Pgi)

characterising the initial particle distribution.
As one would expect, these expressions are also found in linear LPT by going to quadratic order in the initial

correlations of " (see the Ciy Y terms in equation (35) of [32]). However, one should be aware of the fact that
the LPT formalism only includes pure initial momentum correlations due to the assumption of a uniform initial
densityin (177). In our approach, quadratic power-spectrum contributions coming from density auto-
correlations and density—momentum cross-correlations are also present, as they should be. As mentioned
before, we dropped them here since they scale with lower powers of the propagator g,,,. The assumption of a
uniform initial density field is also responsible for the slightly different time dependence of LPT when compared
with our approach.

Strictly speaking, the choice of LPT in (179) is inconsistent with this assumption and the boundary
condition \Tl((j ©, 0) = 0ifthelinear growth is normalised as D, (0) = 1at theinitial time ¢ = 0. However, it is
necessary in LPT to achieve the same growth of the linear power spectrum with time as in Eulerian SPT, since
LPT lacks the density auto-correlation and the density—-momentum cross-correlations which together lead to
the correct time evolution factor in (130) and (181).
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Figure 1. The contributions P{" (k) and P{?’ (k) to the density power spectrum obtained from the free generating functional with the
Zel’dovich propagator are shown for a CDM initial power spectrum, evolved to o3 = 0.8.

The two contributions (182) are shown in figure 1 for an initial CDM power spectrum evolved in a standard
ACDM Universe such that its present normalisation reaches g3 = 0.8.

The integrals remaining in the expressions can quickly and accurately be carried out by Monte-Carlo
integration. With the Monte-Carlo integrator contained in the Gnu Science Library, evaluating the integrand in
(182) 10° times, the curves in figure 1 require ~30 s on a single core of a slightly outdated desktop PC.

7.2. Bispectrum
Of the three-point terms /52,1,(123), G,Sﬁ’;)(lzs) and G;,f,g)(123) in(151),(153) and (155), only ,5%?(123) isa
connected contribution to the blspectrum Interchangmg k ,and k 5 there, and taking into account that the
preceding delta distribution ensures k3 — (kl + kz), we can write

Giy (123) = p?(2m)6p (ky + ko + ko) 7 {Ps () Ps (k) F (i, Ko) + cye) (183)
with the kernel F defined by

kob(k | k), (&2
Fk,k =1+ + =+ — 184
(ki, k) ok (k2 k K2k (184)

This structurally reproduces the 2F,-kernel appearing in Eulerian perturbation theory of the density contrast

-k 2
0, hk (ﬁ + &) LGRS (185)

2F k,k = — +
T T 7 k22

(see equation (43) in [29]). Remaining differences are due to the different levels of self-gravity included here and
in Eulerian perturbation theory and will be detailed in a future study.

7.3. First-order results for nonlinear evolution
In first-order perturbation theory, we have the free contributions G(l) and G(Z) from (130) and (133) to the

power spectrum together, the contribution §" G[(,},) from linear momentum correlations given in (167), and the

contribution §@ G/(,i) from quadratic momentum correlations shown in (174) with the individual terms listed
in(172).
We have shown in [30] that the Zel’dovich propagator gq(f) can be improved and replaced by

g = [ drexp(h@) = hr), (186)

where the function 4 (7) is given by
h(r) =g ' (1) — 1 (187)

in terms of the function g (7) from (176). Since g (1) — 1for 7 — 0,wehave h(7) — 0 initially.
The potential acting on particles following the improved Zel’dovich trajectories was shown in [30] to satisfy
the Poisson equation
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Figure 2. Terms A, B, C and D as defined in (168)—(171) contributing at first-order perturbation theory to the nonlinear evolution of
the density power spectrum. Dashed curves indicate negative terms For reference, the linearly evolved density power spectrum is also
shown, evolved to o3 = 0.8.

2 3 a
qu 2@ Qi 6. (188)
As detailed in [30], it is an important aspect of the improved Zel’dovich approximation that it clarifies what
fraction of gravity is captured already by the free trajectories and what gravitational potential acts on these
trajectories in addition. Since the matter-density parameter €),; is also to be evaluated at the arbitrarily early
initial time here, we can set 2,,,; = 1for any Friedman cosmology. Following (116) and (119), we can then write
the Fourier transform of the one-particle potential as

gv(ﬁ) 2. (7) = z a
pki =~ 2¢%a)

With the potential (189), the first-order perturbation contributions to the nonlinear power spectrum are

v(l) = —

(189)

SWPV (k) = 2(1 + g, (M) P (k) fo " drlg, (18, (T T + g, (),

I

T ~ k- k 72D)

SO (k) =2 [ dr'g, (g, () [ 2 (Zfié? + 28+ 280+ 22, (190)
1 1

with the terms ZJ%S’B O) givenin (168)—(170) and Zj%f ) from (171).

Clearly, the contributions Pgl) (ky) from ((182), now to be taken with the improved Zel’dovich propagator
g qp) and 6 (I)Pgl) (ky) from (190) are both proportional to the initial power spectrum, at least for large scales or
small wave numbers k;. Together, they reproduce the linear growth of the power spectrum. Since this is simply
given by Ps (k) = Df Pf), we neglect these terms here and focus on the nonlinear term 5(1)P§2) (k) from (190)
with its four contributions.

Figure 2 shows these four terms A, B, C and D together with the linearly evolved density power spectrum.
Dashed curves indicate negative contributions. Clearly, term A is positive throughout and expresses how
structures grow on small scales by gravitational collapse. Term Cis negative. At large scales, its amplitude is
larger than that of term A, while it falls below at small scales. This reflects two important aspects of cosmological
structure formation. Gravitational contraction removes power from large scales and transports it to smaller
scales. However, the reduction of power on small scales by term C is exaggerated here because the improved
Zel’dovich propagators still overshoot and are only partly compensated by the first-order interaction. The power
on small scales is thus suppressed too strongly. The terms B and D are much lower in amplitude, except on the
smallest scales. There, however, the negative contribution by term B almost exactly cancels the positive
contribution by term D. While term D contributes to structure growth on small scales, term B adds power on
intermediate scales, but removes power on small scales, albeit at a low level.

The combined effect of terms A-D is shown in figure 3, together with the sum of terms A—D and the linearly
evolved power spectrum. For comparison, the approximation by the Coyote cosmic emulator [34] of the
nonlinearly evolved density power spectrum obtained in fully numerical simulations is also shown. Clearly, at
first order perturbation theory, our analytic result falls below the numerical result. The reduction of power on
large scales and the increase on small scales is clearly shown. Yet, the overshooting due to the improved
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Figure 3. The sum of terms A-D is shown together with the linearly evolved power spectrum and added to it. For reference, the
cosmic-density power spectrum nonlinearly evolved to the present in numerical simulations and reproduced by the Coyote cosmic
emulator [34] is overplotted. The spectra are are evolved to oy = 0.8 for linear evolution.

Zel’dovich propagator is not adequately compensated by the first-order gravitational interaction, causing a loss
of power on small scales, where structures are wiped out.

Clearly, this should be improved by going to second-order perturbation theory, as we shalldoina
subsequent paper. There is however, a simple remedy even at first order, following the idea of the adhesion
approximation [35—-37]. This approximation was introduced to compensate the effect of free streaming in the
Zel’dovich approximation once particle trajectories have crossed. This is achieved by adding a viscosity term to
the otherwise inertial motion in the Zel’dovich approximation

Yoy L F vV, (191)
dr dr
where the viscosity needs to be adequately adapted. Since the velocity is initially the gradient of a velocity
potential 1, ¥ = V1), whose Laplacian is the negative density contrast, V*) = —§, the right-hand side of (191)
corresponds to a force proportional to the negative gradient of the density contrast 6. This is quite intuitive:
particles will be kept near steep density gradients. This force can be introduced by adding a term proportional to
the density contrast to the potential. The potential (119) would then change to

g1
v(1) = — pl [F + u). (192)

1

However, the adhesion approximation is known to yield razor-sharp dark-matter filaments which are
considerably narrower than those found in numerical simulations. They can be softened replacing (192) by

g,m( 1 %
v(l) = === . [k_f + k%) (193)

where 7 is an amplitude with the dimension of a length scale. As a suitable length scale, we choose twice the
velocity dispersion o,, propagated to the time 7 by the improved Zel’dovich propagator & (T 0)

v =g,(T 0)0; (194)

note that & (T 0)oy, &~ 2at late times. Inserting this modified interaction potential into our formalism, we
obtain the nonlinear power spectrum shown in figure 4. We emphasise that we introduce the adhesion
approximation and set the viscosity parameter to overcome the limitations of the first-order perturbation
theory. We expect that, once we proceed to higher perturbative orders, the theory will be parameter-free.

As figure 4 shows, the amplitude and the shape of our nonlinear density power spectrum at first-order
perturbation theory now agrees very well with the approximation by the Coyote cosmic emulator [34] of the
fully numerical density power spectrum.

To emphasise the remaining differences between our first-order result and the density power spectrum
found in numerical simulations, we show the difference between our result and the power spectrum according
to the Coyote cosmic emulator with linear scaling in the upper panel of figure 5. The lower panel shows how the
baryonic acoustic oscillations are reproduced by our approach.

Of course, these are not final answers yet, but results which we believe to be very encouraging. Even at first
order in the perturbation theory, with a modification of the interaction potential modelled after the adhesion
approximation, the nonlinear power spectrum comes out very close to fully numerical result. This suggests that
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Figure 4. The combined contributions A-D to the first-order nonlinear density power spectrum are shown, calculated with the
modified interaction potential (194). Also shown is the sum of the linear power spectrum and the terms A-D, and the approximation
by the Coyote cosmic emulator [34] of the numerically simulated density power spectrum. Both the shape and the amplitude of the
power spectrum on nonlinear scales are well reproduced. The spectra are are evolved to oy = 0.8 for linear evolution.
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Figure 5. Upper panel: linear plot of the region in k space where the relative difference between our first-order analytic power
spectrum from the result of the Cosmic Emulator is largest. The relative difference reaches ~35% near k = 0.5 h Mpc~!and drops to
~—15% near k ~ 3 h Mpc~!. Lower panel: linear plot of the region in k space where the baryonic acoustic oscillations (BAOs) are
most pronounced. To reduce the dynamic range, we normalise the linearly evolved power spectrum, the power spectrum evolved with
the cosmic emulator and our first-order analytic solutions with and without viscosity to the linear spectrum according to [31], which
has no BAOs. The spectra are are evolved to o3 = 0.8 for linear evolution.

second-order perturbation theory may already yield fully satisfactory results with the Newtonian interaction
potential (189). This will be worked out in a follow-up study.

8. Conclusions

Mazenko and Das, Mazenko have recently described how the evolution of classical point-particle ensembles can
be described as a non-equilibrium statistical field theory [2, 4]. The theory uses the phase-space coordinates of
the N particles in the ensemble as elementary microscopic fields. The central object of the theory is a generating
functional. This is a path integral over phase-space trajectories, weighed by a probability distribution for the
initial particle positions, in which each particle is represented by a phase factor containing the free particle

trajectory.
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For expressing the microscopic properties of the N-particle ensemble in a compact way, we have introduced
anotation bundling these properties in tensor-valued structures which appear straightforward to calculate with
(seealso [31]).

Collective fields, such as the density and the response field, are described by operators extracting correlators
of the collective fields from the generating functional by functional derivatives. Likewise, interactions between
particles are described by an interaction operator containing the collective density and response fields. This
theory closely resembles statistical quantum field theory. Since the form for the equation of motion of the
microscopic degrees of freedom is assumed to be very general, the theory should be widely applicable to
ensembles of classical point particles.

Using the theory of cosmic structure formation as a motivation, we have derived in section 4 a probability
distribution for the initial phase-space positions of the particles which accounts for auto-correlations of the
spatial positions and the momenta, as well as for cross-correlations between spatial positions and momenta.

We argue that, under very general conditions, continuity requires the momenta to be correlated if the
positions are. If the particles are supposed to sample an initial Gaussian density field, a single initial power
spectrum, e.g. for the initial density field, suffices to specify the initial probability distribution. We derive its
exact form, which contains a correlation operator containing the complete correlation hierarchy of the
ensemble. We then approximate this correlation operator to low order in the correlations and give explicit
expressions for the generating functional containing momentum correlations to first and second order.

The main results of this derivation in section 4 are the exact equation (65) for the initial probability
distribution in phase space, the contributions (102) to the generating functional with linear momentum
correlations, and the terms (102), (107) and (108) for the generating functional with quadratic momentum
correlations. From these results, low-order density- and response-field correlators for correlated ensembles of
classical particles can be readily determined, as shown in section 6.

Based on this general formalism of the theory and on a free generating functional for initially correlated,
canonical particle ensembles, we have derived two- and three-point correlators of the cosmic density field
without interaction, and the two-point density correlator of the cosmic density field with interaction included in
first-order perturbation theory. Our results of section 7 can be summarised as follows:

+ If momentum correlations are taken into account to linear order, and if the free particle propagator is taken
from the Zel’dovich approximation, the density power spectrum (130) reproduces the linear growth well
known from SPT.

+ Evolving quadratic momentum correlations with the free Zel’dovich propagator leads to a first contribution
to the nonlinear evolution of the power spectrum, for which the simple, closed expression (133) can be given.
This contribution is a convolution of the initial power spectrum with itself, multiplied by a mode-coupling
kernel.

+ Deriving the bispectrum, we obtain the connected term (183), containing the kernel (184). In this form, it
resembles the bispectrum result from Eulerian perturbation theory, but with a small difference in two
coefficients. The reasons for this difference are subtle and will be explained in future work.

+ Proceeding to first-order perturbation theory, using the improved Zel’dovich propagator and the appropriate
interaction potential derived in [30], we showed that the shape of the first-order nonlinear terms reproduce
the shape of the nonlinear density power spectrum known from numerical simulations rather well, while the
amplitude at large wave numbers turns out to be substantially too low. This reflects the fact that, in the
improved Zel’dovich approximation, the re-expansion of cosmic structures is still not fully suppressed by the
first-order interaction.

+ While this calls for higher-order perturbation theory, an effective remedy is provided even at first order by an
adapted version of the adhesion approximation [35—37]. If we modify the interaction potential accordingly,
the shape as well as the amplitude of the nonlinear corrections to the power spectrum reproduce the numerical
results very well.

Our calculation extends to redshift zero and to arbitrary wave numbers. Apart from the viscosity introduced
to strengthen gravity in our first-order calculation, our theory has no free parameters once the power spectrum
of the initial phase-space particle distribution is fixed and normalised. We expect that, once we can proceed to
second-order perturbations, the theory will have no free parameters. The form of the nonlinear terms and the
inevitable damping factor suggest that the expected asymptotic behaviour of the nonlinear power spectrum for
large wave numbers will be retained in higher-order calculations.
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The main difference to conventional, Eulerian or LPT of cosmic-structure evolution is that we do not
require, solve or perturb a dynamical equation for the cosmic density. Rather, we study the statistical evolution
of a particle ensemble in phase space, weakly perturbing their trajectories, and read out any collective
information, such as the density, from the evolved phase-space distribution when needed. Since even small
perturbations of trajectories can lead to large increases in density, our approach is able to extend into the regime
of highly nonlinear density perturbations even at low perturbative orders. It also appears crucial to keep the
complete phase-space information of the particles because this allows us to use the Hamiltonian equations of
motion with their simple structure and their equally simple Green’s function.

While our main motivation for this work has been the extension of this theory to cosmic structure formation
from dark-matter particles, the results given here may be useful for a wider class of problems involving the non-
equilibrium statistics of correlated ensembles of classical particles.
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Appendix. Probability distribution for initial particle positions and momenta

A.1. Velocity potential
We assume that the particles are initially located at spatial positions %, slightly displaced by an initial
displacement field #/V. The particle trajectories near the initial time t = 0 are

§® =30+ bma® (A1)

with a yet unknown monotonic function of time b(t) which does not need to be further specified for now.
Without loss of generality, weset b (¢t = 0) = 1.
Ifthe initial particle velocities sample an irrotational velocity field, a velocity potential 1/ exists such that

i = 90y, (A.2)

Then, continuity implies that the density evolves as

- —1 !
o) = B det(aq(t)] ‘ =7 | det|s; + b(t)aﬂ . (A.3)

aq’(o) qi(O)aq]{O)

If the elements of the Hessian of ¢/ are small, the determinant can be expanded
-1

_ O _ 042
p(t) =~ pll+ h(t)tra ~ p(l — b()(VO)2y). (A.4)

479q"
implying that the initial density contrast needs to satisfy the Poisson equation
80 = —(V©)2y, (A.5)
The power spectra Py, (k) for the velocity potential and P (k) for the density contrast must thus be related by
B, (k) = k~*Ps (k). (A.6)
At the same time, the initial particle velocity is
" =b@=0a0 = bt =0)VOy. (A7)

Finally choosing the time coordinate such that b (f = 0) = 1and setting the particle mass to unity, we can
identify the gradient of the velocity potential with the initial momentum

P = VO, (A.8)

The initial density contrast and the initial momentum are thus related by the velocity potential. For the
remainder of appendix, we shall drop the superscript (i) for the initial positions and momenta, understanding
thatall positions and momenta are to be taken at the initial time for now.
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A.2. Probability for particle positions in phase space
We aim at the probability for finding a point particle j at position q] with momentum [); The point particles need

to sample the density p, hence the probability for finding a particle at position qj, given the density p, = p ((j}),
must be proportional to p;,

P(g;1p) =N""p; (A.9)

with the normalisation N~! set by the requirement f p;dV =N.

Expressing the initial density p by the density contrast § and introducing the velocity potential ¢, we can
substitute p = p(1 — V?1) for the density. Note that p must be chosen to be a number density here since we
intend to draw particles from it.

In a similar manner, we need to account for the conditional probability for a particle at position q’] to have

momentum f); By (A.8), we have
P 1 V) = 66, — Vi), (A.10)
understanding that V; = V) (é}). For ease of notation, we now abbreviate the negative Laplacian and the
gradient of the potential ) at position g; by
8; == =V, )7] = V. (A.11)

The probability for finding a particle at position g; with momentum [7; can thus be related by
PGy 5) = [ 46 [ & P@IS)PEI)PE; B)
- % [ 50+ 6 [ @606 - PG 7
:%fdéja + §)P(6; B) (A.12)

to the probability P (6;, 13}) for the (negative) Laplacian and the gradient of the velocity potential.

Since the velocity potential is supposed to be a Gaussian random field, its derivatives will also be Gaussian
random fields. At each point q;., we will thus have four Gaussian random variables (6]-, ﬁj) =6, p )j» Viz. the
negative Laplacian é; and the gradient I_); of the velocity potential.

We are searching for the probability distribution for a set {@, f)}} of N particle positions and momenta. It will
be given by

N
P({q},f)j}):AdeéH (1 + §)P {8 B.})- (A.13)
=1
The normalisation constant A is related to the normalisation in (A.9) by
A= (N"p)N = VN, (A.14)
A.3. Covariance matrix
Given the data tensor
o o
a=(3) @5 (A.15)

J

defined in the main part of the paper, the covariance matrix of these data can be decomposed as

66, &ip )T
Coldod) - <Jﬂk> SJPkZ E;
(6xp;) (B @ Py)
=Cp @ Iv+ D> Cik ® Ei (A.16)
j=k
with
E]‘k = Ej ® (?k. (A.17)

The4 x 4-dimensional matrix

5p)T )
(A.18)
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contains the one-point variances, which are of course equal for all particles in a statistically homogenous
distribution. The 4 x 4-dimensional matrices

8;6k)  (6:p)"
Ciu = { J_'> i]pkl (A.19)
(6kp;) (P ® Py)
contain the two-point variances between different points q; and q,.
We begin working out the one- and two-point variances defining
o2 = f k2B, (k) = f k212 py (k) (A.20)
k k

in terms of the power spectrum P, (k) for the velocity potential 4, or the power spectrum P; (k) of the density
contrast. By definition of the density-fluctuation power spectrum, we must have

(6;8) = fk Po(k)e F a1 = ¢ (ry), (A21)

with the density correlation function ; evaluated at rjx = |g; — |- Evidently, for

j =k §5§(T'jk) = 555 0) = U%-
Similarly, we obtain

(65 =i [ KE (e . (A.22)
k
Finally, we have
(B, ® py) = fk K @ K By (kye . (A.23)
Clearly, ifj = k,
2
5 . o
(6py) =0 and (p; ®p,) = ?113, (A.24)
which allows us to write the one-point variances as
0% 0
Rt

Regarding the two-point variances, we decompose the matrices Cj as

. _ [ Con Cop | [(0i0%)  (6iB)" (A26)
ik = = N N N . .
g Cr‘ijpk CPij <6jpk> <p] ® pk>

A 4. Initial phase-space probability distribution
Instead of evaluating P (d) directly, we rather evaluate its characteristic function

®;(t) = exp (— %tTCt), (A.27)
inspired by [38]. The tensor ¢ is Fourier-conjugate to the data tensor d. We write ¢ in the form
ts
t— (q) ® &, (A.28)
t)

J

where (t5, £,); is Fourier-conjugate to (6, p);.
It will turn out to be convenient for our current purposes to define

ts=1t5; ® ¢ and t,:=1, ® ¢ (A.29)
and to decompose the quadratic formin (A.27) as
t'Ct =t Costs + 2tsCspty + t, Cppt, (A.30)
with

Css =03 ® Iy + Cs6, ® Ejpy  Csp = Csp, @ Ejis
2
= g
Cpp = ?113 ® Iy + Cpp, ® Ejpe (A.31)

30



10P Publishing

NewJ. Phys. 18 (2016) 043020 M Bartelmann et al

The probability distribution for the data tensor is then given by the inverse Fourier transform

de, 1
P(d):f(2 )3N P( ~t, Cppty + <tp’1’>)

dt5 ( 1 T A T . )
. exp| ——t5 Cssts — ts Cspt, + i(ts, 0) |, A.32
f 2m)N p 5 s Costs s Coptp (ts5, 0) ( )

where we have implicitly defined
0:= 5]' ® E"j, (A.33)

recalled the definition of p in (23) and used the scalar product (a, b) defined in (25).

A.4.1. Particle distribution in phase space. ~ Accordingto (A.13), we need to integrate expression (A.32) over all §;
and evaluate

N
Lt = [a8 T (1 + 8pexp(its, 8)) (A.34)
j=1

first. We substitute zi=1+ 6]-, dz; = déj,and find

N N
L(ts) = exp(—iZt(;j] H (fdzjzj exp (it(sjzj)). (A.35)
j=1

j=1

The factors under the product are

. .0 . . 0
fdzjzj exp (its; zj) = —1% fdzj exp (it; zj) = —ngéjéD (ts)» (A.36)
leading us to
N N5
L(ts) = (—2m)Nexp| —i 85, | T1 p. 8 (ts). (A.37)
=1 =
Next, we need to integrate
- (4t e e e |
L(t,) = f o exp( S Cuoty = 1 céptp)fl(té). (A.38)

After a partial integration to move the derivatives with respect to 5, away from the delta distribution in ], (¢;), we
arrive at

I QA 1 N
L(t,) = iV H 6 exp _Eté Cssts — t5 Copty — 1 E I,
5

j=1 ts=0

= C(tp), (A.39)

where C(t,) is a correlation operator to be evaluated.
Since the argument of the exponential in (A.39) is quadratic in the ¢, the derivative operator in (A.39) can
only act up to two times. We have

o 1.+~ el o
—_— ——l’(;rc(gb't(s — téTCgptp — lzté‘j =—1i(l — IC(sjpktpk),
atgj 2 =1
ts=0
9? 1.1~ T el -
——t5 Cssts — ts Ceptp + 121‘5}. =— C§j§k (A.40)
3t5j at(sk 2 i1 o
5=

and thus obtain the hierarchy

C(tp) H (1 —iCs, Pkth) + Zcé Sk H a- icélpktpk)
(k) '
+ ZC;) & ZC@ 5 H (1 — iCélPkth) + - (A.41)
(j,k) (a, b)

for the correlation operator. In the first line, the sum extends over all pairs (j, k = j), and the product includes
all indices I except (j, k). In the second line, the sum extends over products of pairs (j, k = j) and (a, b = a),
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where (a, b)’ excludes the indices jand k, and the product includes all indices l except ( j, k, a, b). Analogous
terms with products over three, four and more pairs have to be added.
Now, we have toinsert I, (t,) = C(t,) into (A.32) and to integrate

L(p) = f de, C(t,)ex (—ltTC‘ t, +i(t p)) (A.42)
’ @m)*N p)exP o PR P ' '
Here, we can express the remaining ¢, factors in the correlation operator by derivatives with respect to p, write
N d d
C(p) = H 1 - C5jpka— + Zc5j5k H 1 - C&Pka—
j=1 k ) 1y Dr
0
+ ZQW S Cos I |1 - C&;pka— + - (A.43)
Gh @b {y’ Pr

and pull the correlation operator out of the integral to find

dt -
B =) [ exp(%t;? Conty + ity p>)

S S C<p>exp(

J@m)*N det C,p

Given this result, we finally obtain from (A.13) the probability distribution
V—N

J@mN detC,p

-2 o p), (A.44)

P(q, p) = C(P)exp(—% TC;;p), (A.45)

with q as defined in (23).
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