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Abstract

Pseudomonas aeruginosa is an opportunistic human pathogen that forms biofilm infections in a wide
variety of contexts. Biofilms initiate when bacteria attach to a surface, which triggers changes in gene
expression leading to the biofilm phenotype. We have previously shown, for the P. aeruginosa lab
strain PAO1, that the self-produced polymer Psl is the most dominant adhesive for attachment to the
surface but that another self-produced polymer, Pel, controls the geometry of attachment of these
rod-shaped bacteria—strains that make Psl but not Pel are permanently attached to the surface but
adhere at only one end (tilting up off the surface), whereas wild-type bacteria that make both Psl and
Pel are permanently attached and lie down flat with very little or no tilting (Cooley et al 2013 Soft
Matter 9 3871-6). Here we show that the change in attachment geometry reflects a change in the
distribution of Psl on the bacterial cell surface. Bacteria that make Psl and Pel have Psl evenly coating
the surface, whereas bacteria that make only Psl have Psl concentrated at only one end. We show that
Psl can act as an inheritable, epigenetic factor. Rod-shaped P. aeruginosa grows lengthwise and divides
across the middle. We find that asymmetry in the distribution of Psl on a parent cell is reflected in
asymmetry between siblings in their attachment to the surface. Thus, Pel not only promotes P.
aeruginosa lying down flat on the surface, it also helps to homogenize the distribution of Psl within a
bacterial population.

Introduction

In biofilms, communities of interacting microbes are attached to a surface and to each other by a matrix of
embedding, self-produced extracellular polymers (EPS). Biofilms help microbial infections become chronic by
increasing the resistance of constituent organisms to the immune system and to antibiotics [1, 2]. In the
initiating stages of biofilm development, some EPS constituents act as adhesins that stick individual microbes to
the surface and to each other. A single bacterial strain can produce more than one type of EPS. The reasons for
this redundancy are not well understood, but possibilities include providing a genetic backup plan in case of
mutations [3], distinct roles for distinct EPS types [4, 5], and synergistic interactions between EPS types [5].
Pseudomonas aeruginosa is an opportunistic human pathogen that forms biofilm infections in host tissues
and medical devices and is widely studied as a model organism for biofilm formation [6-8]. In vitro, the wild-
type (WT) of the well-characterized P. aeruginosa lab strain PAO1 makes two EPS, Psl and Pel. We have
previously shown that Pel changes the geometry of adhesion so that rod-shaped P. aeruginosa cells are more
likely to lie down flat on a surface [5]. This increases the fraction of the cell surface that is in contact with the
substrate—i.e., the geometric coupling of the cell and substrate is increased. For P. aeruginosa and many other
species of bacteria, the biofilm-promoting signaling molecule cyclic diguanylate (cyclic-di-GMP) is upregulated
upon adhesion to a solid surface [9, 10]. The Wsp regulatory circuit is one system ultimately responsible for
cyclic-di-GMP production [11, 12], and the surface-associated WspA proteins are distributed over the entire
surface of the bacterial cell [13]. As aresult, it seems likely that cells that are lying down flat should sense surfaces
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better than cells that are attached at one end. Moreover, mechanosensing of solid surfaces by P. aeruginosa has
recently been shown to upregulate virulence and signaling by cyclic-AMP [14, 15]. Extant approaches to
preventing biofilms focus on developing surfaces that resist bacterial attachment or are bactericidal [16-19]. A
better understanding of what properties are conferred by the expression of particular adhesins and how multiple
types of EPS synergize should yield insight into what characteristics of surface adhesion promote pathogenesis,
and thereby guide the development of new approaches for preventing or disrupting biofilms.

Here, we demonstrate a synergy between two EPS materials, Pel and Psl, in which Pel alters the distribution
of Psl on the surfaces of rod-shaped P. aeruginosa cells. We find that Psl is distributed more uniformly along the
lengths of WT cells than along isogenic Apel cells that are incapable of making Pel. In Apel populations, the Psl
has a greater tendency to be concentrated at only one end of the cell. This is consistent with our previous finding
that Apel populations have a strong tendency to be attached at only one end, tilting up off the surface, whereas
WT populations are almost always lying flat on the surface, attached along the length of the cell body, and that
Pslis by far the most important factor for bacterial adhesion to surfaces in these studies [5]. P. aeruginosa
proliferates by increasing in length and then dividing across its minor axis, so altering the distribution of Psl
along the major axis changes the way that the Psl from the parent is partitioned between the two daughters. We
find that the geometry with which cells adhere to a flat, coverslip surface is reflective of epigenetic inheritance of
Psl on the bacterial surface. These measurements are consistent with our measurements of Psl asymmetry using
antibody staining. Therefore, we expect a more-uniform lengthwise distribution of Psl to result in a more-
equitable inheritance of Psl by sibling cells. Symmetry and symmetry-breaking are fundamental concepts of
physics. The adhesion characteristics we study here are examples of symmetry-breaking concepts from physics
applied to an important biological system.

Materials and methods

The culturing of bacteria for phase-contrast microscopy was done as described in our previous work [5] and
repeated here. This protocol was modified for antibody staining experiments, described below.

Bacteria and media

We used WT P. aeruginosa strain PAO1 [20] and three single-gene deletion strains in the PAO1 background,
PAO1 Apel [21], PAO1 ApelA [22],and PAO1 Apsl[23]. Apelis a polar mutant of pelA (i.e., polar mutation is a
case such that mutation of a gene located upstream in the operon impacts the expression of genes in the same
operon that are located downstream of the mutated gene); no substantial difference in the tilting behavior of
Apeland ApelA was found.

Bacteria were streaked from frozen stock onto LB-Miller agar plates (5 g yeast extract, 10 g tryptone, 10 g
sodium chloride, and 15 gagar per liter of Millipore water) and incubated at room temperature.

Rich media such as LB liquid medium (5 g yeast extract, 10 g tryptone, and 10 g sodium chloride per liter of
Millipore water) have autofluorescence that can interfere with the fluorescence microscopy measurements
described below. To avoid this, we use a defined, minimal medium (FAB) consisting of, in 1 L of Millipore water,
2 g(NH,),S04,9 gNa,HPO, x 7H,0, 3 gKH,PO,, 3 gNaCl, 2 mL of MgCl, solution at 46.5 g L', 1 mL of
CaCl, x 2H,O solutionat 14 g L', 1 mL of trace metals solution containing CaSO, x 2H,0Oat200 mgL ™",
FeSO, x 7H,0at200 mgL~',MnSO4 x H,0at20 mgL~',ZnSO, x 7H,0at20 mgL~',NaMoO, x H,0
at 10 mg L', and 0.2 mL of a second trace metals solution containing CuSO, x 5H,0at 100 mgL ™",

CoSO4 x 7H,0 at50 mg L', and H;BO;at 25 mg L. This is based on the medium used in Heydorn et al 2000
[24] and Shrout et al 2006 [25]. All chemicals were purchased from Sigma-Aldrich (USA).

Single colonies were inoculated into 4 ml FAB minimal medium with 36 mM disodium succinate as the sole
carbon source and incubated at 37 °C in 20 mm glass culture tubes on an orbital shaker (Labnet Orbit 1000) with
a 19 mm circular orbit operating at 200-250 rpm. Disodium succinate is added by filter sterilization; media with
succinate is stored at 4 °C for no more than two weeks prior to use.

Sample growth

We grew the cultures in culture tubes to an optical density at 600 nm (ODgq) 0f 0.3, as measured by a Thermo
Spectronic Genesys 20 Spectrophotometer. From our growth curve measurements, this corresponds
approximately to mid-exponential growth phase.

Phase contrast microscopy

For time-lapse microscopy of tilting and cell motility we volumetrically diluted the culture, by adding sterile
medium, by a factor of either 50 000 x or 500 000 x. We prepared samples for microscopy by placing an adhesive
spacer (SecureSeal SS1X13) onto an uncoated glass slide, followed by addition of a few drops of the diluted
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culture and covering with a glass cover slip to seal the chamber. Prior to use, we cleaned the cover slips by 5 min
of sonication in a solution of 150 g of potassium hydroxide (KOH) dissolved in 450 mL of ethanol, followed by
further sonication and rinsing in deionized water.

The bacteria were imaged using an Olympus IX71 inverted microscope in phase contrast mode. The
microscope stage is enclosed within an incubator chamber heated to 30 °C. For better spatial resolution,
monochromatic green light was used for illumination. We use a 60 x oil-immersion objective in combination
with an internal 1.6 x multiplier that increases the effective magnification. Images were captured with a
QImaging EXi Blue CCD camera controlled by a computer running QCapture Pro 6. An exposure time of 0.2 s
and a frame rate of one frame per 30 s sufficed to capture most motion of the bacteria on the surface and avoid
blurring. Rapidly spinning bacteria were excluded from the analysis. Images were assembled into time-lapse
movies using the Fiji distribution of Image] software [26].

Thirteen time-lapse movies of Apel are reported on here. Our experiments began with a single isolated
bacterium or ajust-divided pair in the field of view. With time, bacterial division and attachment of additional
cells caused the number of bacteria in the field of view to increase. The total number of bacteria surveyed per
experiment was ~10-60 over 4—6 h; daughter cells are counted as separate bacteria from the parent.

Structured illumination microscopy (SIM) experiments

For Psl staining experiments, we used an antibody for Psl. The antibody was conjugated directly to AlexaFluor
647. The bacteria were grown to an ODggg 0f 0.3, and then volumetrically diluted by a factor of 10 000 in sterile
media with 1 mg mL ™" bovine serum albumin and 36 mM disodium succinate. The antibody was diluted in
sterile media with no carbon, and then further diluted into the culture to a final dilution of 1:10 000. 500 xL of
culture was transferred to a well of an 8-well chamber coverglass (Nunc Lab-Tek 155409). The culture was
incubated for 1-2 h at 30 °C before imaging.

To achieve sub-cellular spatial resolution, we acquired SIM fluorescence images with a Zeiss Elyra S.1
microscope. We used a 63 X oil-immersion objective lens, and the bacteria were illuminated with a 642 nm laser.
We acquired three-dimensional z-stack images with a depth of ~2.5-3.5 um and a spacing of 144 nm. The raw
image stacks were processed using the Zeiss ZEN software to arrive at the final high-resolution, 3D images of the
bacteria.

Immunoblotting

The immunoblotting procedure was done as in [27]. In brief, cultures were pelleted to concentrate cells, which
were re-suspended in EDTA, boiled, centrifuged, treated with proteinase, and stored at 4 °C for subsequent
immunoblotting. The resulting polysaccharide preparations were normalized to have equal protein
concentrations (to ensure that the total culture contribution to each sample was equal) and then spotted onto a
nitrocellulose membrane, blocked, and probed with a-Psl antibody conjugated directly to AlexaFluor 647,
diluted to a concentration of 1:10 000.

Analysis—phase contrast

The phase contrast microscopy movies were analyzed by hand to find instances of tilting, measure lifetime of
each bacterium (division to division), and track the lineage of each bacterium. We define the bacteria present at
the start of the movies as generation 1, their daughter cells as generation 2, and so forth. Between three and six
generations were analyzed for each movie.

Phase contrast movies were also tracked using a version of colloid-tracking software [28] modified to
account for elongated particles rather than spherical ones [29]. Tracking output includes center position,
velocity, orientation in the focal plane, and the aspect ratio, projected onto the focal plane, of each bacterium. To
exclude poorly-tracked bacteria, we only consider bacteria tracked for more than five minutes.

As a proxy readout for tilting, we look at the projected aspect ratio in each frame. A newly-divided cell lying
flat on the surface has an aspect ratio of about 2.5. Therefore, a projected aspect ratio less than 2.5 indicates
unambiguously that a cell is tilting. Interpretation of aspect ratios larger than 2.5 is ambiguous, since these cells
may be either lying flat or longer cells tilted up. For each cell, we then compute the fraction of its lifetime spent
unambiguously tilting, with 1 being unambiguously tilted up for the whole trajectory and 0 lying flat for the
whole trajectory.

Analysis—sim

We made Z-projections of individual bacteria from processed SIM stacks, including ~3 slices of the top side of
each bacterium. Asymmetry in the staining was found by bisecting the image of the bacterium along the minor
axis, finding the mean intensity of each half, and taking the ratio of brighter half to dimmer half.
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Figure 1. Pel increases the homogeneity of the distribution of Psl on the cell surface. (A) WT and (B) Apel bacteria fluorescently
stained using an antibody for Psl and imaged using high-resolution SIM. (C) For analysis, we bisect the image of each bacterium along
its minor axis and measure the asymmetry in Psl distribution by taking the ratio of the mean intensity of the two halves of the
bacterium. Higher ratios correspond to greater asymmetry. (D) For each strain these ratios decrease with increasing bacterial length.
For Apel, ratios are higher than for WT and Apsl, as shown by the trendlines. The slope from the least-squares linear fit for WT data
was used for fitting the data from Apel and Apsl. Thus, the shift in y-intercept measures the difference in asymmetry between strains.
Scalebars, 2 ym.

Results and discussion

Pel makes the distribution of Psl on cell surfaces more symmetric

P. aeruginosa is rod-shaped. We have previously shown that Apel is more likely to tilt up off the surface, attached
by only one end, than is the WT, which tends to lie flat on the surface [5]. We have previously shown that Psl is
more important than Pel, pili, or flagella for adhesive interactions between PAO1 single cells and a coverslip
surface; without Pel, Psl-mediated adhesion will tend to have cells attached to the surface by only one end, but
without Psl, Pel-mediated adhesion allows half the bacterial population to escape the surface [5]. Therefore, we
infer that Pel is likely to promote lying down flat, i.e. tighter geometric coupling, by increasing the homogeneity
of the Psl coating on the surface of the cell. To evaluate this inference, we label bacteria with a fluorescent
antibody for Psl and image using high-resolution SIM (figures 1(A) and (B)). We measure the inhomogeneity of
Psl distribution on bacterial cell surfaces by taking the ratio of the brightness of the two halves of each bacterium
(figure 1(C)). We find greater asymmetry in the distribution of Psl on the Apel than on the WT (figure 1(D)).
Taking the median of the measured length, ~3.4 ym, as a threshold and a proxy for the midpoint in the cell life-
cycle, we can compare the asymmetry in ‘young’ (shorter than 3.4 ym) and ‘old’ (longer than 3.4 m) bacteria.
For young WT, the mean ratiois 1.25 £ 0.02, where the uncertainty is the standard error of the mean. For young
Apeltheratiois 1.37 £ 0.02, 10% more asymmetric than the young WT. For old WT and Apel the ratios are
1.08 + 0.01and 1.22 + 0.02, respectively—a 13% difference. Old Apelbacteria show roughly the same
asymmetry as do young WT.

Ambiguity in the immunostaining

In our SIM experiments with immunostained bacteria we tested WT, Apel, and Apsl (figure 1). We found that
even Apslbacteria could be imaged, and that their brightnesses were comparable to those of WT and Apel. This
indicates that the immunostain was not perfectly specific to Psl. To evaluate the degree of non-specificity, we
performed immunoblotting using the fluorophore-conjugated Psl antibody. Polysaccharides from both WT
and Apsl made visible immunoblots, but the WT blot is much darker, indicating that it contains more material
(figure 2). From this result we conclude that the antibody stain has a greater affinity for Psl than it does for its
non-specific target(s). Furthermore, for Apsl, we find the asymmetry in staining is unchanged from that of the
WT (figure 1(D)). Therefore, in our analysis and discussion of our immunostaining results we compare WT and
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WT Apsl

Figure 2. Immunoblots reveal nonspecificity for Psl. We performed immunoblotting using the fluorophore-conjugated Psl antibody.
Polysaccharides from both WT and Apsl show visible immunoblots, but the WT blot is much darker, indicating that it contains more
material. From this result this we conclude that the antibody stain has a greater affinity for Psl than it does for its non-specific target(s).
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Figure 3. The likelihood of tilting depends on bacterial age and inheritance from the parent. (A) Phase contrast micrograph of four
Apel cells; the lower right bacterium is tilting (the end above the surface is out of focus). (B) One end of a parent bacterium will spend
more time lifted off the surface than the other end. We classify daughter cells by whether they originated from the lifted end ‘L’ or the
attached end ‘A’ of the parent. (C) Bacteria are more likely to tilt in the early stages of life than in the later stages. (D) This is true
regardless of whether the bacteria came from the attached or the lifted side of the parent, consistent with decreasing Psl asymmetry as
bacteria age. (E) For the first two generations after the start of observation, L daughters spend more time tilting than do their A siblings.

Apel, which we expect to have similar non-specific staining, and we interpret differences between these strains as
resulting from changes in Psl distribution.

We further check that interpretation by measuring how the likelihood of tilting by Apel depends on bacterial
age and parental inheritance of Psl that we infer from our immunostaining. We have previously shown that Psl is
the most important factor allowing PAO1 to adhere to the surface [5]. Furthermore, our SIM results
(figure 1(D)) show that WT, which spend nearly all their time lying flat on the surface, have less asymmetry in
their Psl distribution than do Apel, which are much more likely than WT to be attached at only one end [5].
Therefore, we expect that Apel bacteria will be more likely to attach at only one end when the asymmetry in Psl
distribution is high—i.e., young (short) bacteria will be more likely to tilt than will older (long) bacteria
(figure 1(D)). We identify tilting bacteria by one end being out of focus (figure 3(A)). Indeed, we find that the
likelihood of tilting decreases with bacterial age (figures 3(C) and (D)).

Furthermore, Apel bacteria whose parent tilted spend, on average, 8.1 £ 0.8 min tilting, whereas those
whose parent never tilted spend, on average, only 3.8 + 1.9 min. This is a twofold difference in the likelihood of
tilting and is consistent with the picture that daughters from a parent coated with more Psl, and therefore less
likely to tilt, will have inherited more Psl than those from a parent coated with less Psl. We investigate tilting, as a
proxy for Pslinheritance, using the genealogy of daughter cells. Most tilting bacteria have one end (the ‘lifted’
end) that spends more time off the surface than does the other end (the ‘attached’ end) (figure 3(B)). We expect
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Figure 4. A tendency toward tilting can be inherited from the grandparent as well as the parent. (A) Total times spent tilting, sorted by
whether the cell came from the lifting ‘L’ or attached ‘A’ ends of the grandparent and parent. Cells from two generations of lifted ends
(LL) spend nearly 4 x more time tilting than cells from two generations of attached ends (AA). Cells from the lifted end of the
grandparent and the attached end of the parent (LA) and cells from the attached end of the grandparent and the lifted end of the parent
(AL) spend intermediate amounts of time tilting. (B) Cells from the lifted side of the grandparent (LL and LA) spend 1.71 X more time
tilting than do cells from the attached side of the grandparent (AL and AA). Red bars compare the effect of lineage from the
grandparent. The effect of lineage from the parent, shown in blue bars, is comparable: cells from the lifted side of the parent (LL and
AL) spend 2.05 x more time tilting than do cells from the attached side of the parent (LA and AA).

that the attached end of a bacterium should be coated with more Psl than the lifted end. As a result siblings will
inherit different amounts of Psl. To measure the asymmetry in the time spent tilting by siblings, we pairwise
compare the amount of time spent tilting by the daughter from the parent’s lifted end ‘L’ with the amount of
time spent tilting by the daughter from the attached ‘A’ end (figure 3(B)). We define a sibling asymmetry
parameter

oara = (FL — Ey)/(FL + E),

where F; 4 measures the number of frames spent tilting by the L, A siblings. A positive, nonzero value indicates
that the L sibling spends more time tilting. We average over all such sibling pairs in each generation, where we
have defined ‘generation’ such that the bacteria on the surface at the start of imaging are generation 1, their
daughters generation 2, etc. For the first two generations the L daughters spend more time tilting than do the A
daughters (figure 3(E)). From this we conclude that the A siblings inherit more Psl than their paired L siblings.
This asymmetry disappears in later generations, perhaps due to conditioning of the surface as the bacteria shed
Psl[30].

Because Psl promotes its own production by upregulating cyclic-di-GMP signaling [31], we expect tilting
characteristics to be passed on to granddaughters as well as to daughters. For these comparisons we restrict
ourselves to quartets of granddaughters for which both of the middle generation bacteria tilted. There were 13
such sets in the movies we examined. We sort the bacteria based on whether they descended from thelifted ‘L’ or
attached ‘A’ end of their grandparent and parent. Our nomenclature describes the grandparent end ‘G’ first and
the parent end ‘P’ second, thus: GP. For example, an AL bacterium came from the lifted end of its parent, which
in turn came from the attached side of the grandparent. We sum the total tilting time for all four categories (LL,
LA, AL, and AA) and find that the granddaughters from two generations of lifted ends (LL) tilt over three times as
much as the granddaughters that from two generations of attached ends (AA) (figure 4(A)). The mixed
granddaughters, LA and AL, fall in between. These data indicate that the tilting traits of grandparents, as well as
parents, can be inherited. To compare the degree to which parental and grandparental inheritance impacts
granddaughters, we group our data in two different ways: by which end of the grandparent they came from and
by which end of the parent they came from. We find that bacteria from the lifted end of the grandparent tilt ~1.7
times as much as bacteria from the attached end of the grandparent (figure 4(B), red bars). In comparison,
bacteria from the lifted end of the parent tilt ~2.1 times as much as bacteria from the attached end of the parent
(figure 4(B), blue bars). These results indicate that parental and grandparental inheritances have comparable
impact on the tilting behavior of bacteria. This is consistent with the connection we propose between tilting, Psl
distribution, and cyclic-di-GMP signaling.

To assess whether there is any pattern in the subcellular localization of Psl on Apel cells, we turn to
symmetry-breaking. To phase-contrast optical microscopy, P. aeruginosa is a symmetric rod. Below this length
scale, the most prominent symmetry-breaking structural component is a single polar flagellum. Others have
previously shown that flagella can act as adhesins for P. aeruginosa [32]. We hypothesize that there is more Psl on
the flagellated ends of Apel than on the unflagellated ends, and we test this by determining which part of the
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Figure 5. Bacteria are more likely to lift the end of the cell that originated from the center. (A) Cartoon of bacterium dividing, seen
from the side. (B) Asymmetry in the lifted end of individual cells, which remains pronounced across generations. Positive values
indicate the cells spend more time lifting the C end. (C) Bacteria lifting the C end (red line) tend to tilt earlier in life than do bacteria
lifting the E end (blue line). Histograms are normalized.

parent cell is most likely to give rise to the lifted end. Previous researchers have found that after division one
daughter cell retains the parent’s flagellum, and the other daughter grows a new flagellum from the end that was
not the center of the parent [33] (figure 5(A)). Therefore, we expect to find that the end that came from the center
of the parent cell should be more likely to be the lifted end. We define a center-end asymmetry parameter

acg = (Fc — Fg) /(Fc + Fg),

where Fc g measures the number of frames in which the ends that came from the parent center ‘C’ and end ‘E’
lift, respectively. A positive, nonzero value indicates that the end that came from the parent center lifted more.
Averaging within each generation, we find that Cis 5x more likely than E to be the lifted end (figure 5(B), red
circles). To account for individual differences in the amount of time that cells spend tilting, we weight each
individual asymmetry by the fraction of the bacteria’s lifetime that was spent tilting. This defines a weighted
center-end asymmetry parameter

aw = (Fe /Fn) ace,

where Fy, is the number of frames the bacterium spends tilting and F,), is the total number of frames in the
bacterium’s lifetime. The resulting values remain well-resolved from zero for all generations (figure 5(B), blue
squares).

Revisiting time evolution of tilting over bacterial lifetime, cells that primarily lift the C end follow the same
trend as the population overall, tilting more when young (figure 5(C), red line). However, bacteria that lift the E
end tilt less in the first half of their life than in the second half (figure 5(C), blue line). We suggest that lifting the E
end of a young bacterium may be unlikely due to the asymmetric distribution of Psl, and that it becomes easier
for the E end to lift later in life as this asymmetry decreases (figure 1(D)). These data are consistent with, but not
proof positive of, the hypothesis that the flagellated end of the bacterium is the end most likely to be adhered to
the surface and the end that has more Psl. Alternatively, polar Type IV pili could act to break the symmetry
between C and E ends of the bacteria [34].

Discussion

Symmetry and symmetry-breaking are fundamental themes more commonly seen in traditional fields of physics
than in biological physics. Understanding the interaction(s) that lead to symmetry being broken will often yield
new insight into a system. Here we present a case of observed broken symmetry in a biological system and show
how that was used to understand the underlying, symmetry-breaking biology. Tilting behavior in PAO1 Apel is
asymmetric between ends of the bacteria as well as between siblings from a tilting parent, and the tilting behavior
of a given cell can influence at least two generations of descendants. Most tilting occurs by lifting the end that was
the center of the parent, and tilting by lifting the edge end tends to happen later in the bacterium’s division cycle,
as we surmise the distribution of Psl becomes more symmetric along the length of the bacterium.

Irie et al have shown that extracellular Psl is a signal that stimulates cyclic-di-GMP production [31]. In this
light, our results suggest that heritability of asymmetries in Psl distribution may allow Psl to act as an epigenetic
factor influencing daughter cells’ cyclic-di-GMP levels after cell division. Because elevated cyclic-di-GMP level is
also a signal to produce Psl, a positive feedback loop is formed for individual cells. This suggests that Psl
asymmetry in individual cells, as well as across a population, should propagate and increase as cells divide.
However, for planktonic P. aeruginosa it has been shown that, immediately post-septum formation, the
flagellated sibling has more than 5 lower cyclic-di-GMP levels than the non-flagellated sibling [33]. These
observations indicate that other factors carry additional weight in determining intracellular cyclic-di-GMP level.
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More broadly, it indicates that regulation of symmetry and asymmetry may be a broad theme underlying early
biofilm development.

Pel was recently found to be a polycation composed of partially-acetylated amino sugars,
N-acetylgalactosamine and N-acetylglucosamine [35], but the specifics of its molecular structure are not known.
In our earlier work, we speculated that Pel likely had a synergistic interaction with Psl, perhaps via cross-linking
and/or another chemical interaction [5]. Our finding here that loss of Pel production results in a redistribution
of Psl on the cell surface is also consistent with that speculation. Unfortunately, without a molecular-level
understanding of how Psl and Pel interact, this cannot be confirmed or refuted, nor can its dependence on
carbon source or other environmental conditions be assessed other than by further empirical studies. This could
be a fruitful direction for future studies to assess the impacts of polysaccharides on bacterial adhesion mechanics,
and possibly on intracellular cyclic-di-GMP regulation as discussed in the previous paragraph.
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