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Abstract

Squeezed states of spin systems are an important entangled resource for quantum technologies,
particularly quantum metrology and sensing. Here we consider the generation of spin squeezed states
by interacting the spins with a dissipative ancillary system. We show that spin squeezing can be
generated in this model by two different mechanisms: one-axis twisting (OAT) and driven collective
relaxation (DCR). We can interpolate between the two mechanisms by simply adjusting the detuning
between the dissipative ancillary system and the spin system. Interestingly, we find that for both
mechanisms, ancillary system dissipation need not be considered an imperfection in our model, but
plays a positive role in spin squeezing. To assess the feasibility of spin squeezing we consider two
different implementations with superconducting circuits. We conclude that it is experimentally
feasible to generate a squeezed state of hundreds of spins either by OAT or by DCR.

1. Introduction

The generation of non-classical states of large quantum systems has attracted significant attention due to the
potential of such states in emerging quantum technologies [1, 2], such as quantum metrology and sensing [3—8].
For instance, it is well known that highly entangled states of N spin-1/2 particles, such as spin squeezed states,
can—in principle—be exploited to increase the precision of some measurements by a factor that scales with
N1/2 compared to the best precision that is achievable with a separable state [4-6, 9, 10]. Interestingly, an
improvement in the precision is even possible in the presence of certain types of realistic decoherence, although
the scaling of the improvement is reduced to N/ [11-13]. The motivation of the work described here is the
generation of such spin squeezed states, starting from an easily prepared separable state of the spin system.
Solid state spin defects, such as nitrogen vacancy centres or electron donor spins in silicon, are particularly
promising candidate spin systems due to their long coherence times [14—16]. However, to generate
entanglement it is clear that we require some sort of interaction between the spins. Although it has been
proposed that this can be achieved using the natural magnetic dipole—dipole interaction between the spins [17],
in practice this is difficult because any spin will interact very weakly with a distant spin (the strength of the
dipole—dipole coupling between two spins scales as v, where r is the distance between the two spins). Since this
interaction is weak it will be challenging to generate highly entangled states within the spin coherence time.
Instead, we adopt a hybrid-systems approach, where the spins are allowed to interact with an auxilliary system.
This interaction with the auxilliary system can induce coupling between the spins (including long range
interactions between distant spins) which can then be exploited to generate the necessary entanglement. This
approach has been used to experimentally generate few-qubit entangled states of many different systems, for
example trapped ions [18, 19], Rydberg atoms [20] and superconducting qubits [21, 22]. In this context, the
auxilliary system is sometimes called a ‘quantum bus’ [23]. However, these experiments are typically limited to
few qubit systems. Also, some schemes [7, 24] need significant entanglement with the ancillary system
throughout the interaction. This means that they are limited by the requirement that the ancillary system must
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have a coherence time that is longer than the duration of the entanglement. In this paper we consider the
interaction of a short-lived ancillary system with a long-lived spin system, and we show that this hybrid-systems
approach can be used to generate relatively large spin squeezed states. This is a typical feature of the hybrid-
systems approach: the strengths of both the auxilliary system and the system of interest are exploited to generate
dynamics that would be difficult to generate with either system individially [25].

We structure our paper as follows. In section 2 we give our measure of spin squeezing and we introduce the
two spin squeezing mechanisms that are relevant to this paper: (i) spin squeezing by one-axis twisting (OAT)
[26,27], and (ii) spin squeezing by driven collective relaxation (DCR) [28, 29]. In section 3 we describe our
model and we adiabatically eliminate the ancillary system to obtain an effective master equation for the spin
system. We show that both of the spin squeezing mechanisms, OAT and DCR, emerge from these effective
dynamics. For concreteness, we focus on two different implementations of the model, one with a
superconducting flux qubit playing the role of the ancillary system, and the other with a superconducting
microwave resonator (MR). In section 4 we consider spin squeezing by OAT, including the effect of realistic
imperfections in the model, such as dissipation of the ancillary system, inhomogeneity in the spin energies due to
fluctuations in their local magnetic fields, and inhomogeneity in the couplings between the ancillary system and
the spins. Interestingly, we find that ancillary system dissipation need not be considered an ‘imperfection’ in the
model. The spin squeezing is very robust to such decoherence and, perhaps counter-intuitively, moderate
dissipation can even improve the spin squeezing by OAT. Such ‘dissipation-assisted’ spin squeezing is an
interesting effect since it is unusual for spin squeezing by OAT to be improved by adding dissipation to a part of
the system. We also find that the inhomogeneity in the couplings can be reduced to a negligible level by a
judicious experimental setup. Inhomogeneity of the spin energies can be compensated by dynamical
decoupling. We find that a pulse sequence known as concatenated-XY8 effectively preserves spin squeezing.
However, a drawback of pulsed dynamical decoupling is that, in practice, each pulse in a sequence introduces
errors that damage the spin squeezing. At the end of section 4 we show that driving the spin system enables spin
squeezing by OAT without the need for a dynamical decoupling pulse sequence. In section 5 we consider spin
squeezing by DCR, including the effect of realistic imperfections in the model. We show that for squeezing by
DCR, standard pulse sequences are not effective in overcoming inhomogeneity in the spin energies, but we
present a novel pulse sequence that preserves the spin squeezing. We conclude that it is experimentally feasible to
generate squeezed states of hundreds of spins, either by OAT or by DCR. Finally—for our chosen model
parameters—we estimate the improvement in precision that this can give in magnetic field sensing.

2.Background

Our primary system of interest thoughout this paper is an ensemble of N spin—1,/2 particles. The collective spin
operators for this system are J, = Z, 1 /(ll)’ where a(l)
’ € {x, 5, z} The meart spin vector for an arbitrary state p, of the spin system is the expectation value

are the Pauli operators for the ith spin with

(f ) = Tr(p, ] ), where ] = (]x, ]y, ]z) is a vector of operators. We denote the unit vector in the direction of the

meanspinas # = / )/ 1{J }|. We quantify spin squeezing of a state p, with the Wineland squeezing parameter
[10]
& = —— minVar(i, - /), M
KOATEE

where the minimisation is over all unit vectors nL that are perpendicular to the mean spin direction and
Var(i, - ] )is the variance of the operator 7, - J . Fora spin coherent state of the form [30]
N 0 o 0
10, ) = @|cos— | i) +esin— |1 )]| ()
i=1 2 2
where| 7; Yand| |; )are the eigenstates of 5, 59 wehave | ( > | = N/2and miny Var(#, - ] ) = N/4.Hence, by
the definition above we have £2 = 1fora spm coherent state. A state is spin squeezed if £ < 1, implying that the

variance of the operator 7, - J (for some choice of 71, ) is less than that of a spin coherent state. This is illustrated in
figure 1, where we plot the Q-function for a spin coherent state and for two example spin squeezed states. It is also
known that the squeezing parameter £? is an entanglement witness, meaning that £2 < 1implies that the (possibly
mixed) state p, is entangled. Moreover, the parameter { has a specific operational meaning in that it is the ratio of the
phase sensitivity of the state p, to that of a spin coherent state in a Ramsey inteferometric measurement [10].

There are various possible mechanisms for the generation of spin squeezing starting from a spin coherent
state. In this paper we are particularly interested in two of these: (i) spin squeezing by OAT [26, 27] and (ii) spin
squeezing by DCR [28, 29].
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Figure 1. Q-functions for (a) a spin coherent state, (b) a one-axis twisted state, and (c) a steady state of driven collective relaxation.
The squeezed states have a reduced variance orthogonal to the mean spin direction. The Q-function is defined as

Q, ¢) = X1 (0, 8| p, 10, ¢)forstates pinthe j = N /2 eigenspace of the operator j? = fj + f; + fZZ.For each of these

4

plots N = 40andin (c) 2, = 0, 2Q,/(7N) = 0.85.

(i) OAT is generated by the evolution
, i~
Ps = _E [Hoat) ,05], (3)
where the Hamiltonian is quadratic in one of the collective spin operators, for example, Hoy = ﬁ)Jj Ttiswell
known that for large N this leads to optimum spin squeezing value £2 ~ N~2/3 after evolution time [26, 27]:
topt A2 3V/ON72/3 /. 4)

a oA A2 . o . T
For the OAT Hamiltonian H,,, = 7/, the most spin squeezing is achieved for an initial spin coherent state that

is on the equator of the Bloch sphere of each spin, i.e., |0, ¢) = g, ¢> In figure 1(b) we plot the Q-function for

aone-axis-twisted state for N = 40.
(ii) Spin squeezing by DCR is induced by the Lindblad master equation

po= =il + QJ p] + 7DU (0, )

where [ = N 59 are the collective spin raising and lowering operators and the superoperator D is defined
as D[L] (p) = I:,osl':T — %I:TLApS — %pSI:TI: for any operator L. The parameter Q =, 2, 0)isatransverse
magnetic field applied to the spin system, and +yis the collective spin relaxation rate. Although the model
described by equation (5) has been well-studied [31-33], spin squeezing by this mechanism has been explored
only recently [28, 29]. It has been shown that any initial spin coherent state |8, ¢) relaxes to a steady state
[31, 32]. For an appropriate value of the transverse field |§ |, this steady state is squeezed [28]. In contrast, the
analagous driven, dissipative dynamics for a Bosonic mode leads to steady states that are always coherent states
rather than squeezed states [34]. In equation (5), the steady state with the most squeezing is achieved for |Q| of
the order N+y [28, 29].

In the following we see that both the OAT and the DCR spin squeezing mechanisms emerge in the
interaction of an ancillary system with a spin ensemble.

3. Model

We model the interaction of a spin ensemble with a dissipative ancillary system by the master equation

i~ o

p= fE[H, pl + ¥DIAL(p), (6)
where H = H,(t) + H,,. + H, and:

N pN LA

H,(t) = EZw(’)&Z(’) + Q> 6% cos(@t + 1), ?)
i=1 i=1
ﬁanc = manCATAa (8)
N

Hn = 75 X060 @ (A + A"). )

i=1
Theoperator A = Y-922/u + 1 |n)(n + 1|isalowering operator for the d-dimensional ancillary system,
where |n) is a basis for the ancilla state space. If, for example, the ancillary system is a qubit (d = 2), the operator
Aisthe qubit lowering operator & = (d; — i6;)/2, which has the commutation relation [&, 6_] = &;.Ifthe

3
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ancillary system is a Bosonic mode (d — 00), the operator A is the annihilation operator @, with the
commutation relation [4, 47] = 1. The ancillary system frequency is wyc and its relaxation rate is y with
corresponding relaxation time . In equation (7) for the spin ensemble, each spin may have a different

frequency w® with an average © = %Zfi ,w" and standard deviation fw = \/ YN [w® — @]?/N. Also, the
spins are driven at the average spin frequency @ by a classical field of amplitude €2 and phase 7). The interaction
Hamiltonian equation (9) describes the coupling between the spins and the ancillary system, where each spin
may have a different coupling X, with an average coupling X and standard deviation S\.

Rotating to an interaction frame defined by the unitary transformation

U(t) = exp [— itw (%Ef\i 69+ ATA) ], we make a rotating wave approximation which gives the master

equation (6) but with the new Hamiltonian:

-
~

H=nAA'A + nQii, -
+ A + T AT + A + Hic, (10)

where A = w,,c — @ is the detuning between the ancillary system frequency and the average of the spin
frequencies, 7, = (cos7, sinn, 0) is a unit vector in the equatorial plane, and we have defined

Hp = %Zfi (WD — @) and Aic = 42N 0O — ) (66 4+ 5 D5, In equation (10)the Hamilto-
nian is separated into an ‘inhomogeneous’ part represented by the Hamiltonian terms Hjpand Hicanda
‘homogeneous’ part represented by the remaining terms of equation (10). The subscript ‘IB’ on Hig stands for
‘inhomogeneous broadening’. If each spin has the same frequency w” = @ (equal to the average value), the
inhomogeneous broadening term Hi vanishes. Similarly, the subscript ‘IC’ on H; stands for ‘inhomogeneous
couplings’, and if each spin is equally coupled to the flux qubit we have X = X and the inhomogeneous
coupling term Hj vanishes.

We note that spin relaxation and spin dephasing have been neglected in the model described above. If the
spins are, for example, an ensemble of donor spins in silicon then this is a reasonable assumption since the spin
dephasing time is of the order of seconds and the relaxation time is of the order of tens of minutes at low
temperatures [16]. Also, long coherence times of ~30 ms have been achieved for ensembles of nitrogen-vacancy
centres in diamond by the use of dynamical decoupling [15].

3.1. Effective dynamics
To see how spin squeezing is generated in this model, we first define the parameter I' = /A? + v2/4.If the
ancillary system is initially in its ground state |0) and if T satisfies the conditions

I'>AMN, T'>Q, I>éu, (11)

we can adiabatically eliminate the ancillary system. The result is the effective master equation (see appendix A for
details) [35, 36]:

; i oA - A
Py = _E[HIB + Hetr, p] + Y% DU-1(p), (12)

where p, = Tr,,c(p) is the reduced state of the spin system and 4 = Ny / I'? is the collective-spin relaxation
rate. The effective Hamiltonian is*

N L7 .2 X R
Hes = 7 Ny - ] + /iXeff]z - /iXeff]z - ﬁXeff] -7, (13)

where x4 = AX?/T2. For clarity we have neglected the inhomogeneous couplings, i.e., X = Xin
equations (12) and (13), although the effect of both inhomogeneous couplings and inhomogeneous broadening
will be assessed in later numerics.

These effective dynamics have features of both spin squeezing mechanisms that were discussed in section 2,

that is, squeezing by OAT and by DCR. The term x4 fzz in the effective Hamiltonian is an OAT term, while the

collective relaxation in equation (12), in combination with spin drive {2 #,, - J , are the necessary ingredients for
squeezing by DCR (for comparison, see equation (5)). The two spin squeezing mechanisms appear
independently in two different regimes of the effective master equation (12). The OAT regime emerges when the
OAT coefficient is much larger than the collective relaxation rate, x4 > 7.4 [35]. By comparing the
expressions for x . and 44 itis easy to see that this reduces to the condition that the detuning should be much
larger than the ancillary system relaxation rate, A > . On the other hand, the DCR regime emerges when the
collective relaxation dominates the OAT, x4 << 7> Which corresponds to the condition A < 7. We note that

* We note that the effective Hamiltonian equation (13) bears close similarity to the Lipkin-Meshkov—-Glick Hamiltonian [67], which has
been studied in other contexts [68, 69].
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Figure 2. (a) An illustration of the flux qubit model. The flux qubit couples to the NV centres in the diamond sample via the magnetic
field generated by the persistent current in the flux qubit. The colourmap shows A (y, z)/2, the coupling strength at the coordinates
(0, y, z) in the interior of the flux qubit. (b) An illustration of the microwave resonator model. The wire is the central inductance of a
superconducting lumped element resonator and generates the magnetic field that couples to the phosphorus electron spins in the
silicon crystal. The width, length, and height of the wire are 1.5 mm, 3 ym, and 50 nm respectively, and the silicon crystal is positioned
100 nm above the wire. The colourmap shows A (y, z)/2, the coupling strength 100 nm above the wire.

the DCR regime includes, for example, the case where the ancillary system and the spins are resonant (A = 0),
in which case the effective master equation (12) is in the same form as equation (5).

3.2. Realistic parameters

To assess the feasibility of spin squeezing we choose some reasonable parameters for our model. We consider
two different implementations: (i) a superconducting flux qubit (FQ) coupled to an ensemble of nitrogen-
vacancy (NV) centres in diamond, and (ii) a superconducting MR coupled to an ensemble of electron donor
spins in silicon.

3.2.1. Superconducting flux qubit and nitrogen-vacancy centres

The spin parameters @ and 6w depend on the type of spin system. Here we take the spins to be NV centres in
diamond. Although the NV centre ground state is spin-1 [37], a magnetic field can be applied to detune one of
the spin sub-levels so that—to a good approximation—the NV centre can be considered spin-1/2. Due to the
NV zero-field splitting, we have © ~ 27 x 3GHz [38], and based on recent experimental results” we estimate
bw = 21 x 3 kHz. The spin drive parameters 2 and ) are experimentally tunable.

For a superconducting FQ, the ancillary system operator A in equations (8) and (9) is the qubit lowering
operator &_. We assume that the FQ is tuned so that its two persistent current states are degenerate, with tunnel
splitting w,,. = wpq between them. The detuning A = wpq — @ can be varied experimentally by changing the
flux qubit tunnel splitting wgq [39, 40].

The coupling strength X = X\ ( Vs 2i) = &gl B (> 2| / (/2 1) is determined by the magnetic field
B(y, z;) thatis generated by the FQ at the position (0, y,, z;) of the ith NV centre (with axes as shown in figure 2).
We assume a square FQ of length 3 pm, wire thickness 0.1 ym and wire height 0.2 ym (see figure 2(a)) and we
assume a uniform critical current of I = 1.4 pA. Based on these values, the coupling strength A (y, z) in the
interior of the FQ can be estimated by the Biot—Savart law [41]. This is shown in the contour plot in figure 2(a).
For NV centres positioned near the middle of the FQ the coupling is relatively homogeneous across a broad area
(the blue region in figure 2(a)). Assuming that the NV centres are contained in a diamond sample of volume
1.58 x 1.58 x 0.2 pm?with NV density 10> cm > gives a total of N = 500 nitrogen-vacancy centres randomly
placed throughout the diamond sample. We find numerically that in this case the average coupling is
A & 271 x 12 kHz with standard deviation 6\ ~ 27 x 1 kHz. We note that coherent coupling between a FQ
and an ensemble of NV centres has been demonstrated experimentally with a similar coupling strength [42].

> Recent experiments have measured 6w = 27 x 200 kHz for a diamond sample of NV density ~0.67 x 107 cm™[70]. If the
inhomogeneous broadening éw is due to interaction with substitutional nitrogen atoms (P1 centres) in the diamond lattice (a reasonable
assumption for isotopically pure diamond), éw is approximately linearly related to the NV density [71]. For NV density ~10'> cm~ this
corresponds to éw = 27 x 3 kHz.
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Finally, we assume that the FQ relaxation rateis v = 1 MHz, corresponding to the relaxation time
=1 = 1 ps. This is a reasonable estimate, since relaxation times an order of magnitude longer than this have
been measured in recent experiments with flux qubits [43, 44]. We will find it useful to write both the adjustable
detuning A and the relaxation rate yas a proportion of the collective coupling AN . For the relaxation rate this
gives v = 0.0265 x AN, where X = 27 x 12 kHz and N = 500, as determined above. We use these
expressions for A and ywhen our numerical simulations are limited to small numbers of spins, N. This is useful
because with these expressions the condition I' = \/A? + v2/4 >> AN inequation (11)is satisfied by the same
proportion for any value of N, and we can extrapolate from our small-N numerical results to our larger
estimated value N = 500.

3.2.2. Superconducting MR and donor spins in silicon

The coupling of a MR to a spin system is much weaker than the coupling of a FQ to a spin system. For this reason,
we take the spin system in this case to be an ensemble of electron spins of phosphorus atoms doped in a silicon
crystal, since longer coherence times have been measured for these spins than for NV centres [16]. The donor
electron spin frequency @ is determined by the electron Zeeman splitting. The donor electron spins interact with
the donor nuclear spins via a hyperfine interaction of 27 x 118 MHz. However, by polarising the nuclear spins
this interaction can be regarded as a contribution to the electron Zeeman splitting [45]. With an additional
externally applied magnetic field ~100 mT we have @ = 27 x 3 GHz [46] (similar to the NV zero-field
splitting). Based on experimental results [ 16], we assume 6w = 27 x 15 Hz, which is much smaller than for NV
centres. The spin drive parameters {2 and 1) are experimentally tunable.

For a superconducting MR, the operator A in equations (8) and (9) is the Bosonic lowering operator d. The
detuning A = wyw — @ can be varied experimentally by adjusting the MR frequency wyw. The coupling
strength XV = g glB (¥ zi)| / (272) is determined by the magnetic field B(y, z;) that is generated by the MR at
the position (0, y;, z;) of the ith donor spin. We assume that the wire of the MR has length 1.5 mm, width 2 xm,
height 50 nm (see figure 2(b)), a penetration depth of 90 nm, and an inductance L = 1.5 nH. Based on these
values, the coupling strength is shown in the contour plot in figure 2(b). There is a region of relatively
homogeneous coupling directly above the wire (the green area between the two ridges in the contour plot). We
suppose that a silicon sample of dimensions 1 mm x 2 gm X 50 nm and donor spin density 1.2 x 10 cm™
is placed in this region at a distance of 100 nm from the resonator. With these values we estimate that there are
N = 1.2 x 10*spins placed randomly throughout the silicon sample, with an average coupling
A\ & 27 x 56 Hz and astandard deviation 6\ ~ 27 x 4 Hz [47]. This is a considerably weaker coupling than
for the FQ and NV implementation in the previous section. However, measured coherence times for donor
spins in silicon are much longer than those for NV centres [16]. The relaxation rate of the resonator is
v = wmr/Q ~ 27 X 0.34 MHz, assuming a resonator quality factor Q = 4.5 x 10* and the frequency
wMRr ~ 27 X 3 GHz.For A = 27 x 56 Hzand N = 1.2 x 10*this relaxation rate can be expressed as
~ = 0.1AN. We use this value when our numerical simulations are restricted to small values of N.

In the following sections we numerically investigate the spin squeezing, using realistic parameters as far as
possible. For all of our simulations we use the master equation (6) with the Hamiltonian equation (10), that is,
the master equation before the approximations that leads to the effective master equation (12). This gives us
meaningful results even when the approximation conditions in equation (11) are not well satisfied.

3

4. Spin squeezing by OAT

4.1.1deal case, with ancilla relaxation
First, we consider spin squeezing in the OAT regime I' &~ A >> +, assuming that the initial state is the spin

coherentsstate |0, ¢) = ‘ g, 0 >, since this state is in the class of states ‘ g, q§> that leads to the most squeezing by
the OAT term X ¢ J 22 . To prepare the state ‘ g, 0> we make use of the fact that a general spin coherent state
16, ¢) = R(6, ¢)|0, 0) can be prepared by rotating each spin from the state |0, 0) = @, | |; ) with the
rotation operator R (8, ¢) = exp[—if (J; sin ¢ — ]} cos ¢)][30]. This rotation can be implemented by applying
an electomagnetic pulse to the spin system. The state |6, ¢) = |0, 0) isitself easily prepared, e.g., by cooling (it is
the ground state of the spin Hamiltonian equation (7) when §2 = 0) or, for NV centres, by optical pumping
[38, 48]. After the state
squeezing.

As mentioned in the previous section, the detuning A and the spin drive {2 are experimentally tunable

g, 0> =R (g, 0) |0, 0) has been prepared, unitary evolution by I:Ieff leads to spin

parameters in both of the considered implementations. To get a comprehensive picture of which values of these
parameters lead to spin squeezing we plot min, £2, the minimum spin squeezing that is achieved across all
evolution times t, as a function of A and 2. This is shown in figure 3(a) for the FQ and NV model assuming (for

6
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Figure 3. Spin squeezing in the OAT regime for initial spin coherent state |0, ¢) =

%, 0>. (a) and (b) The spin squeezing that can be
achieved for various values of the detuning A and drive (2 for ancillary system relaxation (a) 7 = 0, (b) v = 0.0265 x AN.(c) The
time evolution of the spin squeezing parameter for 2 = 0 and for two different values of A. Comparing the solid lines with the dashed
lines we see that the spin squeezing is robust to ancillary system relaxation and can even be improved by it (solid red line versus dashed
red line). All figures were plotted using master equation (6) and Hamiltonian equation (10) and for a flux qubit ancillary system with
N =40, X = 27 x 12kHz, 7 = 0, 6\ = 0, éw = 0. For comparison, the horizontal black dotted line in (c) shows the level of
optimum spin squeezing for perfect OAT, i.e., the optimum squeezing due to the effective Hamiltonian equation (13).

the moment) the ideal case where there is no flux qubit relaxation (y = 0), no inhomogeneous broadening
(6w = 0) and homogeneous coupling of the spins to the flux qubit (6A = 0). Figure 3(a) shows that there is
significant spin squeezing (the dark red region) in the lower right portion of the plot where I' ~ A > Qand
[ ~ A > AN, corresponding the the regime of validity of the effective Hamiltonian equation (13). In
figure 3(b) we include a realistic amount of flux qubit relaxation (y = 0.0265 x AN)and we see that the spin
squeezing is very robust to this kind of decoherence. The corresponding plots for the resonator model are not
shown as they are qualitatively similar to figures 3(a) and (b).

Inthe OAT regime (A >> +) the evolution time required to reach the optimal spin squeezing is given by
equation (4). From this equation we estimate

topt = 3'/ON2/3A /N2, (14)

where we have substituted the expression for the OAT coefficient x . and we have used I' &~ A. It may appear
from this expression for t,, that the optimum squeezing time decreases with the number of spins N, but this is
not so, since we require I' &~ A >> AN for the effective Hamiltonian equation (13) to be valid. For a detuning
A = kAN >> AN forsome k >> 1, this translates to an optimal squeezing time f,,, = 3'/°kN'/3/X. We see that
the optimum squeezing time actually increases as the number of spins N increases. However, the scaling is N'/3
so that £, is not too large for moderate values of N. It was determined above that N = 500 was a realistic
number of NV centres that could be coupled to the FQ for our chosen FQ dimensions. In this case, substituting
A = 20N and \ = 27 x 12 kHz, we estimate fopt = 2.5 ms, which is within the spin coherence times
achieved in recent experiments with ensembles of nitrogen-vacancy centres in diamond [15]. In figure 3(c) the
solid black line shows the time evolution of the spin squeezing parameter, assuming the large detuning

A = 20\N, zero ancillary system relaxation 7y = 0, and zero spin drive {2 = 0. For comparison, the dashed
black line shows the spin squeezing for relaxation v = 0.0265 x AN. The spin squeezing is almost
indistinguishable from the v = 0 case, confirming that this spin squeezing mechanism is very robust to realistic
levels of ancillary system relaxation. Also, the horizontal dotted black line shows the level of optimum spin
squeezing £2 ~ N~2/3 for perfect OAT, i.e., the optimum squeezing by the effective Hamiltonian equation (13)
(or, alternatively, by equation (3)). The minimum of the solid black line reaches this optimum since the
dynamics are well approximated by the effective Hamiltonian for the large detuning A = 20N . For the MR
and donor spins in silicon implementation, we estimated N = 1.2 x 10*and X = 27 x 56 Hz. Substituting
these values, alongwith A = 20N, gives top = 1.6s, which is within the spin coherence time ~10 s of
phosphorus donor spins in silicon at low temperatures with spin echo [16].

Although these optimum squeezing times are within the achievable spin coherence times in both
implementations, it is desirable to decrease . Interestingly, we observe that for a given number of spins we can
significantly reduce the optimum squeezing time as follows. Since the optimum squeezing time ., scales
linearly with the detuning A (see equation (14)), the spins can be squeezed more quickly by decreasing the
detuning. Decreasing the detuning comes at a cost, however: we need A to be large enough to satisfy our
approximation condition I &~ A >> AN. This leads to a tradeoff: if we decrease the detuning we can squeeze
more quickly at the expense of a worse approximation to the effective Hamiltonian, and conversely, if we
increase the detuning we have a better approximation but at the expense of a longer wait for the optimal
squeezing. This can be seen by comparing the solid black line and the solid red line in figure 3(c) for the FQ and
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NV model. The detuning A = 2N for the solid red line, is an order of magnitude smaller than A = 20N for
the solid black line, so that the optimum spin squeezing is achieved an order of magnitude faster. However, the
minimum spin squeezing min, &2 is degraded compared to the optimal squeezing (the horizontal black dotted
line). This difference between the optimum and the minumum of the solid red curve shows the importance of
using the full master equation (6) instead of the effective master equation (12) for smaller values of A.
Interestingly, if A is not quite large enough to satisfy A > AN, flux qubit relaxation can significantly improve
the approximation so long as the effect of collective relaxation on the OAT is still negligible, i.e, provided that

A > ~.This is shown by the dotted red line in figure 3(c) for the FQ and NV model with v = 0.0265 x AN.
With this realistic amount of flux qubit relaxation the squeezing can be significantly improved compared to

v = 0 (the solid red line). This improvement of the spin squeezing by ancillary system relaxation may be
surprising on first sight, since in most models any form of decoherence is an unwanted influence on the
dynamics. However, the effect of the relaxation is to suppress excitation of the ancillary system. This, in turn,
inhibits entanglement between the ancillary system and the spin system, which would be damaging to the spin
squeezing. If we choose A = 2N the optimum squeezing time for N = 500 spins with the FQ and NV
implementation is reduced to ¢, = 250 ps. Similarly, the optimum squeezing time for the MR and donor spins
implementation is decreased to o, = 160 ms.

4.2. Realistic case, with dynamical decoupling

We now consider the effect of inhomogeneous broadening and inhomogeneous couplings on the OAT spin
squeezing. In this case, since the state space dimension increases exponentially in the number of spins, N, our
numerics are restricted to a small number of spins, N = 6. In figure 4(a) the solid red line shows the spin
squeezing including the effect of inhomogeneous couplings Hic and inhomogeneous broadening Hip, in the FQ
and NV model, using the value 6\ = 27 x 1 kHz that was estimated for the standard deviation of the couplings
X?, and spin frequencies w; chosen at random from a Gaussian distribution with standard deviation

dw = 27 x 3 kHz. The dynamics are averaged over 100 evolutions to remove fluctuations due to the
randomness of the wj. Similarly, the solid red line in figure 4(b) shows the spin squeezing including
inhomogeneities with the MR model parameters. For both implementations, we see that the spin squeezing is
degraded, although there is a small amount of spin squeezing at very short times for the MR model parameters in
figure 4(b). Further numerics have shown that the decay of spin squeezing is primarily due to the
inhomogeneous broadening term Hig rather than inhomogeneous coupling term Hic. In fact, for the relatively
homogeneous couplings achieved in the setups illustrated in figure 2, the inhomogeneous coupling term Hi
can be safely neglected for timescales of interest. To understand the damaging effect of the inhomogeneous
broadening we note that the Hamiltonian H causes each spin to evolve around its Bloch sphere at a different
rate deternlined by the frequency w; — @. For a Gaussian distibution of wj, this dephasing leads to Gaussian

decay of | (J ) |, the magnitude of the mean spin vector, with a decay time (6w) . Since the Wineland squeezing
parameter £2 is inversely proportional to | ( ) |2
squeezing parameter.

It is well known that for evolution by Hig, a single 7-pulse at some time 7 leads to a spin echo at the time 27,
where the 7-pulse is an instantaneous rotation R (, ¢) = exp [—im (Jy sin ¢ — ]; cos ¢)] by an angle 7 about
an axis on the equator of the Bloch sphere of each spin. Crucially, the m-pulse also commutes with the OAT

, decay of the mean spin vector leads to an increase in the

operator J. Zz so thata m-pulse at some time 7 has the effect of undoing the inhomogeneous broadening at time
27 without affecting the spin squeezing by OAT [49]. To see this we consider the effective master equation (12) in
the OAT regime A >> . Assuming 2 = 0, §A = 0 and neglecting collective relaxation, the spin system evolves
by

>l

Ps = _é[HIB + Xl — Xl = xdd T P (15)

Ifat time 7 we apply the 7-pulse operator R, ®), the state is transformed to p; (1) = R(m, D)y (7')1?T (7, @)
and the evolution equation for the following period of time ¢ > T is:

N 22 A ? 2
P = _E[HIB + MXett)e = MXew): = PXere] T ) (16)

Operating on equation (16) on the left by R (, ¢)and on the right by R (7, ¢) gives, for t > 7, the evolution
equation:

. i A A2 N 2
Ps = _E[_HIB + ﬁXeff]z + ﬁXeff]z - ﬁxeff] -, PS]; (17)

where we have_’used R (m, (b)_’I:IIB_’ﬁ (m, $) = —Hip, R’ (m, LR, ¢) = —1,
A2 A

R (, ¢)(j? . f)ﬁ(ﬂ', P) = J - J,andthe important property R (m, )], R(m, @) = fZZ.Comparing
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Figure 4. For both (a) the FQ and NV implementation, and (b) the MR and donor spins implementation, the spin squeezing is badly
degraded by inhomogeneous broadening (the solid red lines) but can be completely recovered by dynamical decoupling with a
concatenated-XY8 pulse sequence (dashed red lines). The XY8 pulse sequenceis C = 7Tx — = T — 71'}, -y = e — T, = T
where #, represents the w-pulse R (7, 7/2) = exp[—inl,], 7, represents the 7-pulse R(m, 0) = exp [iw]y], and each dash represents
free evolution for a time 7. The concatenated-XY8 pulse sequence is [15]
c-n-C-n-C-%-C—-#%-C—-7%—C~—# —C— 7 — C— 7,asequenceof 72 m-pulses in total, ending at
At ~ 50 in both (a) and (b). Each line in the figures is averaged over 100 evolutions to remove random fluctuations. Horizontal dotted
lines show the optimum spin squeezing by OAT. (Figure (a) parameters: N = 6, A = 2m x 12 kHz, v = 0.0265 x AN,
A = 20N, Q = 0,71 = 0, 7 = 0.01 ms; figure (b) parameters: N = 6, \ = 27 x 56 Hz, vy = 0.1 x AN, A = 20AN, Q2 = 0,
n=0,7=1ms.)

equations (15) and (17) shows that the effect of the -pulse is to reverse the sign of the inhomogeneous

broadening Hamiltonian Hiy in the following period of evolution, without changing the OAT operator fzz.
Equations (15) and (17) are easily solved to give the combined unitary evolution operator:

A i(t—7 N ~2 A 2z
0= exp[—%(—Hm T Il + ixak — Fxe -J)]
iT A 22 5 P
X expl:_;(HIB + X ), — Xt — TiXese) ]):l)
for times t > 7. The operators in the two exponents above commute, so thatat t = 27 we have
~ 27 ~2 22
UQr) = exp[—;(ﬁxefflz — BiXest] -])]. (18)

We see that at this time there is a spin-echo (the inhomogeneous broadening Hamiltonian Hip hasbeen
cancelled), but that the OAT squeezing is unaffected. However, in a real system the higher order terms in the
effective Hamiltonian will also contribute to the dynamics. We have performed numerics that show that for
evolution by the Hamiltonian equation (10), which includes higher-order terms, a single m-pulse does not
completely recover the spin squeezing even if the approximation conditions equation (1 1) are satisfied. This is
because the single 7-pulse does not refocus the spin dephasing due to higher order inhomogeneous terms in the
effective dynamics. To fully preserve the spin squeezing a more complicated dynamical decoupling pulse
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sequence is required. We have tried various pulse sequences numerically and found that spin squeezing can be
completely recovered for a sequence of alternating R(m, 0)and R (m, 7/2) pulses, as shown in figure 4 (the
dashed red line). The pulse sequence, known as concatenated-XY8, has recently been implemented
experimentally to increase the coherence time of an ensemble of nitrogen-vacancy centres to ~30 ms [15].

Finally, we note that this model for OAT has been discussed by previous authors for an ancillary Bosonic
mode [35, 49]. However, compared to previous work, we highlight the robustness of spin squeezing to ancillary
system dissipation, and we demonstrate that ancillary system dissipation can even play a positive role in the
generation of spin squeezed states. We have also demonstrated the feasibility of spin squeezing in the two
implementations considered, and we have shown that inhomogeneous broadening can be overcome by the
concatenated-XY8 pulse sequence.

4.3. Realistic case, without dynamical decoupling pulses
A practical challenge in the spin squeezing method outlined above is the application of accurate dynamical
decoupling pulses to the spin system. For example, we have assumed that each 7-pulse has no errors and that it
can be implemented instantaneously. In reality, however, a 7-pulse cannot be implemented instantaneously,
and if there are errors in each of the pulses in a sequence, these errors may accumulate, leading to degradation of
the spin squeezing. Moreover, the preparation of the spin coherent state |6, ¢) = ‘ g, 0> requires a pulse that
rotates each of the spins equally. If each spin is rotated by a slightly different angle, this introduces
inhomogeneous broadening to the system and damages the spin squeezing. In this section we suggest an
alternative approach that generates spin squeezing by OAT without the need for dynamical decoupling pulses
and starting from the spin coherent state |6, ¢) = |0, 0) that can be prepared without applying a pulse to rotate
the spins.

To show how this works, we derive another effective Hamiltonian in the OAT regime (I' & A >> +) starting
from Heg (equation (1 3));First, we rotate H,g to an interaction frame defined by the unitary transformation
o (t) = exp[—itQ i), - J 1. Inthe rotating frame the Hamiltonian is

A = ixeg 0" 00 =L =T - HU'® (19)

1 = 12 = R
= 5Xeff{—5(ﬁn -] — E] -] — cos(Q) ],

— sin(Q0 iy ) + %m")[ff —Giyys D)7

in(2Q2t) » 2 2 s
+ y[]z (ﬁ'r]+§ . ]) + (ﬁn-&-% ' ])]z] } (20)

If the parameter €2 is large enough to satisfy the condition 2 > Ny, we can make a rotating wave
approximation by neglecting quickly oscillating terms in equation (20). The resulting effective Hamiltonian is:

Ny 7 L7 AXop 3 7
Al ~ — ’;eff (m,-])h%f . @1)

Intuitively, this is the effective Hamiltonian that results from averaging H.g over rapid oscillations around the
#,-axis due to the large drive 2. Compared to the effective Hamiltonian Hg (equation (13)), the key feature of

Iqe/ff (equation (21)) is that the OAT term s (7, - J)? rather than fzz. For instance, if = 0 we have

(g - J)? = fj, orifn = m/2wehave (i, - J)2= ]A),2 Regardless of the value of the phase ) of the driving
field, preparation of the spin coherent state |0, ¢) = |0, 0) will lead to the most spin squeezing with this OAT
term. This is convenient because the state |6, ¢) = |0, 0) can typically be prepared by cooling or by optical
pumping, without the need for electromagnetic pulses to rotate the spins. Interestingly, the ability to easily
change the axis of the spin squeezing term (7, - J )2 by changing 7 can be exploited to increase the spin squeezing
to the Heisenberg limit using optimal control techniques [50]. We note that in our scheme, this does not require
control pulses as in [50, 51], but can be achieved by simply shifting the phase 7 of the spin driving field.

By substituting the expression for . into the approximation condition €2 >> N4 thatleads to
equation (21), the condition becomes

NAXN NN
r A
where on the right-hand side we have used the approximation I' ~ A, which is valid in the OAT regime. Since
(from equation (11)) we also have I' & A > N, the condition equation (22) is easily satisfied for spin drive 2
comparable to (or greater than) the coupling strength X\. We note, however, that although (2 should be large we

must maintain I' &= A >> ) to ensure consistency with our previous approximation conditions in
equation (11).

Q> ) (22)
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Figure 5. Spin squeezing in the OAT regime (A > ) for initial spin coherent state |f, ¢) = |0, 0). (a) The squeezing that can be
achieved for various values of the detuning A and drive €2. (b) The time evolution of the squeezing parameter for several values of A
and (2. Both (a) and (b) are plotted with homogeneous couplings (6A = 0), no inhomogeneous broadening (6w = 0),and N = 40.
Both figures were plotted for a flux qubit ancillary system with A = 27 x 12 kHz and v = 0.0265 x AN, using master equation (6)
and Hamiltonian equation (10). For comparison, the horizontal dotted black line in (b) shows the optimum spin squeezing by OAT.

We now present some numerical results. Neglecting inhomogeneous broadening and inhomogeneous
couplings, we plot the minimum spin squeezing min, £ as a function of the experimentally adjustable
parameters A and 2 for the initial state |#, ¢) = |0, 0) and for a realisticamount of ancillary system relaxation
<. This is shown for the FQ and NV model in figure 5(a). The correspoding plot for the MR model is not shown
asitis qualitatively similar. We see in figure 5(a) that there are a wide range of values of A and (2 that give
significant spin squeezing. In figure 5(b) we plot the time evolution of the spin squeezing parameter £ for
several choices of the detuning A and the flux qubit drive €2, again for the FQ and NV model parameters.
Interestingly, even if the condition A >> AN is not well-satisfied, e. g.for A = 2N ), itis still possible to achieve
alevel of spin squeezing that is comparable to the optimal squeezing (the horizontal dotted black line in
figure 5(b)). This is somewhat surprising since we expect such a decrease in A to damage the spin squeezing, as in
figure 3(c). However, since the spin squeezing is not degraded, it is preferable to choose the smaller value
A = 2)N as the squeezing dynamics are faster in this case.

With this in mind, we estimate the optimum squeezing time for the FQ and NV implementation, with
A = 2AN,N = 500and A = 27 x 12 kHz. We find that f,,, = 500 s. This is a factor of two longer than the

corresponding time for the OAT dynamics in section 4.1 because the OAT coefficient x4/2 in I-Ale,ff
(equation (21)) is a factor of two smaller than the OAT coefficient in Hu¢ (equation (13)). Similarly, in the MR
model, the optimum squeezing time for N = 1.2 x 10 spinsand detuning A = 2N is estimated to
be t,pe = 320 ms.

Finally, we consider inhomogeneous broadening and inhomogeneous couplings. If, in addition to
equation (22), we have 2 > éw, the inhomogeneous broadening Hamiltonian in the interaction frame,
ol (t)Hig o' (1), 1s quickly oscillating and is suppressed in the rotating wave approximation. This is plotted for
the FQ and NV device in figure 6(a), where the dashed lines show the spin squeezing for N = 6 spins interacting
with a dissipative flux qubit with A = 27 x 1 kHz and éw = 27 x 3 kHz.For A = 20N (the dashed black
line), the spin squeezing is slightly degraded compared to the ideal spin squeezing (the solid black line). This is
due to higher order inhomogeneous terms that are not suppressed by the spin drive. However, for smaller
detuning A = 4N the spin squeezing is achieved more quickly and inhomogeneous broadening is almost
completely suppressed (the dashed red line). Figure 6(b) shows the corresponding plot for the MR and donor
spins implementation.

5. Spin squeezing by DCR

In this section we consider spin squeezing in the DCR regime of our effective master equation (12), that is, when
A < v = I'.To easily access this parameter regime we assume that the ancillary system is highly dissipative
with v = 20AN. We note that this value of ancillary system relaxation is almost three orders of magnitude
stronger than the value v = 0.0265 x AN that we used in the previous section for the FQ and NV model, and
200 times larger than -y = 0.1AN for the MR and donor spins model.
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Figure 6. Spin squeezing including inhomogeneous broadening and inhomgogeneous couplings (the dotted lines) for (a) the FQ and
NV implemementation (0A = 27 x 1kHz, éw = 27 x 3 kHz), and (b) the MR and donor spins implementation
(6N = 2w X 4 Hz, bw = 21 x 15 Hz). For comparison, the solid lines show spin squeezing when there is no inhomogeneity
(6A = 0, bw = 0). The effect of inhomogeneous broadening is significantly suppressed due to the spin drive {2 >> éw. In figure (a),
A =27 x 12kHzand v = 0.0265 x AN,andin figure (b), A = 27 x 56 Hzand 7 = 0.1 x AN.Both (a) and (b) are plotted for
N = 6and initial state |§, ¢) = |0, 0) and the dotted lines are averaged over 100 evolutions to remove random fluctuations.
Horizontal dotted lines show the optimum spin squeezing by OAT.

5.1.1deal case
Again, we begin by neglecting inhomogeneous broadening and inhomogeneous couplings. In figure 7(a), for the

FQand NV model, we plot min, £2as a function of the detuning A and the spin drive {2 for the easily prepared
initial state |0, ¢) = |0, 0). We see that for a range of values of A and €2 there is significant spin squeezing during
the evolution. In figure 7(b) we plot the time evolution of the spin squeezing for various choices of A and €2. As
expected [28, 29], we see steady state spin squeezing for a carefully chosen value of the spin drive €2 (the black
line, figure 7(b)). We have verified numerically that for these parameters the steady state of the master

equation (6) with the Hamiltonian equation (10) is indeed squeezed.

5.2. Realistic case, dynamical decoupling

We now consider the effect of inhomogeneous broadening and inhomogeneous couplings on DCR spin
squeezing. In this case our numerics are limited to a small number of spins N = 6. For simplicity we also assume
that A = 0, i.e., the ancillary system and the spin system are resonant, so that the effective Hamiltonian

equation (13) only includes the spin drive term Hey = /0 i, - J , and the effective master equation is of the
form equation (5). For the FQ and NV model, the red line in figure 8(a) shows that for éw = 27 x 3 kHz and
OA = 21 x 1 kHz the spin squeezing is quickly degraded. The red line in figure 8(b) shows that the
inhomogeneities have a similar effect on spin squeezing for the parameters in the MR model. Further numerics
have shown that, as with OAT, this is primarily due to the inhomogeneous broadening Hi. Unfortunately, the
dynamical decoupling approach that was taken to protect spin squeezing against inhomogenous broadening in
the previous section for OAT will not work for DCR. This is because for spin squeezing by OAT, the 7-pulse
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Figure 7. Spin squeezing in the DCR regime (A < v = 20AN). (a) The optimum squeezing that can be achieved for various values of
the detuning A and drive €2. (b) A carefully chosen 2 leads to steady state spin squeezing (the black line). Both figures were plotted for
the flux qubit ancillary system using master equation (6) and Hamiltonian equation (10), with N = 40, A\ = 27 x 12 kHz, A = 0,
dw = 0,y = 20AN, and initial state |6, ¢) = |0, 0).
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Figure 8. For both (a) the FQ and NV implementation, and (b) the MR and donor spins implementation, the inhomogeneous
broadening destroys spin squeezing (the solid red lines) but can be countered with a sequence of operations IQSW—I?LS7 -RS, —IQTS,r
—--+, where each operation is composed of a rotation R = R(-26,, 1) (or its inverse IQT) that mimics a reflection of the spin state, and
ashift » — 7 + 7 in the phase of the spin drive, represented by S;. In the dotted red lines we have applied 100 such operations with a
free evolution time 7 between them. Each line in the figures above is averaged over 100 evolutions to remove random fluctuations.
(For figure (a), N = 6, A = 27 x 12 kHz, A=0,Q= 0.07), v = 20AN, 7 = 0.01 ms, and the initial state s |6, @) = 165> 0)-
For figure (b), N = 6, A = 27 x 56 Hz, A = 0, = 0.07), v = 20N, 7 = 1 ms, and the initial state is |0, ¢) = |0y, @,).)
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operator R (, ¢) = exp[—im (J sin ¢ — ]A), cos ¢)] has the convenient property that it commutes with the OAT

operator fzz sothat R’ (7, ) fzzﬁ (m, ¢) = fzz and the spin squeezing is not disrupted by the 7-pulse. For DCR,
however, the 7-pulse operator R (7, ¢) will disrupt the DCR squeezing mechanism. To see this we start from the
effective master equation (12) in the DCR regime A < + (assuming A = 0and 6\ = 0):

P, = —%[Hm + AQii, - s pd + % D10y (23)

If at time 7 we apply the 7-pulse operator R (7, ¢), the state is transformed to p: (t) = R(m, ¢) A (7')1?T (m, @)
and the master equation for the following period of time t > 7 is:

= f%[ﬁm + 2, - T, Pl + e DIT1(0). (24)

Operating on equation (24) on the left by R’ (, ¢)and on the right by R (7, ¢) gives (for t > 7) the evolution
equation:

P = —é[—HIB + AR (i, - DR, p] + v D0 (25)

where we have used R (m, $)HR (7, ¢) = —Higand R (1, $)J_R(m, ¢) = —e 19], . Comparing
equations (23) and (25) shows that the effect of the 7-pulse is to reverse the sign of the inhomogeneous
broadening Hamiltonian Hig in the following period of evolution. However, unlike for OAT, the DCR spin
squeezing mechanism is also disrupted by the 7-pulse, since the collective relaxation operator is transformed
from J_to J,. For example, if the system was in the steady state of the DCR master equation before the 7-pulse,
then after the m-pulse it will be far from the steady state.

However, the desired effect can be achieved by a reflection of each spin at time 7 through a plane in the Bloch
sphere that contains the Z-axis and the vector #,,. Such a reflection is implemented by the complex conjugation

operator V, with the assumption that for each spin the matrix elements of ?72("), i, - 39 and /2 39 are:

(i 1 0
=5 ) (26)
S 20 01
Hy-0 = (1 0)’ (27)
- 2 0 —i
fyynya - 5 = (i 01). (28)

This gives:

v, -5V =, 8",
PN 20\ yy—1 - 2(1)
V(”n+7r/2 -6 )V =— (7R VoI U (29)

Applying the complex conjugation operator to the spin state at time 7 transforms the state to
pg (r) = Vps ()V "' The master equation for the following period of evolution is:

. 1 - .
P = — (Hip + Q7 - ], P2 + Y DU-1(p)). (30)
Operating on equation (30) on theleftby V™' and on the right by V gives, for t > 7, the evolution equation:
i N L7 N
ps = _E[_HIB = ity - T pd + Y DU-1(py), (3D

where we have used ViV = —i, \7711:11]3 V = A, v (1, - Hv = i, - JandV iV =7]. Comparing
equations (23) and (31) we see that the sign of the inhomogeneous broadening Hamiltonian Hip is reversed and

the Lindblad term is unchanged, as desired. However, the spin drive term is also transformed from 7, - J to
Qi - J . This can easily be corrected by shifting the phase of the spin drive 7 — 7 +  so that
-Qi, - ] =0 i, - T, which finally gives:

P = —%[—HIB + Q- T, pd + % D10 (32)

Equation (32) is identical to equation (23), apart from a reversal of the inhomogeneous broadening. We note
that this operation must be repeated many times, with a short free evolution time 7 between each operation,
since the dynamics before the reflection and phase-shift does not commute with the dynamics afterwards.
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Finally, we note that the reflection is an unphysical transformation, since the complex conjugation operator
is anti-unitary. However, for some states, we can apply rotations that have the same effect as a reflection. For
example, reflecting each spin of the spin coherent state |6, 7/2) in the xz-plane of its Bloch sphere gives the state
|0, —7/2). Clearly, this transformation can also be implemented by a rotation R(-20, 7/2) = exp [i20],] of
each spin around the x-axis. The angle of rotation 26 depends on the spin coherent state parameter 6. For
simplicity, we assume that the spin system is prepared in a spin coherent state that is ‘close’ to the steady state.
We take this to be the state |0, @), where the angle 6 = cos™!(—2( J.)ss/N) is determined by the expectation
value (f,)s, in the steady state and ¢, = tan"!({ ];)sS / (Jo)) =1 + g This simplifies the procedure because the
rotation that mimics the reflection of the state does not have to be changed as the system evolves. The rotation is
R (=204, 1), which, for example, transforms the state ‘ 0> n + §> to ’ O m — §>, the reflection of the state
through the plane that contains the Z-axis and the vector #,,. The result of repeating this operation many times is
plotted in the dashed red lines, figure 8. We see that the inhomogeneous broadening can be significantly
suppressed by this procedure and that some spin squeezing can be recovered. We note that it may be possible to
get a further improvement by alternating reflections of the state in the plane containing the Z-axis and #, with
those in the orthogonal plane containing the Z-axis and 77, x Z.This would be analagous to the alternating -
pulses around two orthogonal axes in the concatenated-XY8 pulse sequence in section 4.2.

6. Conclusion

We have shown that a single model—the interaction of a spin system with a dissipative ancillary system—can
lead to spin squeezing by two distinct mechanisms: OAT and DCR. In either case, spin squeezing is generated
even though the ancillary system coherence time is much smaller than the duration of the squeezing process.
This is possible because we have adiabatically eliminated the ancillary system, which stays close to its ground
state throughout the squeezing process. We focus on two possible implementations, with either a
superconducting flux qubit or a superconducting MR playing the role of the ancillary system. With dynamical
decoupling we have shown numerically that both spin squeezing mechanims are robust to inhomogeneities in
the model. In practice, the dynamical decoupling pulses may introduce errors that reduce the spin squeezing.
However, we have also shown that by driving the spin system it is possible to generate robust OAT spin squeezing
without the need for electromagnetic pulses. This flexibility—squeezing can be generated in disparate parameter
regimes and for a variety of practical requirements—is, we believe, a strength of this model. We conclude that
spin squeezing of hundreds of solid state electron spins should be experimentally feasible in this model with
current or near future technology.

Finally, we estimate the sensitivity of a magnetic field measurement that can be achieved using a spin system
prepared in a squeezed state. We assume that the squeezed state is prepared by OAT, since this leads to more spin
squeezing than DCR. We also assume that the spin system is undergoing non-Markovian dephasing during the
field sensing period. In this case, using the recent results of [ 13], we estimate that for our FQ and NV
implementation a magnetic field B can be measured with sensitivity $By/T = 1.4 pT Hz~ 2 where Tis the total
sensing time (see appendix B for details). This is a factor of ~2.7 times improvement over the best sensitivity that
can be achieved using a separable state of the spins. Such a magnetic field sensor would also have a very good
spatial resolution ~2 pm, as determined by the size of the diamond sample. For the MR and donor spin

implementation, we estimate $By/T = 10 fT HZ_%, afactor of ~4.1 improvement over the best sensitivity that
can be achieved using a separable state of the donor spins (see appendix B for details), and a spatial resolution
~1 mm. There is better sensitivity for the MR implementation than for the FQ implementation since it employs
ahigher number of spins, and because these spins are donor electrons in silicon, which have much longer
coherence times than NV centres [16]. However, the spatial resolution is worse since the sample coupled to the
MR s larger than the sample coupled to the FQ (see figure 2). By using a flux qubit ancillary system with

N = 500 donor spins in silicon we could combine the best features of both implementations, giving a sensitivity
SBNT = 75 fT Hz 7 anda spatial resolution ~2 pm. In figure 9 we show how such a magnetometer would
compare with the reported sensitivies of some existing state-of-the-art magnetometers. Relative to these existing
devices, our proposed magnetometer would occupy an unexplored region of high sensitivity and high spatial
resolution. The sensitivity, and the advantage of using a squeezed state instead of a separable state, can be
improved by generating a squeezed state with a larger number of spins. To do this, the challenge is to couple a
larger number of spins to the ancillary system, while maintaining long coherence times and strong, relatively
homogeneous coupling. We note that this should be possible as experimental techniques advance. For example,
ifa superconducting circuit can be arranged in a Helmholz coil configuration, that is, with two superconducting
solenoids separated by the solenoid radius, then the coupling to a spin ensemble placed between the solenoids
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Figure 9. Comparison of the proposed spin squeezed magnetometer (the black star; based on a flux qubit and donor spins
implementation) with reported values for existing devices [52—-64].

will be stronger, and more homogeneous over a larger spatial region than for the setups in figure 2. This would
enable the generation of much larger spin squeezed states.
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Appendix A. Derivation of effective master equation

To derive the effective master equation (12) we follow the procedure developed by Reiter and Sorensen [36] for
adiabatic elimination in an open quantum system. The starting point is the master equation (6),

p= —ﬁi (A, pl + D [A] (p), where the Lindblad operator A= Zz;é Jn + 1 |n){n + 1|represents
dissipation of energy into the ground state of the ancillary system. The projector onto the ancillary system
ground state is denoted l?g =10) (0], while . =T — ﬁg = 971 |n) (n| projects onto the excited subspace. This
allows the Hamiltonian to be written as H = (13g + P)H (13g + D)= \7g + Vi + \7+ + V., where

Vg: gﬁg:(ﬁﬁﬁn-f—i—ﬁm)@ﬁ,
- R . d—1
‘,};: e e:(ﬁQﬁn'] +HIB)®Pe+ﬁAZTl |T’l><11|,

n=1

describe the dynamics within the ground and excited subspaces respectively, while

0= BAR = 4%, ® (0)(1],
give the dynamics that connects the two subspaces.

The Reiter—Sorensen procedure gives a prescription for the derivation of an effective master equation under
the assumptions that the dynamics due to \7g and V. are much slower than either the dissipative dynamics or the
dynamics due to \7e In our model this requirement is satisfied if I' > AN, T > QandT > 6w, where
I' = JA? + v2/4. According to the Reiter—Sorensen procedure, the resulting effective master equation is

p= f% [Vigrs p] + D[Le](p) with effective Hamiltonian and Lindblad operators

~ 1A A1 ~—1 N N

Veir = *EV—[VNH + (Vae)1Ve + V, (A1)
~ PRSI IIN
Leg = YAV Vs (A2)
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where

i = ¥, — 2LA'A

- R . . d—1
= (iQi, - ] +HIB)®Pe+/i( —%) > n |n)(n]. (A3)
n=1

We refer the reader to [36] for a derivation of the effective operators equations (A1)—(A3). (The essence of the
approximation is that the dynamics due to V; and V.. are perturbatively small compared to the dynamics due to

the (non-Hermitian) Hamiltonian Vi, allowing adiabatic elimination of the excited subspace.)
Since we have already assumed that I' > max {2, éw}, we can approximate

B 1 dfll

Vg ———m— S = A4
NH fi(Afi'y/Z)nZ::ln [n) (n] (A4)
A +iy/2 0
=———"" N "~ |n){(n|. A5
T (45)
Substituting equation (A5) into equations (A1) and (A2) gives:

o I~ N AN . . ~

Vg = | 280, - ] + Hig — 2 I | ® K, (A6)

. AMA +iv/2) . R

Leg = uﬁ ® . (A7)
r

We may ignore the projector 13g in equations (A6) and (A7) since the ancillary system remains in its ground state

throughout the evolution. Using the identity ]1]1 =7 .j- fzz + fz we see that the effective Hamiltonian is
Vg = Hip + Hegr, where Heg is given by equation (13). Itis also easy to verify that D [Legr] (p) = %D A (p),
resulting in the effective master equation (12).

Appendix B. Magnetic field sensing with the spin squeezed state

In [13], it was shown that the sensitivity of magnetic field estimation—taking non-Markovian dephasing of the
spins into account—is

k|t )28 | N2 -1
SBNT ~ (T)[V + — = | (B1)
geruB 2| <] > |

where tis the sensing time for each measurement, T' = tv is the total measurement time (v is the number of
repetitions of the measurement), 7;1 is the spin coherence time, ¢, is the time taken to prepare the spin
squeezed state, & is the Wineland squeezing parameter, g. is the electron g-factor, ju, is the Bohr magneton, and
the magnetic field estimatate is obtained by making a measurement of a collective spin observable in the
direction of least variance [13]. (Equation (B1) corresponds to equation (43) in the supplementary material
of[13].)

For the FQ and NV implementation, we assume an NV coherence time 7;1 = 30 ms [15] and we use
N = 500, as estimated in section 3.2.1. For magnetic field sensing with a spin coherent state we assume

2 N
topt:(): |<]>| - ?) 62: 1. (B2)

Substituting into these values into equation (B1) means that it is a function of t alone, that can be minimised

1
numerically with respect to ¢ to find the best achievable sensitivity for a separable state, B~/T = 3.8 pT Hz™ 2.
For an OAT spin squeezed state of the NV centres we use £, = 250 ps, as estimated in section 4.1,

|<f>| = (N/2)cosN~1(©/2)[27]and £ = N [1 — (N — 1)C][27], where © = 2 g top and:

) 41) P
C= _Z(l — cosN20)

1 . 1/2
+ Z[(l — cosN"20)% + 16sm2%c0s2N‘4 %] . (B3)

After minimising equation (B1) with respect to t, this gives a sensitivity §By/T = 1.4 pT Hz 2, a factor of ~2.7
improvement over a spin coherent state.
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For the MR and donor spins implementation, we assume a spin coherence time , = 10 s [16] and we use
N = 1.2 x 10% as estimated in section 3.2.2. For a spin coherent state, using the values in equation (B2) and

minimising equation (B1) with respect to t gives a sensitivity $B</T = 42 fT Hz 2. For a squeezed state we

obtain 6B~/T = 10 fT Hz’%, which is an improvement over the spin coherent state by a factor of ~4.1.

Finally, if the NV centres in the FQ implementation are replaced with donor spins in silicon, we can combine
the good spatial resolution of the FQ implementation with the good senstivity resulting from the long coherence
times of the donor spins. In this case, substituting N = 500 and v, = 10 s gives a sensitivity of

8B\JT = 75 T Hz 2 using an OAT squeezed state, and a spatial resolution ~2 pm.
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