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Abstract

Numerous applications all the way from biology and physics to economics depend on the density of
first crossings over a boundary. Motivated by the lack of general purpose analytical tools for
computing first-passage time densities (FPTDs) for complex problems, we propose a new simple
method based on the independent interval approximation (IIA). We generalise previous formulations
of the ITA to include arbitrary initial conditions as well as to deal with discrete time and non-smooth
continuous time processes. We derive a closed form expression for the FPTD in zand Laplace-
transform space to aboundary in one dimension. Two classes of problems are analysed in detail:
discrete time symmetric random walks (Markovian) and continuous time Gaussian stationary
processes (Markovian and non-Markovian). Our results are in good agreement with Langevin
dynamics simulations.

1. Introduction

When the electric potential between the interior and exterior of a neurone exceed a certain threshold, the
neurone fires. After firing, the interior potential is abruptly reset to its rest value and the process starts over. How
often it starts over depends on external stimuli (e.g. light and touch) and firing frequencies of neighbouring
neurones. To better understand neurone firing, and ultimately how neurones work, researchers in the field [1, 2]
use stochastic models to calculate how long it takes for the interior potential to pass the firing threshold for the
first time.

Neurone dynamics is not the only case where first-passage problems arise. Such problems frequently occur
in physics, chemistry, biology, ecology and economics [3, 4] and is one of the reasons why first-passage problems
are so heavily studied. But despite enormous interest there are surprisingly few cases where we know the
probability density of first-passage times analytically.

Most analytical results are for Markov processes that mainly comes from two approaches. In the first
approach, the so-called method of images, one solves the Fokker—Planck equation with absorbing boundaries
[5, 6]. Even though conceptually simple, it is limited to symmetric problems such as when the absorbing
boundary is at the bottom of a symmetric potential well. The second approach is renewal theory [5, 7]. It works
for non-symmetric problems but often leads to expressions in Laplace-space that cannot be inverted analytically.
Even though useful, both these approaches are in practice limited to simple problems. In fact, neither of them
can provide the first-passage time density (FPTD) for a Brownian particle in a harmonic potential for a general
boundary and starting point. Thus, in order to address more complex first-passage problems we need better
analytical methods.

Another class of useful methods have been developed to solve persistence problems. In persistence problems
one wishes to know the probability S(¢) that a stochastic variable remains below or above a boundary from the
start up to some time point t. The FPTD p (¢) is simply related to the persistence according to
p(t) = —dS(r)/dt. To calculate the persistence, methods that involve the probability for all trajectories with an

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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even number of boundary crossings has been used [8—11]. But apart from a few special cases, these crossing
probabilities cannot be calculated exactly and one needs approximations. One approximation scheme that
gained interest is the independent interval approximation (ITA) [12—14], which assumes that the length of time
intervals between consecutive boundary crossings are independent. However, in its present formulation the ITA
assumes that the processes has a well defined continuous velocity which means that it cannot deal with non-
smooth processes, such as discrete time processes or Brownian motion. Furthermore, in previous studies using
the ITA, the initial condition was drawn from the equilibrium distribution. To apply ITA to a wider class of
systems, these shortcoming must be remedied.

In this paper we generalise the ITA to discrete time series and non-smooth processes with arbitrary initial
conditions. Starting with the discrete time case, we find a simple expression for the probability density of first-
passage times to a boundary in z-transform space. We then generalise our equations to the continuous time case
and obtain a similar expression but now in Laplace transform space. The expressions are based on return
probability densities to the boundary and the probability that the stochastic variable is above the boundary at
some time. To show the applicability of our results we study the discrete time symmetric random walk and non-
smooth continuous time Gaussian stationary processes (GSP), both Markov and non-Markov systems.

2. Methods

In this section we outline the ITA framework and derive an expression for the FPTD for continuous and discrete
processes x(t) in one dimension. We denote the FPTD by pj (f|x,), where tis time, xo = x(f = 0) is the starting
pointand x = Bis the location of the absorbing boundary. In discrete time we let # be the number of time steps
and t = nAt, where At is the time increment. We develop the IIA framework for discrete processes and then
show how to generalise it to continuous processes.

The ITA equations herein relates three core quantities: the FPTD pj (t|xo), the probability w- () that x() is
above B at the nth time step given that xy < B, and the return probability density that x(#) returns to B after a
B-crossing either from above, 1, (1), or from below, v (1), after n steps. The quantities w- () and v,.(1) are
inputs to our framework which one needs to calculate on case by case basis. The probability w-.(n) is in general
simple to calculate. We find it by integrating the probability density function P (x, n|x,) of x(n):

wo(n) = fB " P(x, nlxo)dx. )

The averaged return probability densities 1. (1) on the other hand are more complicated and needs to be
discussed further (averaging procedure detailed below).

2.1.1IA for discrete time processes

To better understand 1/.(n), consider a discrete time process that pass through B repeatedly (see figure 1, top).
The number of steps that x(1) remains below Bis denoted by Tj, T, ...,and above Bby T, T, .... The time to
the first-passage, T}, is special because it depends on x,. The density of T is simply pg (Ti|xo). After the first
B-crossingat Ty, x (T7) ends up at some distance AA; > 0 above B, rarely precisely on B (i.e. A; = 0). To calculate
the distribution of T,, we must consider the trajectory from B + A back across B. We denote the distribution of
T, by ¥(T5, 2)) where we assume that the length of T, is independent on Tj. This is the core assumption of the
ITA and is true for Markov processes. At T, the process crossed B from above and is below Bby A,. To find the
number of steps until the next crossing, T3, we must consider the trajectory from B — A, back across B. The
distribution of T5 is 1. (TG, A,). Repeating this pattern we find 1, (T, Ayi—1) G = 1, 2, 3, ...) for trajectories
above Band ¢ (T; 1, Ay;) below B, where the A’s are random numbers drawn from the overshoot
distributions A(A) (see figure 1, bottom). If the mean (A) is small with respect to B — xg, overshooting the
boundary by (A) will not significantly change our final results for pg, (r|x,). We may therefore average 1,.(1n, A)
with respectto AL(A):

Den) = fo T i, A)AL(A)A. @

In appendix B we show simulation results for the overshoot distribution for the discrete Brownian walk which is
well described by A (A) = \/W—/Z erfc (A/2).

Working with the averaged return probability densities 1/..(1) instead of 1+(n, A) implies that we ignore
fluctuations in {(A) and approximate the original process x(n) by a clipped process. The dynamics of the clipped
process is: when x(n) crosses B, draw A from A\ (A), makeajumpto B + A, and continue (see figure 1,
bottom). The clipped process is obviously different from the true x() but simpler to handle analytically. But the
difference is small. We show in appendix B for the discrete time Brownian walk that w- (1) for the clipped
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Figure 1. Discrete time stochastic process x(n) (e.g. the position of a particle) as a function of the number of time steps n (t = nAt,
where At is time increment). We denote the time spent above the boundary Bby T, T, ... and below the boundaryby T, T, ...
(Top) Original process x(1). (Bottom) Approximate x(1n) where at each crossing event we draw a new position from the overshoot
distributions A1(A). Note that A (A) and A_(A) may be different where ‘4’ (‘—’) means that the process is above (below) the
boundary.

process is practically indistinguishable from the true one. Below we formulate the IIA equations based on the
clipped process.

We may calculate w-(N) (ty = NAt)in terms of the number of B-crossings. Our derivation below is the
discrete time version of the continuous time case in [8, 13]. Note, however, that in [8, 13] the quantity pg (¢|xo)
does not appear, as thermal equilibrium is assumed initially. Let py(IN) be the probability for a trajectory starting
at xo < Bandends up above Bat time tyafter k crossings. w~.(IN) is then the sum of all such trajectories with odd
number of crossings

WoN) = S py (N, ®3)
k=1

To calculate p, (), assume that the first up-cross occurred at ; < N and that there is no down-cross between
ny and N. Since n; can be anywhere from 0 to N, this gives

N
PN) = 3~ pp(mlxg) Qu(N — my), (4)

m=0

where the probability of not crossing is
Qi(m) =1 — Y Pu(n). )
n'=0

Tofind p;(N), assume that the first up-cross occurred at n; < N, the first down-cross occurred at 1, between n,
and N, that the second up-cross happened at n13 between 1, and N, and no down-cross between n; and N. This
gives

N N N
ps(N) = > pp(mlxe) D by — m) Y (3 — m)Qu(N — n3). (6)
m=0 ny=m n3=my
Continuing this for p. (N), p,(N), ...leadsto
N N N
P 1 (ND) =D pp(mlxe) D hy(my — m) > Pz — m)--

m=0 ny=mn n3=m,

N
Z Y (yp—1 — Mok—2) QN — myg_y). (7)

Mok—1=M2k—2
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Summing over all odd number of B-crossings we get w~ () (see equation (3)). To solve equation (3) for
pp (1|xo) we take the z-transform (f (z) = >,°_ , f (n)z™", z > 1) which turns the convolutions in equation (7)
into products. After summing the resulting geometric series we obtain

z— 1w>(2)g(z), where g (z) = %

This equation relates the FPTD to the probability w-.(z) of being above the boundary, and to the return
probability densities 1, (z) and 1)_(z). This constitutes one of our main results in this paper.

pp(2lxo) = ®

2.2.11A for continuous time processes
In order to obtain the continuous time version of equation (8) we proceeds as follows. When Bis reached from
below, the trajectory makesajumpto B + ¢, where eis a small constant. As ¢ — 0 we approach the continuous
time case. The overshoot distributions A, (A) for this cases is a Dirac delta function, which leads to
— o0
Do) =lim [ u(t, A)S(A — (B % €))dA. ©)
e—0 [e9)

In appendix B we show explicitly how w-(¢) for the clipped Ornstein—Uhlenbeck process (OUP) converge to
thereal one as ¢ — 0. To derive the IIA equations in the continuous time case, we proceed in the same way as for

the discrete time case using pi(t), but with sums in equation (7) changed to integrals (Zn — ﬁ f dt) aswelet
At — 0and n — 00, while maintaining t = nAf constant. If we take the Laplace transform

(f(s) = fo > f (t)e~*'dt) of the sum over p,, ,(t) (see equation (3)) we obtain a similar geometric series as
before thatleads to

1 — () P(s)
1 — 9(5)
After thermally averaging over the initial position xo, this result is equal to the one obtained in [8, 13] where

also expressions for the return densities can be found. However, in contrast to the results here, the derivations in
[8, 13] assume smooth processes.

ps(slx0) = sw()g (s), where g (s) = (10)

3. Results

In this section we apply our main results (equations (8) and (10)) to (A) discrete time symmetric random walks
and (B) non-smooth continuous time GSPs, a Markovian case and a non-Markovian case. We also show that our
equations lead to Kramers escape (appendix C), and that they are consistent with the method of images
(appendix D) in continuous time. To test the validity of our results we compare them to Langevin dynamics
simulations (see appendix A for simulation details).

3.1. Discrete time symmetric random walks
A prominent example of a discrete time process is the Markovian symmetric random walk that evolves via

x(m) =x(n—1) + nn) an

for n > 1with the fixed initial condition x; = x (# = 0). The jump length nis an independent and identically
distributed random variable drawn from a symmetric distribution ¢ (1) of mean zero. This distribution could
for example be Gaussian, Lévy, exponential or uniform.

The FPTD for the symmetric random walk is however not known for general B and x, except in terms of a
double Laplace transform, the so-called Pollaczeck—Spitzer formula, that no one thus far have been able to invert
analytically [9]. The one exact result that exists is the universal Sparre—Andersen theorem [15] which applies to
all symmetric and continuous jump distributions ¢ (n). It says that the persistence to stay above (or below) the
boundary when B = x; is

Qn) = (2” )2*2". (12)
n

Here we use Q(n) and the ITA formalism to put forward a simple summation formula for the FPTD for general B
and xo. However, we first need to find the return probability densities 1 (1).

3.1.1. Analytical predictions

In this problem the process x(#) behaves in the same way on both sides of the boundary, which means that the
return probability densities on either side of Bare equal, 1+(n) = 1 (). We approximate 1 () with the discrete
derivative of Q(11) (see equation (5)), thatis ) (n) ~ —[Q(n) — Q(n — 1)]©(n — 1). Here © (n) is the unit
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Figure 2. First-passage time density pg (n|xo = 0) for the discrete time symmetric Brownian walk when the boundaryisat: B = 1
(left), B = 3 (middle), B = 5 (right). Connected ‘x’ comes from equation (14) while connected ‘0’ represent simulations (averaged
over2 x 107 realisations). Insets display the short-time dynamics.

step function (discrete Heaviside step function) that takes care of the initial condition ) (n = 0) = 0. From
equation (12) it follows that
2" n!

Vim ~ 2n — 1 2m)!!

QMmO — 1). (13)
If we put 1p..(n) = 1) (n), equation (8) yields g (z) = 1 + 1) (z) which after inversion leads to

n—1
pp(nlxe) = wo(n) + > ws(n — [P k) — Dk — 1) — &1l (14)

k=1

If the jump length distribution ¢ (1) is Gaussian then w~(n) = erfc[(B — x¢)/ J2n1/2.For long times we
expect that p, (n]x0) = 1 (n). Indeed, expanding equation (13) for large n we get the random walk result:

pp(n|xo) ~ n~3/2. Equation (14) is a generalisation, albeit approximative, of the Sparre—~Andersen theorem to
general boundary and initial conditions.

3.1.2. Simulations and numerical results

In figure 2 we compare equation (14) to simulations when ¢ () is Gaussian. Overall we find good
correspondence, especiallyas B — x, increases. But as it decreases, we start to see deviations for small times, e.g
for B — x¢y = 1. Thereason is that the overshooting start to play a role and the derivative of the persistence is no
longer a good approximation to ¢ (1). From simulations we find that the average overshooting length is 0.63
that is comparableto B — xy = 1.

3.2.Non-smooth continuous time GSP

3.2.1. Analytical predictions

A zero mean GSP is completely characterised by its correlator f (1) = (x(t")x(t' + )). If (¥) decays
exponentially for large ¢ it follows that the probability that x(¢) does not change sign during a time interval of
length tis asymptotically equal to [8, 9, 14]

Q) ~e", 15)

where the rate ris the so-called persistence exponent that in general is non-trivial to calculate. Since the process x
(t) is symmetric around B = 0, we have 1, (t) == 9. (t) (for Markov processes they are identical). Denoting them

by ¥ () and using that 1 (t) = —dQ(t)/dt (because Q(t) = 1 — ‘f(‘: P (") dt’, see equation (5)), we obtain
P(t) = re ™, (16)

To generalise this expression to the asymmetric case B = 0, where 1 (t) = 1, (t), we follow [8, 16] and
introduce crossing rates . from above and below B. For general B, Q.(t) ~ exp (—rt), and therefore

Pu(t) > reexp (—rat). (17)

Note that for non-Markovian systems, 1/.(¢) will in principle remember all B-crossings and therefore depend on
Xo. However, since we work in the asymptotic limit (see equation (15)) we neglect this contribution.
With 1.(¢) at hand, we may calculate the FPTD for a general GSP from equation (10). First we use that
¥1(s) >~ 1/(1 + s/ry)in Laplace space. Second we put 1. (s) in g(s) (see equation (10)) so that
g(s) ~ 1+ r./(r_ + s). After inversion we find the expression
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dw-(1) b pOws(t—1t)
1 + r+j; e dt’,

t =
pg( |0) ot

(18)

that is valid for any GSP with correlator f(f) decaying exponentially (Markovian or non-Markovian, smooth or
non-smooth). For Gaussian processes w-(t) is given by

B — pu()

J202(t)

where i (t) and 0% (t) are the mean and variance, respectively.

To determine the crossing rates .., we proceed as follows. First we get ;. from the normalisation condition
fj; pp (tlxo) df = 1,0r pg(s — O|x¢) = 1.Second we use that g(s — 0) = 1 + r/r_and
lim,_,gsw~(s) = w~(t — 00) in equation (10), which together with equation (19) leads to

ws(t) = %erfc (19)

2
ry = r(m - 1), (20)

valid for p (t — oo) = 0Oand 0% (t — o0) = L.

To close the system we need one of the crossing rates ... However, they cannot be calculated from our IIA
equations directly and must be acquired from either experiments, simulations or other analytical means. In this
paper, we will assume that Band x, are not too close to each other which means that we may estimate 7_ as the
reciprocal of the mean-first passage time 7to B from x, = 0

r- = l @1
T
This can be understood as follows. When B is far away from the potential minimum x = 0, up-crossing events
are rare. When they are rare, the distribution of times between up-crossing events is approximately the same as
the FPTD. Because the equilibration time of the process is much shorter than 7, the FPDT is asymptotically equal
to Kramers expression py (£|0) =~ 7~ le*/7 [17] with equilibrated x,". This implies that 1 (t) =~ pg (/0) with
r_ = 1/7 forlongtimes.

In the subsequent section we apply equations (18)—(21) to (i) the Markovian OUP and (ii) a non-Markovian
case of two coupled Ornstein—Uhlenbeck systems. But before we move on to specific examples, we clarify some
of our method’s limitations.

Note that equation (10) is exact within the ITA but in general we do not know /. (¢). If we assume that 1.(t)
decays exponentially we arrive at equation (18). This assumption is only asymptotically true for a general GSP.
This means that equation (18) is less accurate when B and x, are too close. If they are, several crossing events
occur at short times where 1/ (¢) is not a single exponential. To better understand what is meant by ‘short times’
we see in figure 3 that B = 3 and x, < 0 gives good agreement with Langevin dynamics simulations for pj (t|x),
while there is a discrepancy for short times when B = 3 and x( > 1. To improve the results for short times we
could in principle take into account sub-leading terms
Pu(t) = ree ™1 + ag e =17t g, je~(memm)t 4] However, this would introduce new parameters
as well as conditions for when to truncate the sum. Using the asymptotic behaviour of ¢, (¢) makes our
approach free of cut-off parameters.

3 The equilibrium time is of order one whereas 7 is about ten times larger already when B a2 2, where 7 ~ exp(B?/2).
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3.2.2. Markov case: the OUP
The OUP is the only Markovian GSP [7] (i.e up to a trivial scaling in time and position (see equation (A.2))). The
FPTD for the OUP is difficult to calculate explicitly [ 18]. The one exception is the symmetric case when the
absorbing boundary is at the bottom of the harmonic well which can be solved with the method of images [19].
However, this does not work for the general problem. Instead, several efforts focused on the renewal equation in
Laplace space. But because the renewal equation cannot generally be inverted analytically [20, 21] numerical
inversion [22] and series expansion around the poles [23] have been used. The last example [23] currently holds
the best analytical approximation. But even though in principle exact, none of their expressions are on closed
form and must be evaluated numerically. To work with their expressions one must specify at least one cut-off
parameter (sometimes two) which in practise must be done by trail and error. We compare our results to [23]
using their so-called integral representation (see appendix E for details).

To use equation (18), we need the mean, variance, and mean-first passage time (1,/r_) to B. For the OUP they
are given by

p(t) =xpe™!, o?(t)=1—e?, (22)
1 B 22/2 z _ 2/2

r_:f 0dze f dy e7/=. (23)
g Xo= —00

Equation (23) follows from the backward Fokker—Planck equation [24]. Below we use these relations in
equations (18)—(20) to compare with Langevin dynamics simulations.

3.2.3. Non-Markov case: two coupled Ornstein—Uhlenbeck systems
To see how our IIA equations perform for a non-Markovian process we study the simple coupled system

dﬁit) = —aux(t) + ay ) + azn,(t), (24)
d
):1(;) = =Py (1) + Bax(t) + B3m, (1), (25)

where 7, (t) and 7, (t) are delta correlated, (1, (t) n, (t)) = 0y, 0 (t — t), Gaussian white noise. We are
particularly interested in the variable x(f) that we want to represent a non-smooth GSP. This means that we have
to choose the constant parameters «; and 3; (i = 1, 2, 3) with care.

A non-smooth GSP is characterised by its small time behaviour of the correlator f(#). Indeed, if
f(t— 0) =1+ at + ---with the constant a = 0 then the process is non-smooth [14]. Moreover, since the
OUP is the only Markovian GSP all others must be non-Markovian. This follows from Doob’s theorem which
says thata GSP is Markovian only if its correlator f(¢) is a single exponential [9]. With the following choices

=6 a=-2 as=+5, fi=-1, =5 Bs=15/2 (26)

the correlator associated with x(#) is given by f (t) = % (e7" + e~*). Thisis nota single exponential and since

f(t—0)=1-—5/2t+ ---weconclude that x(¢) is a non-smooth and a non-Markovian GSP. We also find
the mean and variance to be

w(t) = %e*‘”[Sxo + 2y, — 2e* (x0 + ¥ 1, (27)
o*(t)=1— ée‘St(E'S cosh(3t) — 26). (28)

Asa consistency check we see that i (t — c0) = 0and 0?(t — oo) = 1, which is what a zero mean GSP
requires. Although, we point out that there are other sets of parameters that lead to the same correlator as above.
Forexample, oy = 6, ap = —1, a3 = J5, 81 = —1, 8, = 10, B; = +/15. But this choice leads to different
w(t)and o (t).

Finally, to calculate pj (f|x¢) from our ITA framework we need the crossing rates .. However, it is non-trivial
to calculate the mean-first passage time for non-Markovian systems analytically (see e.g. [25]). But because the
main purpose of this example is to investigate how well the IIA equations work for non-Markovian systems we
will for simplicity extract 7— from simulations as the reciprocal of the mean first-passage time. With this the other
crossing rate 7, follows from equation (20).

3.2.4. Simulations and numerical results

To validate our method we compare pj (¢|x,) to Langevin dynamics simulations. In figure 3 we show pj, (t]x) for
for the Markovian OUP for different x, keeping B = 3 fixed and in figure 5 the non-Markovian system of two
coupled OUPs for the same values of xy and B. The simulation results are represented by circles and the ITA
equation (18) by solid lines. The main panels show the overall behaviour whereas the insets show the short time

7
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dynamics. Overall, we get good agreement with simulations provided that the target is not too close to the initial
position.

For the OUP (figure 3) our analytical FPTD decays exponentially in the long time limit. This agrees with
Kramers escape rate and our ITA equations capture this regime well for all values of B — x. For short times there
is a discrepancy between simulations and our IIA equations when B — x, gets smaller. This is because a
considerable amount of first-passage events occur for short times before ¢/ (¢) has attained its exponential form,
as discussed above. Also, the reason why our IIA equations systematically underestimates the simulations for
short times is the following. Assume for simplicity that x, = 0 and that B is infinitesimally above x,. In this case,
the first-passage dynamics is practically indistinguishable from Brownian motion for short times. For Markov
processes we can show that ¢/..(t) is a Dirac delta function (appendix D) which means that there is an infinite
number of boundary crossings once the boundary is crossed. This is very different from t/.(t) >~ e~ that says
that the average time between two boundary crossingsis 1 /7.

In figure 3 we also included one of the best analytical approximations for the FPTD [23] (see appendix E).
Their formula approximates the short time dynamics better than our method while for long times both
approaches match well with each other.

It is straightforward to generalise our method to two boundaries, B > 0 and B’ < 0. Clearly, if B = |B/| we
need four return probability densities which our method is unable to handle. But for the symmetric case,

B = |B’|, {.(t) are enough to describe the crossing in and out of the region —B < x < B.To calculate r_ we use
a generalisation of equation (21) to two boundaries (see e.g. [24]), and to get r,. we use equation (20), where we
replace w-(00) — 2w-(00) (the probability that |x (t)| > B). Figure 4 shows that our IIA equations match
simulations for two boundaries with similar accuracy as for one boundary.

In figure 5 we compare our analytical non-Markovian FPTD to Langevin dynamics simulations where we
keep y, = 0inall cases. This explains why we see better correspondence with simulations when xo = 1 than for
xo9 = —1(see equation (27)). For simplicity we extracted r— from simulations. Overall, the ITA follow the
simulated data in a similar way as for the simple OUP. That is, as the value of B increases we get better
correspondence to simulations, see figure 6. The reason our method works so well for non-Markovian dynamics
can be traced back to the value of Band the initial condition. For large values of B, which we mainly consider, the
process spends on average long times below the boundary such that up-crossing events becomes Poisson
distributed [8]. This deletes the memory of the considered non-Markovian model and therefore it becomes well
described by our I1A formula.
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In figures 3—5 we kept B fixed and changed initial conditions. We set B = 3 where our approximation hold
well. However, as B gets closer to zero, we expect to see deviations. To investigate this we keep initial conditions
fixed and change B, see figure 6. In both the Markovian and the non-Markovian case we see that theory and
simulations do not correspond well as B gets smaller. This is expected because (i) 1/.(t) are not decaying
exponentially and (ii) 7_ is now not well estimated by the mean-first passage time. Also, the non-Markovian case
is clearly more sensitive to small values of B than the OUP.

4. Summary and outlook

There are plenty of examples where one wants to know the probability density of first-passage times to a
boundary. To find this density, one often use the method of images or renewal theory. These approaches are
however in practise limited to simple cases. To find better methods, we improved the so-called ITA, developed
for persistence problems, that is limited to smooth stochastic processes where trajectories have well defined
velocities and thermally averaged initial conditions. This excludes for example Brownian motion. We
generalised the ITA to discrete time and continuous time processes with non-smooth trajectories that start
from fixed initial conditions. In our derivation we replace the original trajectory by a clipped process. After
this replacement, we can deal with the ITA equations exactly in discrete time since we can analytically handle
the overshootinglength A from each B-crossing. Our procedure is further extended to continuous time,
where aregularisation scheme is required. From our ITA formalism we derive a simple expression for the
FPTD to a general boundary and initial condition in one dimension [see equations (8) and (10)]. This
expression relies on that we know the functional form of the return probability densities. But once it is known
our approach is parameter free. To show the validity of our expression we applied it to the discrete time
Brownian walk and in continuous time to the OUP, the only Markovian GSP as well as a non-Markovian GSP.
In discrete time we use the Sparre—Andersen theorem which yields the return probability densities for all
symmetric random walks. For the GSPs we use that the return probability densities decays exponentially for
long times [8, 9, 14], ~exp(—rxt), where we estimate r_ (up-crossing rate) as the reciprocal of the mean first-
passage time which is known for the OUP [24]. Then, from the normalisation condition of the FPTD we
determine the last parameter, r (down-crossing rate). All cases match well with Langevin dynamics
simulations. We also show that in continuous time our ITA equations (i) reproduces Kramers expression for
the escape of a Brownian particle out of a harmonic potential, and (ii) that it becomes equivalent to the
method of images for Markovian process with symmetry around x = B, e.g. when the boundary is at the
bottom of a potential well.

Our ITA equations are new and we anticipate that they will have a wide applicability to previously intractable
first-passage and escape problems. We further hope that this study will spur further activities into the
development of general purpose analytical frameworks for dealing with first-passage time problems.
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Appendix A. Simulations

Following [26] we simulate the OUP exactly with

x(t 4+ At) = x(B)e 2 + 1 — e 28 N0, 1), (A.1)
where A(0, 1) isanormally distributed number with mean zero and variance one. Equation (A.1) is on
dimensionless form where we made the replacements

x — kBTTx and t — %t, (A2)

where kg T is thermal energy, k the harmonic spring constant and y is hydrodynamic friction. The diffusion
constantis D = kg T /. In the simulations we varied x, and B and made statistics of when x(#) reached B for the
first time. We averaged over 10°~10” ensembles.

Itis well known that the Langevin dynamics scheme systematically overestimates the first-passage time
because it can potentially miss crossings that happened within A¢. To reduce this error we used adaptive time
steps that get smaller as x(f) approaches B. We change At as follows:

(1) Set At = Aty.
(2) Calculate the probability that x (t + At) is above B given that x(¢) is below B. That is w~(At).
B) If ws(At) > € then At — At/2. Otherwise do not change At.

(4) Ifatalater time w~(At) < €,then At — 2At with Aty asupper limit.

In the simulations we used Aty = 102 and e = 1074

Appendix B. Supplementary figures

In figure 1 we illustrated how we approximate the real process x(n) by the so-called clipped process. Here in
figure 7 we show explicitly how the clipped process differs from the real one for the continuous time OUP and
the discrete time Brownian walk. To the left in figure 7 we show the continuous time case. Clearly we approach
the analytical curve for w-(¢) (see equation (19)) as welet ¢ — 0 (see equation (9)) in our simulations. To the
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Figure 8. Separated boundary for up-crossing and down-crossing for a Markovian process x(t) that is symmetric around the boundary
atx = B.

rightin figure 7, we show the discrete time case. We found the overshoot distribution
A(A) = J7/2 erfc(A/2) from simulations (see inset). Using this A (A), we simulate w-.(n) as a clipped
process. We see good agreement with analytics in all aspects.

Appendix C. Kramers escape

For long times our method is consistent with Kramers escape theory. To see this we use the final value theorem
[27] and find that equation (10) in the limit s — 0 (long times) becomes after Laplace inversion
ps(t) = wo(00) e . (oA
Using equation (20) to eliminate r, gives
pp(t) = 1 (1 — ws(00))e ", (C2)

When Bis large enough we get that 1 — w-(0c0) & 1, Kramers expression [17, 28]. As an example, for the
harmonic potential we find that w-(co) & 0.001 350 when B = 3 and x = 0.

Appendix D. Method of images

The method of images can successfully give the FPTD for symmetric problems. Notably, it only works for
Markov processes. Here we prove that our IIA formalism is consistent with this method. To show this, we first
use the renewal approach to find the return probabilities.

Consider a Markovian particle that diffuses between two boundaries separated by a small distance € (see
figure 8). We denote an ‘up-cross’ by crossing B from below and a ‘down-cross’ by crossing B from above. When
x = Bis crossed the particle jumps immediately to B & ¢, as explained in section 2. When symmetry around
x = Bholds the distribution of times between an up-cross and a down-cross are both equal to the first-passage
to a point that is a distance € away

pp (1B £ €) = Pu(t) = P (1). (D.1)

Using this in the renewal equation we find
t
P(B, f|B + ) = f pp(tB £ €)P(B, t — ¢'|B)dt’ (D.2)
0

which after Laplace transform yields

P(B,s|B £ ¢)

e YT

(D.3)

If we now let ¢ — 0, up- and down-crossings occur to the same boundary and therefore 1 (s) = 1, or

P(t) = 8(0). (D.4)

With 9 (t) at hand we may derive the method of images formula. First we set /,.(s) = 1 (s) in equation (10) and
then take ¢ — 0, which after inversion leads to

dw-(t)
P (tlxo) = zd—j. (D.5)
Second, since py (t|xg) = —dS(t)/dt, S() is the probability of not crossing a given boundary up to time ¢, and

S(0) = land w~(0) = Osince B = x,, we rewrite equation (D.5) as

11
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S(t)=1 — 2ws(1)
B 00
- f P(x, tlxg)dx — f P(x, flxg)dx
—0o0 B
B
= [ PG thxo) — PCx, 128 — xo)] dx, (D.6)
where in the last step we use the symmetry around x = B which gives the method of images formula.
Appendix E. Alili’s formula

To compare our result for the OUP to one of the best known approximations we have implemented one of the
formulas from [23]. In our notation it reads

eA/? HfA/(Zt)(_xO/\/i)

pp(tlxo) =
B 2t H_a/00(—B/V2)
A/2 N H_ kst (— 2
+ S ST (— 1)k Re [ ALCOK (%) V2) , (ED
A H_p/06)—knijt (—B/N2)

where H, (z) is the Hermite function of order v. Here A and N are parameters that are determined based on trial
and error. We found thatfor t < 10 — {A = 18.1, N = 1000} whilefort > 10 — {A = 7, N = 1000}. The
comparison to Langevin dynamics simulations and our ITA formula are seen in figure 3.
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