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Abstract
Numerous applications all theway frombiology and physics to economics depend on the density of
first crossings over a boundary.Motivated by the lack of general purpose analytical tools for
computingfirst-passage time densities (FPTDs) for complex problems, we propose a new simple
method based on the independent interval approximation (IIA).We generalise previous formulations
of the IIA to include arbitrary initial conditions as well as to deal with discrete time and non-smooth
continuous time processes.We derive a closed form expression for the FPTD in z and Laplace-
transform space to a boundary in one dimension. Two classes of problems are analysed in detail:
discrete time symmetric randomwalks (Markovian) and continuous timeGaussian stationary
processes (Markovian andnon-Markovian). Our results are in good agreementwith Langevin
dynamics simulations.

1. Introduction

When the electric potential between the interior and exterior of a neurone exceed a certain threshold, the
neurone fires. Afterfiring, the interior potential is abruptly reset to its rest value and the process starts over.How
often it starts over depends on external stimuli (e.g. light and touch) andfiring frequencies of neighbouring
neurones. To better understand neurone firing, and ultimately howneurones work, researchers in the field [1, 2]
use stochasticmodels to calculate how long it takes for the interior potential to pass the firing threshold for the
first time.

Neurone dynamics is not the only casewhere first-passage problems arise. Such problems frequently occur
in physics, chemistry, biology, ecology and economics [3, 4] and is one of the reasonswhyfirst-passage problems
are so heavily studied. But despite enormous interest there are surprisingly few cases wherewe know the
probability density offirst-passage times analytically.

Most analytical results are forMarkov processes thatmainly comes from two approaches. In the first
approach, the so-calledmethod of images, one solves the Fokker–Planck equationwith absorbing boundaries
[5, 6]. Even though conceptually simple, it is limited to symmetric problems such as when the absorbing
boundary is at the bottomof a symmetric potential well. The second approach is renewal theory [5, 7]. It works
for non-symmetric problems but often leads to expressions in Laplace-space that cannot be inverted analytically.
Even though useful, both these approaches are in practice limited to simple problems. In fact, neither of them
can provide the first-passage time density (FPTD) for a Brownian particle in a harmonic potential for a general
boundary and starting point. Thus, in order to addressmore complexfirst-passage problemswe need better
analyticalmethods.

Another class of usefulmethods have been developed to solve persistence problems. In persistence problems
onewishes to know the probability S(t) that a stochastic variable remains belowor above a boundary from the
start up to some time point t. The FPTD ( )r t is simply related to the persistence according to

( ) ( )r = -t S t td d . To calculate the persistence,methods that involve the probability for all trajectories with an
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even number of boundary crossings has been used [8–11]. But apart from a few special cases, these crossing
probabilities cannot be calculated exactly and one needs approximations. One approximation scheme that
gained interest is the independent interval approximation (IIA) [12–14], which assumes that the length of time
intervals between consecutive boundary crossings are independent. However, in its present formulation the IIA
assumes that the processes has awell defined continuous velocity whichmeans that it cannot deal with non-
smooth processes, such as discrete time processes or Brownianmotion. Furthermore, in previous studies using
the IIA, the initial conditionwas drawn from the equilibriumdistribution. To apply IIA to awider class of
systems, these shortcomingmust be remedied.

In this paperwe generalise the IIA to discrete time series and non-smooth processes with arbitrary initial
conditions. Starting with the discrete time case, wefind a simple expression for the probability density offirst-
passage times to a boundary in z-transform space.We then generalise our equations to the continuous time case
and obtain a similar expression but now in Laplace transform space. The expressions are based on return
probability densities to the boundary and the probability that the stochastic variable is above the boundary at
some time. To show the applicability of our results we study the discrete time symmetric randomwalk and non-
smooth continuous timeGaussian stationary processes (GSP), bothMarkov and non-Markov systems.

2.Methods

In this sectionwe outline the IIA framework and derive an expression for the FPTD for continuous and discrete
processes x(t) in one dimension.We denote the FPTDby ( ∣ )r t xB 0 , where t is time, ( )= =x x t 00 is the starting
point and x=B is the location of the absorbing boundary. In discrete timewe let n be the number of time steps
and = Dt n t , whereDt is the time increment.We develop the IIA framework for discrete processes and then
showhow to generalise it to continuous processes.

The IIA equations herein relates three core quantities: the FPTD ( ∣ )r t xB 0 , the probability ( )w> n that x(n) is
aboveB at the nth time step given that <x B0 , and the return probability density that x(n) returns toB after a
B-crossing either from above, ( )y+ n , or frombelow, ( )y- n , after n steps. The quantities ( )w> n and ( )y n are
inputs to our frameworkwhich one needs to calculate on case by case basis. The probability ( )w> n is in general
simple to calculate.Wefind it by integrating the probability density function ( ∣ )P x n x, 0 of x(n):

( ) ( ∣ ) ( )òw =>

¥
n P x n x x, d . 1

B
0

The averaged return probability densities ( )y n on the other hand aremore complicated and needs to be
discussed further (averaging procedure detailed below).

2.1. IIA for discrete time processes
To better understand ( )y n , consider a discrete time process that pass throughB repeatedly (see figure 1, top).
The number of steps that x(n) remains belowB is denoted by ¼T T, ,1 3 , and aboveB by ¼T T, ,2 4 . The time to
thefirst-passage,T1, is special because it depends on x0. The density ofT1 is simply ( ∣ )r T xB 1 0 . After the first
B-crossing atT1, ( )x T1 ends up at some distance D 01 aboveB, rarely precisely onB (i.e. )D = 01 . To calculate
the distribution ofT2, wemust consider the trajectory from + DB 1back acrossB.We denote the distribution of
T2 by ( )y D+ T ,2 1 wherewe assume that the length ofT2 is independent onT1. This is the core assumption of the
IIA and is true forMarkov processes. AtT2, the process crossedB from above and is belowB byD2. Tofind the
number of steps until the next crossing,T3, wemust consider the trajectory from - DB 2 back acrossB. The
distribution ofT3 is ( )y D- T ,3 2 . Repeating this patternwefind ( )y D+ -T ,i i2 2 1 ( = ¼i 1, 2, 3, ) for trajectories
aboveB and ( )y D- +T ,i i2 1 2 belowB, where theΔʼs are randomnumbers drawn from the overshoot
distributions ( )l D (see figure 1, bottom). If themean áDñ is small with respect to -B x0, overshooting the
boundary by áDñwill not significantly change ourfinal results for ( ∣ )r n xB 0 .Wemay therefore average ( )y D n,
with respect to ( )l D :

( ) ( ) ( ) ( )òy y l= D D D

¥

 n n, d . 2
0

In appendix Bwe show simulation results for the overshoot distribution for the discrete Brownianwalkwhich is
well described by ( ) ( )l pD = D2 erfc 2 .

Workingwith the averaged return probability densities ( )y n instead of ( )y D n, implies that we ignore
fluctuations in áDñand approximate the original process x(n) by a clipped process. The dynamics of the clipped
process is: when x(n) crossesB, drawΔ from ( )l D , make a jump to  DB , and continue (see figure 1,
bottom). The clipped process is obviously different from the true x(n) but simpler to handle analytically. But the
difference is small.We show in appendix B for the discrete timeBrownianwalk that ( )w> n for the clipped
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process is practically indistinguishable from the true one. Belowwe formulate the IIA equations based on the
clipped process.

Wemay calculate ( )w> N ( = Dt N tN ) in terms of the number ofB-crossings. Our derivation below is the
discrete time version of the continuous time case in [8, 13]. Note, however, that in [8, 13] the quantity ( ∣ )r t xB 0

does not appear, as thermal equilibrium is assumed initially. Let pk(N) be the probability for a trajectory starting
at <x B0 and ends up aboveB at time tN after k crossings. ( )w> N is then the sumof all such trajectories with odd
number of crossings

( ) ( ) ( )åw =>
=

¥

-N p N . 3
k

k
1

2 1

To calculate ( )p N1 , assume that the first up-cross occurred at <n N1 and that there is no down-cross between
n1 andN. Since n1 can be anywhere from0 toN, this gives

( ) ( ∣ ) ( ) ( )å r= -
=

+p N n x Q N n , 4
n

N

B1
0

1 0 1

1

where the probability of not crossing is

( ) ( ) ( )åy= - ¢
¢=

Q n n1 . 5
n

n

0

Tofind ( )p N3 , assume that the first up-cross occurred at <n N1 , thefirst down-cross occurred at n2 between n1
andN, that the second up-cross happened at n3 between n2 andN, and no down-cross between n3 andN. This
gives

( ) ( ∣ ) ( ) ( ) ( ) ( )å å år y y= - - -
= =

+
=

- +p N n x n n n n Q N n . 6
n

N

B
n n

N

n n

N

3
0

1 0 2 1 3 2 3

1 2 1 3 2

Continuing this for ( )p N5 , ( ) ¼p N ,7 leads to

( ) ( ∣ ) ( ) ( )

( ) ( ) ( )

å å å

å

r y y

y

= - -

- -

-
= =

+
=

-

=
- - - + -

- -

p N n x n n n n

n n Q N n . 7

k
n

N

B
n n

N

n n

N

n n

N

k k k

2 1
0

1 0 2 1 3 2

2 1 2 2 2 1

k k

1 2 1 3 2

2 1 2 2

Figure 1.Discrete time stochastic process x(n) (e.g. the position of a particle) as a function of the number of time steps n ( = Dt n t ,
where Dt is time increment).We denote the time spent above the boundaryB by ¼T T, ,2 4 and below the boundary by ¼T T, ,1 3 .
(Top)Original process x(n). (Bottom)Approximate x(n)where at each crossing event we draw a newposition from the overshoot
distributions ( )l D . Note that ( )l D+ and ( )l D- may be different where ‘+’ (‘−’)means that the process is above (below) the
boundary.
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Summing over all odd number ofB-crossings we get ( )w> N (see equation (3)). To solve equation (3) for
( ∣ )r n xB 0 we take the z-transform ( ( ) ( )= å =

¥ -f z f n zn
n

0 , >z 1)which turns the convolutions in equation (7)
into products. After summing the resulting geometric series we obtain

( ∣ ) ( ) ( ) ( ) ( ) ( )
( )

( )r w
y y

y
=

-
=

-
-

>
+ -

+
z x

z

z
z g z g z

z z

z

1
, where

1

1
. 8B 0

This equation relates the FPTD to the probability ( )w> z of being above the boundary, and to the return
probability densities ( )y+ z and ( )y- z . This constitutes one of ourmain results in this paper.

2.2. IIA for continuous time processes
In order to obtain the continuous time version of equation (8)we proceeds as follows.WhenB is reached from
below, the trajectorymakes a jump to +B , where ò is a small constant. As   0 we approach the continuous
time case. The overshoot distributions ( )l D for this cases is aDirac delta function, which leads to

( ) ( ) ( ( )) ( )
 òy y d= D D -  D
 -¥

¥

t t Blim , d . 9
0

In appendix Bwe show explicitly how ( )w> t for the clippedOrnstein–Uhlenbeck process (OUP) converge to
the real one as   0. To derive the IIA equations in the continuous time case, we proceed in the sameway as for

the discrete time case using pk(t), but with sums in equation (7) changed to integrals ( )òå 
D

tdn t

1 as we let

D t 0 and  ¥n , whilemaintaining = Dt n t constant. If we take the Laplace transform
( ( ) ( )ò=

¥ -f s f t te dst
0

) of the sumover ( )-p tk2 1 (see equation (3))we obtain a similar geometric series as

before that leads to

( ∣ ) ( ) ( ) ( ) ( ) ( )
( )

( )r w
y y

y
= =

-
-

>
+ -

+
s x s s g s g s

s s

s
, where

1

1
. 10B 0

After thermally averaging over the initial position x0, this result is equal to the one obtained in [8, 13]where
also expressions for the return densities can be found.However, in contrast to the results here, the derivations in
[8, 13] assume smooth processes.

3. Results

In this sectionwe apply ourmain results (equations (8) and (10)) to (A) discrete time symmetric randomwalks
and (B)non-smooth continuous timeGSPs, aMarkovian case and a non-Markovian case.We also show that our
equations lead toKramers escape (appendix C), and that they are consistent with themethod of images
(appendixD) in continuous time. To test the validity of our results we compare them to Langevin dynamics
simulations (see appendix A for simulation details).

3.1.Discrete time symmetric randomwalks
Aprominent example of a discrete time process is theMarkovian symmetric randomwalk that evolves via

( ) ( ) ( ) ( )h= - +x n x n n1 11

for n 1with the fixed initial condition ( )= =x x n 00 . The jump length η is an independent and identically
distributed randomvariable drawn from a symmetric distribution ( )f h ofmean zero. This distribution could
for example beGaussian, Lévy, exponential or uniform.

The FPTD for the symmetric randomwalk is however not known for generalB and x0 except in terms of a
double Laplace transform, the so-called Pollaczeck–Spitzer formula, that no one thus far have been able to invert
analytically [9]. The one exact result that exists is the universal Sparre–Andersen theorem [15]which applies to
all symmetric and continuous jump distributions ( )f h . It says that the persistence to stay above (or below) the
boundarywhen =B x0 is

( ) ( )= -⎜ ⎟⎛
⎝

⎞
⎠Q n

n

n

2
2 . 12n2

Herewe useQ(n) and the IIA formalism to put forward a simple summation formula for the FPTD for generalB
and x0. However, we first need tofind the return probability densities ( )y n .

3.1.1. Analytical predictions
In this problem the process x(n) behaves in the sameway on both sides of the boundary, whichmeans that the
return probability densities on either side ofB are equal, ( ) ( )y y= n n .We approximate ( )y n with the discrete
derivative ofQ(n) (see equation (5)), that is ( ) [ ( ) ( )] ( )y » - - - Q -n Q n Q n n1 1 . Here ( )Q n is the unit
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step function (discreteHeaviside step function) that takes care of the initial condition ( )y = =n 0 0. From
equation (12) it follows that

( ) !
( )!!

( ) ( ) ( )y »
-

Q -n
n

n

n
Q n n

2

2 1 2
1 . 13

n

If we put ( ) ( )y y= n n , equation (8) yields ( ) ( )y= +g z z1 which after inversion leads to

( ∣ ) ( ) ( )[ ( ) ( ) ] ( )år w w y y d= + - - - ->
=

-

>n x n n k k k 1 . 14B
k

n

k0
1

1

,1

If the jump length distribution ( )f h is Gaussian then ( ) [( ) ]w = -> n B x nerfc 2 20 . For long timeswe
expect that ( ∣ ) ( )r yn x nB 0 . Indeed, expanding equation (13) for large nwe get the randomwalk result:

( ∣ )r ~ -n x nB 0
3 2. Equation (14) is a generalisation, albeit approximative, of the Sparre–Andersen theorem to

general boundary and initial conditions.

3.1.2. Simulations and numerical results
Infigure 2we compare equation (14) to simulations when ( )f h is Gaussian. Overall wefind good
correspondence, especially as -B x0 increases. But as it decreases, we start to see deviations for small times, e.g
for - =B x 10 . The reason is that the overshooting start to play a role and the derivative of the persistence is no
longer a good approximation to ( )y n . From simulationswefind that the average overshooting length is 0.63
that is comparable to - =B x 10 .

3.2. Non-smooth continuous timeGSP
3.2.1. Analytical predictions
A zeromeanGSP is completely characterised by its correlator ( ) ( ) ( )= á ¢ ¢ + ñf t x t x t t . If f(t) decays
exponentially for large t it follows that the probability that x(t) does not change sign during a time interval of
length t is asymptotically equal to [8, 9, 14]

( ) ( ) -Q t e , 15rt

where the rate r is the so-called persistence exponent that in general is non-trivial to calculate. Since the process x
(t) is symmetric aroundB=0, we have ( ) ( )y y+ -t t (forMarkov processes they are identical). Denoting them
by ( )y t and using that ( ) ( )y = -t Q t td d (because ( ) ( )ò y= - ¢ ¢Q t t t1 d

t

0
, see equation (5)), we obtain

( ) ( )y -t re . 16rt

To generalise this expression to the asymmetric case ¹B 0, where ( ) ( )y y¹- +t t , we follow [8, 16] and
introduce crossing rates r from above and belowB. For generalB, ( ) ( ) - Q t r texp , and therefore

( ) ( ) ( )y -  t r r texp . 17

Note that for non-Markovian systems, ( )y t will in principle remember allB-crossings and therefore depend on
x0. However, sincewework in the asymptotic limit (see equation (15))we neglect this contribution.

With ( )y t at hand, wemay calculate the FPTD for a general GSP from equation (10). First we use that
( ) ( )y + s s r1 1 in Laplace space. Secondwe put ( )y s in g(s) (see equation (10)) so that

( ) ( ) + ++ -g s r r s1 . After inversionwefind the expression

Figure 2. First-passage time density ( ∣ )r =n x 0B 0 for the discrete time symmetric Brownianwalkwhen the boundary is at:B=1
(left),B=3 (middle),B=5 (right). Connected ‘x’ comes from equation (14)while connected ‘o’ represent simulations (averaged
over 2×107 realisations). Insets display the short-time dynamics.
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( ∣ ) ( ) ( ) ( )òr
w w

= +
¶ - ¢

¶
¢>

+
- ¢ >-t x

t

t
r

t t

t
t

d

d
e d , 18B

t
r t

0
0

that is valid for anyGSPwith correlator f(t) decaying exponentially (Markovian or non-Markovian, smooth or
non-smooth). ForGaussian processes ( )w> t is given by

( ) ( )
( )

( )w
m

s
=

-
>

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟t

B t

t

1

2
erfc

2
, 19

2

where ( )m t and ( )s t2 are themean and variance, respectively.
To determine the crossing rates r , we proceed as follows. First we get +r from the normalisation condition

( ∣ )ò r =
-¥

¥
t x td 1B 0 , or ( ∣ )r  =s x0 1B 0 . Secondwe use that ( ) = + + -g s r r0 1 and

( ) ( )w w=  ¥ > >s s tlims 0 in equation (10), which together with equation (19) leads to

( )
( )= -+ -

⎛
⎝⎜

⎞
⎠⎟r r

B

2

erfc 2
1 , 20

valid for ( )m  ¥ =t 0 and ( )s  ¥ =t 12 .
To close the systemweneed one of the crossing rates r . However, they cannot be calculated fromour IIA

equations directly andmust be acquired from either experiments, simulations or other analyticalmeans. In this
paper, wewill assume thatB and x0 are not too close to each otherwhichmeans thatwemay estimate -r as the
reciprocal of themean-first passage time τ toB from =x 00

( )
t

=-r
1

. 21

This can be understood as follows.WhenB is far away from the potentialminimum x=0, up-crossing events
are rare.When they are rare, the distribution of times between up-crossing events is approximately the same as
the FPTD. Because the equilibration time of the process ismuch shorter than τ, the FPDT is asymptotically equal
toKramers expression ( ∣ ) r t t- -t 0 eB

t1 [17]with equilibrated x0
3. This implies that ( ) ( ∣ )y rt t 0B with

t=-r 1 for long times.
In the subsequent sectionwe apply equations (18)–(21) to (i) theMarkovianOUP and (ii) a non-Markovian

case of two coupledOrnstein–Uhlenbeck systems. But beforewemove on to specific examples, we clarify some
of ourmethod’s limitations.

Note that equation (10) is exact within the IIA but in general we do not know ( )y t . If we assume that ( )y t
decays exponentially we arrive at equation (18). This assumption is only asymptotically true for a general GSP.
Thismeans that equation (18) is less accurate whenB and x0 are too close. If they are, several crossing events
occur at short timeswhere ( )y t is not a single exponential. To better understandwhat ismeant by ‘short times’
we see infigure 3 thatB=3 and x 00 gives good agreementwith Langevin dynamics simulations for ( ∣ )r t xB 0 ,
while there is a discrepancy for short timeswhenB=3 and x 10 . To improve the results for short timeswe
could in principle take into account sub-leading terms

( ) [ ]( ) ( ) y = + + + 
-


- -


- -    t r a ae 1 e er t r r t r r t

,1 ,2
,1 ,2 . However, this would introduce new parameters

aswell as conditions forwhen to truncate the sum.Using the asymptotic behaviour of ( )y t makes our
approach free of cut-off parameters.

Figure 3. First-passage time density ( ∣ )r t xB 0 out of a harmonic well ( ) =V x x 22 when the boundary is atB=3 and = -x 10 (left),
=x 00 (middle), = +x 10 (right). The solid line is equation (18), ‘o’ are results fromLangevin dynamics simulations (averaged over

106 realisations), and ‘x’ is the approximation in [23] (see equation (E.1)). The insets show the behaviour at short times.

3
The equilibrium time is of order onewhereas τ is about ten times larger alreadywhen »B 2, where ( )t ~ Bexp 22 .
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3.2.2.Markov case: theOUP
TheOUP is the onlyMarkovianGSP [7] (i.e up to a trivial scaling in time and position (see equation (A.2))). The
FPTD for theOUP is difficult to calculate explicitly [18]. The one exception is the symmetric case when the
absorbing boundary is at the bottomof the harmonic well which can be solvedwith themethod of images [19].
However, this does notwork for the general problem. Instead, several efforts focused on the renewal equation in
Laplace space. But because the renewal equation cannot generally be inverted analytically [20, 21]numerical
inversion [22] and series expansion around the poles [23] have been used. The last example [23] currently holds
the best analytical approximation. But even though in principle exact, none of their expressions are on closed
form andmust be evaluated numerically. Toworkwith their expressions onemust specify at least one cut-off
parameter (sometimes two)which in practisemust be done by trail and error.We compare our results to [23]
using their so-called integral representation (see appendix E for details).

To use equation (18), we need themean, variance, andmean-first passage time ( -r1 ) toB. For theOUP they
are given by

( ) ( ) ( )m s= = -- -t x te , 1 e , 22t t
0

2 2

( )ò ò=
- = -¥

-

r
z y

1
d e d e . 23

x

B
z

z
y

0

2 2

0

2 2

Equation (23) follows from the backward Fokker–Planck equation [24]. Belowwe use these relations in
equations (18)–(20) to comparewith Langevin dynamics simulations.

3.2.3. Non-Markov case: two coupledOrnstein–Uhlenbeck systems
To see howour IIA equations perform for a non-Markovian process we study the simple coupled system

( ) ( ) ( ) ( ) ( )a a a h= - + +
x t

t
x t y t t

d

d
, 24x1 2 3

( ) ( ) ( ) ( ) ( )b b b h= - + +
y t

t
y t x t t

d

d
, 25y1 2 3

where ( )h tx and ( )h ty are delta correlated, ( ) ( ) ( )h h d dá ¢ ñ = - ¢t t t tx y x y, , Gaussianwhite noise.We are
particularly interested in the variable x(t) that wewant to represent a non-smoothGSP. Thismeans that we have
to choose the constant parameters ai and bi ( =i 1, 2, 3)with care.

A non-smoothGSP is characterised by its small time behaviour of the correlator f(t). Indeed, if
( )  = + +f t at0 1 with the constant ¹a 0 then the process is non-smooth [14].Moreover, since the

OUP is the onlyMarkovianGSP all othersmust be non-Markovian. This follows fromDoob’s theoremwhich
says that aGSP isMarkovian only if its correlator f(t) is a single exponential [9].With the following choices

( )a a a b b b= = - = = - = =6, 2, 5 , 1, 5, 15 2 261 2 3 1 2 3

the correlator associatedwith x(t) is given by ( ) ( )= +- -f t e et t1

2
4 . This is not a single exponential and since

( )  = - +f t t0 1 5 2 we conclude that x(t) is a non-smooth and a non-MarkovianGSP.We alsofind
themean and variance to be

( ) [ ( )] ( )m = + - +-t x y x y
1

3
e 5 2 2e , 27t t4

0 0
3

0 0

( ) ( ( ) ) ( )s = - --t t1
1

9
e 35 cosh 3 26 . 28t2 5

As a consistency checkwe see that ( )m  ¥ =t 0 and ( )s  ¥ =t 12 , which is what a zeromeanGSP
requires. Although, we point out that there are other sets of parameters that lead to the same correlator as above.
For example, a a a b b b= = - = = - = =6, 1, 5 , 1, 10, 151 2 3 1 2 3 . But this choice leads to different

( )m t and ( )s t2 .
Finally, to calculate ( ∣ )r t xB 0 fromour IIA frameworkwe need the crossing rates r±. However, it is non-trivial

to calculate themean-first passage time for non-Markovian systems analytically (see e.g. [25]). But because the
main purpose of this example is to investigate howwell the IIA equationswork for non-Markovian systemswe
will for simplicity extract -r from simulations as the reciprocal of themeanfirst-passage time.With this the other
crossing rate +r follows from equation (20).

3.2.4. Simulations and numerical results
To validate ourmethodwe compare ( ∣ )r t xB 0 to Langevin dynamics simulations. Infigure 3we show ( ∣ )r t xB 0 for
for theMarkovianOUP for different x0 keepingB=3 fixed and infigure 5 the non-Markovian systemof two
coupledOUPs for the same values of x0 andB. The simulation results are represented by circles and the IIA
equation (18) by solid lines. Themain panels show the overall behaviourwhereas the insets show the short time
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dynamics. Overall, we get good agreementwith simulations provided that the target is not too close to the initial
position.

For theOUP (figure 3) our analytical FPTDdecays exponentially in the long time limit. This agrees with
Kramers escape rate and our IIA equations capture this regimewell for all values of -B x0. For short times there
is a discrepancy between simulations and our IIA equationswhen -B x0 gets smaller. This is because a
considerable amount offirst-passage events occur for short times before ( )y t has attained its exponential form,
as discussed above. Also, the reasonwhy our IIA equations systematically underestimates the simulations for
short times is the following. Assume for simplicity that =x 00 and thatB is infinitesimally above x0. In this case,
thefirst-passage dynamics is practically indistinguishable fromBrownianmotion for short times. ForMarkov
processes we can show that ( )y t is aDirac delta function (appendixD)whichmeans that there is an infinite
number of boundary crossings once the boundary is crossed. This is very different from ( ) y

- t e r t that says
that the average time between two boundary crossings is r1 .

Infigure 3we also included one of the best analytical approximations for the FPTD [23] (see appendix E).
Their formula approximates the short time dynamics better than ourmethodwhile for long times both
approachesmatchwell with each other.

It is straightforward to generalise ourmethod to two boundaries, >B 0 and ¢ <B 0. Clearly, if ∣ ∣¹ ¢B B we
need four return probability densities which ourmethod is unable to handle. But for the symmetric case,

∣ ∣= ¢B B , ( )y t are enough to describe the crossing in and out of the region  -B x B. To calculate -r weuse
a generalisation of equation (21) to two boundaries (see e.g. [24]), and to get +r we use equation (20), wherewe
replace ( ) ( )w w¥  ¥> >2 (the probability that ∣ ( )∣ >x t B). Figure 4 shows that our IIA equationsmatch
simulations for two boundaries with similar accuracy as for one boundary.

Infigure 5we compare our analytical non-Markovian FPTD to Langevin dynamics simulationswherewe
keep =y 00 in all cases. This explains whywe see better correspondencewith simulationswhen =x 10 than for

= -x 10 (see equation (27)). For simplicity we extracted -r from simulations. Overall, the IIA follow the
simulated data in a similar way as for the simpleOUP. That is, as the value ofB increases we get better
correspondence to simulations, see figure 6. The reason ourmethodworks sowell for non-Markovian dynamics
can be traced back to the value ofB and the initial condition. For large values ofB, whichwemainly consider, the
process spends on average long times below the boundary such that up-crossing events becomes Poisson
distributed [8]. This deletes thememory of the considered non-Markovianmodel and therefore it becomeswell
described by our IIA formula.

Figure 4. First-passage time density ( ∣ )r t xB 0 out of a harmonic well ( ) =V x x 22 with two boundaries and =x 00 : (left) = B 2.5,
(middle) = B 3, (right) = B 3.5. The solid line is equation (18), and ‘o’ are results fromLangevin dynamics simulations (averaged
over 106 realisations). The insets show the behaviour at short times.

Figure 5.The first-passage time density ( ∣ )r t xB 0 for the non-Markovian system equation (24). Similar tofigure 3, we showB=3 and
= -x 10 (left), =x 00 (middle), = +x 10 (right), keeping =y 00 in all cases. The solid line is equation (18), ‘o’ are results from

Langevin dynamics simulations (averaged over 106 realisations). The insets show the behaviour at short times.
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Infigures 3–5we keptBfixed and changed initial conditions.We setB=3where our approximation hold
well. However, asB gets closer to zero, we expect to see deviations. To investigate this we keep initial conditions
fixed and changeB, see figure 6. In both theMarkovian and the non-Markovian casewe see that theory and
simulations do not correspondwell asB gets smaller. This is expected because (i) ( )y t are not decaying
exponentially and (ii) -r is nownotwell estimated by themean-first passage time. Also, the non-Markovian case
is clearlymore sensitive to small values ofB than theOUP.

4. Summary and outlook

There are plenty of examples where onewants to know the probability density of first-passage times to a
boundary. To find this density, one often use themethod of images or renewal theory. These approaches are
however in practise limited to simple cases. To find bettermethods, we improved the so-called IIA, developed
for persistence problems, that is limited to smooth stochastic processes where trajectories have well defined
velocities and thermally averaged initial conditions. This excludes for example Brownianmotion.We
generalised the IIA to discrete time and continuous time processes with non-smooth trajectories that start
from fixed initial conditions. In our derivationwe replace the original trajectory by a clipped process. After
this replacement, we can deal with the IIA equations exactly in discrete time since we can analytically handle
the overshooting lengthΔ from eachB-crossing. Our procedure is further extended to continuous time,
where a regularisation scheme is required. From our IIA formalismwe derive a simple expression for the
FPTD to a general boundary and initial condition in one dimension [see equations (8) and (10)]. This
expression relies on that we know the functional form of the return probability densities. But once it is known
our approach is parameter free. To show the validity of our expressionwe applied it to the discrete time
Brownianwalk and in continuous time to theOUP, the onlyMarkovianGSP as well as a non-MarkovianGSP.
In discrete timewe use the Sparre–Andersen theoremwhich yields the return probability densities for all
symmetric randomwalks. For the GSPs we use that the return probability densities decays exponentially for
long times [8, 9, 14], ( )~ - r texp , where we estimate -r (up-crossing rate) as the reciprocal of themean first-
passage timewhich is known for theOUP [24]. Then, from the normalisation condition of the FPTDwe
determine the last parameter, +r (down-crossing rate). All casesmatchwell with Langevin dynamics
simulations.We also show that in continuous time our IIA equations (i) reproduces Kramers expression for
the escape of a Brownian particle out of a harmonic potential, and (ii) that it becomes equivalent to the
method of images forMarkovian process with symmetry around x=B, e.g. when the boundary is at the
bottomof a potential well.

Our IIA equations are new andwe anticipate that theywill have awide applicability to previously intractable
first-passage and escape problems.We further hope that this studywill spur further activities into the
development of general purpose analytical frameworks for dealingwith first-passage time problems.

Figure 6.The first-passage time density ( ∣ )r t xB 0 for theOUP (left) and the non-Markovian process equation (24) (keeping =y 00 in
all cases) (right) for fixed initial conditions but varying the boundary ( =B 1, 2, 3). The solid line is equation (18), and ‘o’ are results
fromLangevin dynamics simulations (averaged over 106 realisations).
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AppendixA. Simulations

Following [26]we simulate theOUP exactly with

( ) ( ) ( ) ( )+ D = + --D - Dx t t x t e 1 e 0, 1 , A.1t t2

where ( ) 0, 1 is a normally distributed number withmean zero and variance one. Equation (A.1) is on
dimensionless formwherewemade the replacements

( )g
 x

k T

k
x t

k
tand , A.2B

where k TB is thermal energy, k the harmonic spring constant and γ is hydrodynamic friction. The diffusion
constant is g=D k TB . In the simulationswe varied x0 andB andmade statistics of when x(t) reachedB for the
first time.We averaged over 106–107 ensembles.

It is well known that the Langevin dynamics scheme systematically overestimates the first-passage time
because it can potentiallymiss crossings that happenedwithinDt . To reduce this errorwe used adaptive time
steps that get smaller as x(t) approachesB.We changeDt as follows:

(1) SetD = Dt t0.

(2)Calculate the probability that ( )+ Dx t t is aboveB given that x(t) is belowB. That is ( )w D> t .

(3) If ( ) w D >> t thenD  Dt t 2. Otherwise do not changeDt .

(4) If at a later time ( ) w D <> t , thenD  Dt t2 withDt0 as upper limit.

In the simulationswe usedD = -t 100
3 and  = -10 4.

Appendix B. Supplementary figures

Infigure 1we illustrated howwe approximate the real process x(n) by the so-called clipped process. Here in
figure 7we show explicitly how the clipped process differs from the real one for the continuous timeOUP and
the discrete time Brownianwalk. To the left infigure 7we show the continuous time case. Clearly we approach
the analytical curve for ( )w> t (see equation (19)) as we let   0 (see equation (9)) in our simulations. To the

Figure 7. (Left)Convergence of the clipped process to the continuousOrnstein–Uhlenbeck process as   0. For smaller and smaller
ò the simulated ( )w> t (Langevin dynamics, see appendix A) gets increasingly closer to the analytical result. Herewe putB=1 and

=x 00 . (Right) Simulated ( )w> n as a clipped process compared to the analytical result for the discrete BrownianwalkwithB=3 and
=x 00 . (Inset)Distribution of overshooting length ( )l D when the boundaryB=0 is crossed for the discrete Brownianwalk. All

simulations are averaged over 106 realisations.
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right infigure 7, we show the discrete time case.We found the overshoot distribution
( ) ( )l pD = D2 erfc 2 from simulations (see inset). Using this ( )l D , we simulate ( )w> n as a clipped

process.We see good agreementwith analytics in all aspects.

AppendixC. Kramers escape

For long times ourmethod is consistent withKramers escape theory. To see this we use thefinal value theorem
[27] andfind that equation (10) in the limit s 0 (long times) becomes after Laplace inversion

( ) ( ) ( )r w ¥> +
- -t r e . C.1B

r t

Using equation (20) to eliminate +r gives

( ) ( ( )) ( )r w- ¥- >
- -t r 1 e . C.2B

r t

WhenB is large enoughwe get that ( )w- ¥ »>1 1, Kramers expression [17, 28]. As an example, for the
harmonic potential we find that ( )w ¥ »> 0.001 350 whenB=3 and =x 00 .

AppendixD.Method of images

Themethod of images can successfully give the FPTD for symmetric problems. Notably, it only works for
Markov processes. Herewe prove that our IIA formalism is consistent with thismethod. To show this, wefirst
use the renewal approach tofind the return probabilities.

Consider aMarkovian particle that diffuses between two boundaries separated by a small distance ò (see
figure 8).We denote an ‘up-cross’ by crossingB frombelow and a ‘down-cross’ by crossingB from above.When
x=B is crossed the particle jumps immediately to B , as explained in section 2.When symmetry around
x=B holds the distribution of times between an up-cross and a down-cross are both equal to the first-passage
to a point that is a distance  away

( ∣ ) ( ) ( ) ( )r y y = =t B t t . D.1B

Using this in the renewal equationwe find

( ∣ ) ( ∣ ) ( ∣ ) ( ) ò r =  - ¢ ¢P B t B t B P B t t B t, , d D.2
t

B
0

which after Laplace transform yields

( ∣ ) ( ∣ )
( ∣ )

( )


r  =


s B
P B s B

P B s B

,

,
. D.3B

If we now let   0, up- and down-crossings occur to the same boundary and therefore ( )y =s 1, or

( ) ( ) ( )y d=t t . D.4

With ( )y t at handwemay derive themethod of images formula. First we set ( ) ( )y y= s s in equation (10) and
then take   0, which after inversion leads to

( ∣ ) ( ) ( )r
w

= >t x
t

t
2

d

d
. D.5B 0

Second, since ( ∣ ) ( )r = -t x S t td dB 0 , S(t) is the probability of not crossing a given boundary up to time t, and
( ) =S 0 1and ( )w => 0 0 since ¹B x0, we rewrite equation (D.5) as

Figure 8. Separated boundary for up-crossing and down-crossing for aMarkovian process x(t) that is symmetric around the boundary
at x=B.
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( ) ( )

( ∣ ) ( ∣ )

[ ( ∣ ) ( ∣ )] ( )

ò ò

ò

w= -

= -

= - -

>

-¥

¥

-¥

S t t

P x t x x P x t x x

P x t x P x t B x x

1 2

, d , d

, , 2 d , D.6

B

B
B

0 0

0 0

where in the last stepwe use the symmetry around x=Bwhich gives themethod of images formula.

Appendix E. Alili’s formula

To compare our result for theOUP to one of the best known approximations we have implemented one of the
formulas from [23]. In our notation it reads

( ∣ )
( )
( )

( )
( )
( )

( )

( )

( )

( )

( )
å

r =
-

-

+ -
-

-
p

p

-

-

=

- -

- -

⎛
⎝⎜

⎞
⎠⎟

t x
t

H x

H B

t

H x

H B

e

2

2

2

e
1 Re

2

2
, E.1

B

A
A t

A t

A

k

N
k A t k t

A t k t

0

2
2 0

2

2

1

2 i 0

2 i

where ( )nH z is theHermite function of order ν. HereA andN are parameters that are determined based on trial
and error.We found that for { }  = =t A N10 18.1, 1000 while for { }>  = =t A N10 7, 1000 . The
comparison to Langevin dynamics simulations and our IIA formula are seen in figure 3.
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