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Abstract
In this paperwe present a search algorithm thatfinds useful optical quantum states which can be
createdwith current technology.We apply the algorithm to the field of quantummetrologywith the
goal offinding states that canmeasure a phase shift to a high precision. Our algorithm efficiently
produces a number of novel solutions: wefind experimentally ready schemes to produce states that
show significant improvements over the state-of-the-art, and canmeasurewith a precision that beats
the shot noise limit by over a factor of 4. Furthermore, these states demonstrate a robustness to
moderate/high photon losses, andwe present a conceptually simplemeasurement scheme that
saturates the Cramér–Rao bound.

Introduction

Thefield of optical quantum information has the potential to transform technology with a broad range of
applications, including quantum computing [1, 2], quantum cryptography [3] and quantummetrology [4, 5]. In
order for these applications to benefit fromquantum-enhanced performance, non-classical states of lightmust
be prepared, and it is an ongoing challenge tofindmethods to engineer quantum states with the desired
properties [6–11]. In this paperwe explore an alternative approach and design an algorithm tofind
experimentally accessiblemethods of engineering states with the properties we require. Herewe focus on using
the algorithm for quantummetrology, afieldwhich has been instrumental in enhancing the precision of
gravitational wave detectors [12–14] and can be used tomeasure biological systemswithminimal disturbance
[15–18]. Aswith a recent (independent) algorithm that performed an automated search for newquantum
experiments [19], our algorithmproduces a range of novel, and sometimes counter-intuitive, solutions.

In this paper our aim is tofind experimentally realisable states, with small photon numbers, that can
measure a phase shift to a high precision. This is important formeasurements on fragile systems such as spin
ensembles [20], biological systems [15–18] and atoms [21, 22]. There is a large literature on the theory and
experiment of creating non-classical optical states for quantummetrology, and awide range of states have been
considered includingNOON states [23–25], squeezed states [26–29], andmore recently squeezed cat states and
squeezed entangled states [30–34]. The results of our algorithm surpass all of these: we find a number of states
which attain a precision that beats the classical shot noise limit (SNL) bymore than a factor of 4, and can improve
over the precision attainable by all other practical states (known to the author) by at least a factor of 6 (see
figure 1). The states we introduce can bemadewith today’s technology, are robust tomoderate/high photon
losses, and can be used tomeasure a phase shift with a conceptually simplemeasurement scheme that saturates
the Cramér–Rao bound (CRB).

Aquantum state engineering algorithm

The state-engineering schemewe use is shown infigure 2. Firstly, two input states, y ñ∣ a0 and y ñ∣ b0 , are input into

the twomodes. The twomodes then pass through a sequence of operators Ôi, where =i m1 ,.., , and thefinal
step is to perform a heraldingmeasurement on onemode, producing the final state y ñ∣ f .With appropriate
choices of input states, operators, andmeasurements this scheme is able to replicate awide range of the quantum
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state engineering protocols in the literature, such as [8, 10, 31–33]. Themain difference between the present
paper and the current literature is that we do not choose the input states, operators, andmeasurements, but
instead allow a simulation to perform a random search for states with the desired properties.We use this
technique because systematically sorting through all possible combinations of input states, operators, and
measurements is not possible with current computing power—it can be shown that the number of
combinations soon becomes intractable. Contrary to this, our algorithmquickly and efficiently provides new
and sometimes counter-intuitivemethods to create useful quantum states.

As our objective is tofind practical states for quantummetrology, we construct our state engineering
protocols from elements of an experimentally ready toolbox of quantumoptics states, operators, and
measurements, which is summarised in table 1.Here we only introduce the important details of the toolbox;
more details can be found in appendix A. Firstly, the input states we include are the squeezed vacuum (SV) ñ∣z ,
the coherent state añ∣ , and Fock states ñ∣n ; the parameters z,α and n are constrained bywhat is possible
experimentally [7, 29, 35–38].

We next introduce the operators, of which themost important is the beam splitter ÛT , whereT is the
probability of transmission (in%), which serves tomix and entangle the twomodes.Without this the final state
would just be a set of single-mode linear operators acting on an input state. The states this would create, such as
displaced Fock states and squeezed coherent states, have been studied before [4, 39, 40] and are therefore not of
interest here. Other operators we use are the displacement operator bˆ ( )D , the phase shift qˆe ni p, and the identity

operator ̂; the latter is included becausewe are promoting the easiest-to-implement schemeswhichwould
contain asmany identities as possible. Thefinal operator is constructed by performing ameasurement and then

Figure 1.Herewe compare different states using the quantumFisher information (QFI). TheQFI is plotted against the average
photon number (n̄) for two of the quantum states found by our algorithm: y ñ∣ T1 and y ñ∣ T2 (labelledT1 andT2). A state with a large
QFI canmeasure to a high precision, and hence y ñ∣ T1 and y ñ∣ T2 give significant improvements over the squeezed vacuum (SV) and the
classical shot noise limit (SNL).

Figure 2.The state engineering schemewe consider beginswith two input states, y ñ∣ a0 and y ñ∣ b0 , which are input into the twomodes.
The states then subsequently pass through a number of operators Ôi . To produce thefinal quantum state y ñ∣ f a heralding
measurement is performed on onemode.
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inputting a new state, y yñá∣ ∣new meas . This operator works byfirstly implementing any one of the heralding
measurements described below, and then inputting one of the allowed input states y ñ∣ 0 into thismode.

The final step of the state engineering scheme is to perform a heraldingmeasurement on onemode of the
final state. If, for example, wewish to herald with the one photon state, we can perform a photon-number
resolving detection (PNRD), and only keep runs whichmeasure one photon. Ameasurement outcome of one
photon therefore heralds the desired final state; later we discuss the consequences of this probabilistic
heralding for the application of quantummetrology. The heraldingmeasurement corresponds to acting on

the two-mode, pre-measurement state with á Ä∣ ̂1 , followed by normalisation.We are then left with the
singlemode final state y ñ∣ f . Recent progress in PNRDhasmade detections of larger numbers of photons
possible, and transition edge sensors can now resolve at least four photons to a reasonable efficiency [8, 41],
whereas simpler detectors can reliablymeasure one or two photons [42–44]. The heralding number
measurements we include in the toolbox are therefore á ∣1 , á ∣2 , á ∣3 and á ∣4 . Alternatively we can perform a
quadraturemeasurement, á l∣x , which is achievedwithHomodyne detection, preceded by a phase shift which
allows the quadrature phase to be controlled.

We have described the elements of the quantumoptics toolbox; we now introduce our algorithm—which
uses themain principles of an evolutionary algorithm—for combining the various elements to engineer
quantum states with the desired properties. Evolutionary algorithms [45–48] begin by creating an initial
population of ‘chromosomes’: each chromosome is a stringwhich encodes a potential solution to the problem at
hand. Afitness function, which returns afitness value, is then used to identify the solutionswhich best solve the
problem. The solutionswith a largefitness value are retained and labeled the ‘parents’, whereas the solutions
with insufficient fitness values are discarded. The parents then breed the next generation of ‘offspring’which is
achieved by ‘mutating’ (making random changes to) the chromosomes of the parents. Often in evolutionary
algorithms the chromosomes of two parents are combined, butwe choose not to include this step in our
algorithm.Our algorithm is therefore similar to a random search, butwe retain the language of evolutionary
algorithms for clarity of explanation.

After generating the offspring, the fitness function is applied to the offspring, and again the best solutions are
selected from their fitness values. This identifies the next set of parents, and the process repeats until a collection
of the ‘fittest’ individuals remain. Evolutionary algorithms [45–47] have been successfully utilised to design
antennas [49, 50], shape laser pulses [51], andfind newquantum algorithms [48, 52].

Aflow chart of our algorithm, whichwe nameTachikoma, is given infigure 3.Our initial population is
created by randomly selecting inputs, operators andmeasurements from the quantumoptics toolbox in table 1,

and suitable elements of the initial population are selected according to their fitness value. Thefitness function
should therefore be chosen based on the properties the user desires for their quantum states. In this paper our
fitness function is the quantumFisher information (QFI), as a statewith a largeQFI canmeasure a phase shift to
a high precision.

As shown infigure 3, once a suitable parent is selected from the initial populationwemutate it to create an
offspring. If thefitness value of the offspring is greater than that of the parent, the offspring becomes the new
parent for the next generation, and if not we revert back to the parent and repeat this process. If the offspring
repeatedly fail to surpass their parent (an evolutionary dead-end) thenwe have likely reached a localmaxima and
sowe store the details of the parent for further analysis and go back to the start of the algorithm. In thismanner
Tachikomamimics natural selection by progressively ‘evolving’ quantum states which become increasingly
suited for their purpose.

Table 1.This table summarises the quantumoptics toolboxwe use.
Our algorithm selects elements from this toolbox and inserts them
into the scheme in figure 2 in order to engineer non-classical states
with the desired properties. Seemain text and appendix A for details
of the input states, operators and heraldingmeasurements.

Inputs, y ñ∣ 0 Operators Heraldingmeasurements

ñ∣z ÛT á l∣x

añ∣ bˆ ( )D á ∣1

ñ∣0 qˆe ni p á ∣2

ñ∣1 ̂ á ∣3

ñ∣2 y yñá∣ ∣new meas á ∣4
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Application to optical quantummetrology

Wenow showhowour algorithmTachikoma can be used tofind states for optical quantummetrology.
Specifically, wewish tofind experimentally accessible states with low photon numbers. This is of relevance for
measurements on fragile systems, with examples including spin ensembles [20], biological systems [15–18] and
atoms [21, 22]. In these examples, the number of photonswe are able to interact with our system should be
limited to prevent damage to the sample [20, 53]. The relevant resource here is therefore the number of photons
in the probe state: to compare different states we look at their phase-measuring capabilities, given the same
average photon number. Othermethods of resource counting can be relevant, such as the total number of
photons used to prepare a quantum state, butwe choose not to include thesemethods here.

Figure 3. Flow chart ofTachikoma. Our algorithmTachikoma picks elements from the quantumoptics toolbox in table 1 to engineer
quantum states, as described in themain text. To assess the suitability of different states we use a fitness function: in this paper we use
the quantumFisher information as thefitness function in order to find states suitable for quantummetrology, but in principle any
fitness function can be usedwhichwould allow us to find states for different applications.

Figure 4.This schematic shows how a phase shift can bemeasured in interferometry. A quantum state yñ∣ is prepared and undergoes
an unknown relative phase shift f f fº -a b, which is appliedwith the operator f f= +ˆ ( ( ˆ ˆ ))U n nexp i a a b b . For the states we
consider the optimalmeasurement scheme ismixing themodes on a balanced (50:50) beam splitter (BS), followed by photon number
counting.When photon losses are included these can bemodeled by ‘fictitious’ variable transmissivity beam splitters after the phase
shift.
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Weconsider the standard optical phase estimation problemofmeasuring a phase differencef between two
opticalmodes containing unknown linear phase shifts, as shown infigure 4. The fundamental limit to the
precisionwithwhich a state ρ canmeasure the phasef is given by the quantumCRB [54, 55]:

df
m r( )

( )
F

1
, 1

Q

whereμ is the number of independent repeats of the experiment and r( )FQ is theQFI of ρ. For pure states yñ∣
theQFI is given by [56, 57]

y = = á ñ - á ñy( ) ( ˆ ) ( ˆ ˆ ) ( )F G G G4Var 4 , 2Q
2 2

where = -ˆ ( ˆ ˆ )G n na b
1

2
is the generator of the phase shift f f fº -a b, n̂a (n̂b) is the photon number operator

inmode a (b), and the expectation values are takenwith respect to the state yñ∣ . TheQFI is used as our fitness
function for the algorithm;we aim tomaximise theQFI, which is equivalent tominimising the phase
uncertainty.

We now introduce the SNL—the best that can be done classically—and the current state-of-the-art in
optical quantummetrology. The SNL can be obtained by inputting a coherent state into aMach–Zehnder
interferometer. In the schematic infigure 4 this amounts to using the input state y añ = ñ=∣ ˆ ∣U , 0T 50 , where

=ÛT 50 is a 50:50 beam splitter and añ∣ is a coherent state, which are both defined in appendix A. This state can
measure at the SNL given by df = n̄1 , where = á + ñ¯ ˆ ˆn n na b is the total number of photons in the
interferometer. Awide range of quantum states have been shown to surpass this, but to the best knowledge of the
author the highest precision attainable by a practical state (a state that can be or has beenmade experimentally) is
given by a pair ofmode-separable SV yñ = ñ∣ ∣z z, , where ñ∣z is the SV state which again is defined in appendix A
[4, 39]. This state can, among others, surpass Caves’s squeezed state scheme [26, 27], theNOON state [23–25],
and the recently produced squeezed cat states [30–33] (see appendix B for a discussion of this). TheQFI of the SV
and the SNL are shown infigure 1; it is our goal in this paper tofindpractical states that can out-perform the SV.

The algorithmwe constructed excelled in this task and quickly found a number of states that have a
significantly largerQFI than the SV.Wehighlight two states which stand out because they combine a largeQFI
with relative simplicity and experimental feasibility:

y ñ = á ñ∣ ∣ ˆ ∣ ( ) U z z2 , , 3T T T1 1 1 2

y bñ = á ñ=∣ ∣ ˆ ˆ ( )∣ ( ) U D z z3 , , 4T T T a2 2 65 1 2

where the subscript a represents thefirstmode infigure 2 and  is the normalisation.Weneed a two-mode
state tomake a phasemeasurement using the scheme infigure 4, sowe use y y yñ = ñ Ä ñ∣ ∣ ∣T Ti i . TheQFI of
these states is plotted infigure 1.We see that y ñ∣ T1 improves over the SVby a factor of 3 and, while beingmore
difficult to implement, y ñ∣ T2 improves over the SV by a factor of 6. Specific values of the parameters, such as the
phases andmagnitudes of the squeezed states, are required for the results infigure 1, and these parameter values
were found by numerically optimising for each n̄. For example, for y ñ∣ T1 with »n̄ 1we take z1=0.97,

= pz 0.97e2
i andT=0.95, and for y ñ∣ T2 with »n̄ 1we take =z 0.3e1

5.3i, =z 1.24e2
2.2i and b = 1.4e2.7i.

All of the states found byTachikoma involve heralding, which is inherently probabilistic. The probabilities of
success in producing y ñ∣ T1 and y ñ∣ T2 are approximately 0.1 and 0.09, respectively, with the exact probabilities
depending on n̄. Furthermore, the input state y yñ Ä ñ∣ ∣T Ti i is needed for the scheme infigure 4, which requires
two identical input states y ñ∣ T i , resulting in a probability of success of around 0.01. A quantummetrology
scheme using these states should produce themoffline, andwhen the state is heralded by the appropriate
measurement they can be used by the interferometer tomeasure the phase shift. This could be enhanced by
using a quantummemory [58, 59], which could store thefirst state until the second is successfully produced. The
downside of probabilistic heralding ismore thanmade up for by the large precision gains achieved by the states
found byTachikoma. Indeed, we ran the algorithmwithout heralding andwere unable tofind a state with aQFI
(per average photon number) that surpasses the SV. This is in agreementwith results in the literature: without
the Fock state inputs in table 1 onlyGaussian states can bemade, and the optimal Gaussian state is known to be
the SV [39]. Alternatively, a Fock state can be used to create a non-Gaussian state, but (to the best of our
knowledge) the non-Gaussian states in the literature that are created from the input states and operators in
table 1 cannot outperform the SV (for example see [60]).

While a largeQFI does amount to a high precision it is not always themost revealingway to compare states.
In this paper we are concernedwith reducing the total number of photons that interact with the systembeing
measured.We label the total number of photons (resources)R, which is given by m= ¯R n , where n̄ is the average
number of photons in the probe state andμ is the number of times this states is sent through the sample.We can
then define a newmeasurewhich ismore suited to the above restrictions: G = ¯F nQ . Then theCRB can be
written as:

5
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df
G

µ
G

( )
R

1 1 1
. 5

We see that by fixingRwe can useΓ to compare the performance of different states. Infigure 5we plotΓ against
n̄ for y ñ∣ T1 and y ñ∣ T2 .We see that y ñ∣ T2 can improve over the SNL bymore than 19 times, which corresponds to
more than a four-fold precision gain. Figure 5 illustrates that with y ñ∣ T2 a large enhancement is possible for small
states ( »n̄ 0.4), which require smaller squeezed states to create and therefore aremore practical. Figure 5 also
shows that y ñ∣ T2 is optimal for »n̄ 1.5 (this is not immediately clear by looking at theQFI). The reason that
y ñ∣ T2 peaks around »n̄ 1.5 is that at this point the squeezing amplitude needed tomake this states is r=1.3,
which corresponds to themaximum squeezing allowed by the algorithm (limited bywhat is experimentally
feasible [29], see appendix A). In order to create y ñ∣ T2 for larger photon numbers, while still retaining a large
value ofΓ, larger squeezed states would be required (similar restrictions apply to the size of the other
states y ñ-∣ T1 6 ).

Tachikoma also found the following states:

y b b

y b

y

y a

ñ = á ñ

ñ= á ñ

ñ= á = ñ

ñ= á ñ
l

=

=

=

=

∣ ∣ ˆ ( ) ˆ ( ) ˆ ∣
∣ ∣ ˆ ˆ ( )∣
∣ ∣ ˆ ∣
∣ ∣ ˆ ∣ ( )









D D U z

U D z z

x U z

U z

3 0,

4 ,

0 2,

1 , . 6

T T a b T

T T T a

T T T

T T T

3 3 1 2 25

4 5 55 1 2

5 4 95

6 6 75

All these states improve over the SV by at least a factor of two.Wewill see below that y ñ∣ T3 is themost robust to
photon losses, andwithout loss it has aQFI between y ñ∣ T1 and y ñ∣ T2 . y ñ∣ T4 has aQFI even greater than y ñ∣ T2 but
involves resolving four photons, whereas states y ñ∣ T5 and y ñ∣ T6 are the easiest to implement.

The results of the algorithm are sometimes unexpected. For example, the operator y yñá∣ ∣new meas did not give
a significant enhancement and the simpler schemeswere just as effective. States y ñ-∣ T1 6 therefore only require
linear operators and heraldingmeasurements to bemade. Also, we experimented with betweenm=2 and
m=12 operators Ôi in the engineering scheme, but increasing the number of operators onlymade small
improvements, and in y ñ-∣ T1 6 only one or two operators are needed.Tachikoma is efficient to run: after
calibration it only took a few days of running on a single node of theHPC cluster at theUniversity of Sussex to
produce all the states presented in this paper. Longer runs just producedmore copies of the same states.

Figure 5.Herewe compare different states using G = ¯F nQ , which is theQFI ( FQ) scaled by the average number in the state (n̄).
Equation (5) shows that thismeasure can be used to directly compare the phase-measuring potential of different states.We see that
y ñ∣ T1 and y ñ∣ T2 give significant improvements over the alternatives; in particular y ñ∣ T2 can beat the SNLbymore than 19 times.
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Themeasurement scheme

Wewish to use our states tomeasure a phase shift using the setup infigure 4.We therefore require a pair of
identical states to input into the two paths, y y yñ = ñ Ä ñ∣ ∣ ∣T Ti i , where y ñ∣ T i is one of the states produced by
Tachikoma, or can be an SV for comparison (note that in this paperwe take n̄ to be the total number of photons
in the state y yñ Ä ñ∣ ∣T Ti i ).We have quantified the performance of different states using theQFI andCRB, but it
is important to now address the limitations of using theQFI as afigure ofmerit in quantummetrology [61–63].
In general, the precision as obtained by theQFI is achievable with an asymptotically large number of repeats,μ.
However, from a practical point of view it is clear that only some finite number of repeatsμwill be possible. To
factor this inwe have performed a Bayesian simulation of the proposed experiment. Using themeasurement
scheme infigure 4, which involvesmixing themodes on a balanced beam splitter followed by PNRD (see
appendix A for details of the PNRD), we have determined the phase shift, from aflat prior knowledge, using the
Bayesian approach described in [30]. For all path-symmetric pure states (i.e. the states in this paper) the
measurement scheme infigure 4 is optimal and saturates theQFI [64]. Indeed, our Bayesian simulation confirms
thatwe come close to saturating the absolute bound given by theQFI for m = ( )O 102 . In such regimes it is then
clear that the states produced byTachikoma can significantly outperform the SNL and SV, in terms of absolute
phase precision, when assuming the same average photon number.

The effects of loss

Wenext investigate the effects of loss on the states produced byTachikoma. Loss can bemodeled by adding
‘fictitious’ beam splitters after the phase shift [65, 66], as shown infigure 4, and results in amixed state ρwhich
typically has a reduced non-classical enhancement. TheQFI for a general densitymatrix ρ can be expressed as
[54, 55, 67]

år
l l

l r f f l=
+

á ¶ ¶ ñ( ) ∣ ∣ ( ) ∣ ∣ ( )F
2

, 7
i j i j

i jQ
,

2

where li are the eigenvalues and l ñ∣ i a corresponding set of orthonormal eigenvectors of ρ.
The states y ñ-∣ T1 6 have an intrinsic robustness to loss because they contain small numbers of photons and

they are separable between themodes. As a result they all improve over the SV up to at least 15% loss, which is the
relevant loss rate for a number of experiments: losses as low as 10%have already been achieved in table top
interferometry experiments [68], and near-future gravitational wave detectors are expected to have total losses of

Figure 6.The transmission probability through the interferometer, η, is plotted against the precision, df (scaled byμ), for various
states. The precision is found using equation (1).We see that the state y ñ∣ T3 , found by our algorithm, shows significant improvements
over the SNL and SV, evenwithmoderate to high photon losses.We explain in themain text whywe include two different-sized SV
states. The parameters used here for y ñ∣ T3 are: b = 1.22e1

3i, b = 0.38e2
6.2i and =z 0.62e2.8i.
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9%–17% [69]. Themost robust state is y ñ∣ T3 , which is shown infigure 6.We see that y ñ∣ T3 improves over the SV
for losses up to 30%and can beat the SNLwith up to 50% loss.

Infigure 6we have included two different SV states because there are a number of valid comparisons that can
bemade. Thefirst SV (z=0.42) has the same average number n̄ as y ñ∣ T3 . However, it can be disputedwhether
this is a fair comparison, because in order to create y ñ∣ T3 an SV is requiredwith z=0.62, andwe therefore also
plot this state.We see infigure 6 that y ñ∣ T3 provides a significant precision enhancement over both of these SV
states.

Discussion

Wehave seen that our algorithmTachikoma has been constructed so that it can be easily edited tofind quantum
states for applications other than quantummetrology. The crucial changewould be to the fitness function that
we use to select successful states: here we use theQFI, but othermeasures can be used in order tomake states
suitable for quantum cryptography [3], quantum computing [1, 2, 70], quantum teleportation [71], or boson
sampling [72].We could also extendTachikoma to utilise quantum state engineering techniques that we have
omitted in this paper,mainly due to practicality: we could create a three-mode entangled state before heralding
[6], include feed forwarding [73], or look at cavity systemswhich allow for different operations to be
performed [74].

In conclusion, we have created an algorithm that can be used tofind optical quantum states with specific
properties. In this paperwe have focused on using the algorithm for quantummetrology, andwe have found
states that can surpass the best-knownpractical states by a factor of 6 in the precision, which amounts to over a
four-fold improvement over the classical shot noise limit. The states are experimentally accessible, robust to
photon losses, and can be utilised for precise phase-measurements using a conceptually simplemeasurement
scheme.We therefore expect that an experiment could confirm these results in the near future.
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AppendixA.Quantumoptics toolbox details

Input states—The SV is given by ñ = ñ∣ ˆ ( )∣z S z 0 , where the squeezing operator is = -ˆ ( ) ( ˆ ˆ )†*⎡⎣ ⎤⎦S z z a zaexp 1

2

2 2

and = qz rei s, where r is the (positive and real) amplitude, q pÎ [ ]0, 2s is the squeezing angle and â ( ˆ†a ) is the
annihilation (creation) operator. Squeezed states can bemade up to »r 1.4, but this is extremely challenging
experimentally sowe set the limit to r=1.3 [29]. The coherent state is given by a añ = ñ∣ ˆ ( )∣D 0 , where the

displacement operator is a a a= -ˆ ( ) ( ˆ ˆ)† *D a aexp , a a= q∣ ∣ei c, where a∣ ∣ is the amplitude, and q pÎ [ ]0, 2c is
the coherent state phase. The amplitude of the coherent state can be large in experiments, so instead it is limited
by the numericalmethodswe use: we set the limit to a = 4. Thefinal input state is the Fock state of which the
simplest is the vacuum ñ∣0 . Single photons, ñ∣1 , can be emitted froma quantumdot [35, 36] or heralded [37].We
also consider the two photon state, ñ∣2 , which has beenmade in [7, 38]. Higher number Fock states can bemade,
e.g. by heralding, butwe consider these states to be too difficult to produce reliably.

Operators—The beam splitter is described by the unitary operator = q- +f f-ˆ ( ˆ ˆ ˆ ˆ )† †
U eT

a b abi e eb b bi i
, where â and b̂

are annihilation operators for the twomodes, andwe choose the arbitrary phase to be f p= - 2b . Here
q=T 100 cos b

2 is the transmissivity of the beam splitter (in%) and therefore for a 50:50 beam splitter q p= 4b

giving =ÛT 50. Next, the displacement operator, bˆ ( )D (defined above), is implemented bymixing the statewith a
large local oscillator at a highly transmissive beam splitter [75] (β has the same restrictions asα). The phase
operator is given by qˆe ni p, where =ˆ ˆ ˆ†n a a and q pÎ [ ]0, 2p . The identity operator is as expected. Thefinal
operator is constructed by performing ameasurement and then inputting a new state and is given by
y yñá∣ ∣new meas , where y ñ∣ meas is the heraldingmeasurement state, and y ñ∣ new is the new state.

Measurements—After we have applied a number of operators we perform a heraldingmeasurement on one
mode of thefinal state. For example, if wewish to heraldwith the one photon state we can perform a number
resolving detection (details below), and only keep runswhichmeasure one photon. Themeasurement is given by
a projection [76]: to follow the single photon examplewe project with ñá Ä∣ ∣ ̂1 1 .We are then left with a
separable state yñ Ä ñ∣ ∣1 f , but we can ignore themeasurementmode, and after normalisationwe are left with
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thefinal onemode state: y ñ∣ f . This whole process can bemore easilymodeled by acting on the two-mode, pre-

measurement state with á Ä∣ ̂1 . In themain text we drop the identity and just write á ∣1 , and thismeasurement is
always performed on thefirstmode offigure 2.

The quadraturemeasurement can be performed byHomodyne detection, preceded by a phase shift which
allows the quadrature phase to be controlled. The eigenstates of the quadrature operator are given in [77] by
ñ = å á ñ ñl l=

¥∣ ∣ ∣x n x nn 0 , whereλ is the quadrature angle, lx is the quadrature eigenvalue, and thewave function is

p
á ñ =l l

l- -l∣
( !)

( )( ) ( )x n
n

H x
1 1

2
e e ,

n
x

n
n

1 4 2 1 2
2 i2

where l( )H xn is theHermite polynomial of order n. This quadrature heralded is therefore given by á l∣x , and has
been implemented in [31, 33]. Note that we assume a perfect quadraturemeasurement herewhereas in an
experiment wewould have to detect lx in a certain small range.

Next we consider performing a photon-number resolving detection. Recent progress in PNRDhasmade
larger number detections possible and transition edge sensors can now resolve at least four photons to a
reasonable efficiency [8, 41]. Somewhat simpler detectors canmeasure one or two photons, for example by using
time-multiplexing [42, 43] or a fan-out detector [44]. Our number heraldingmeasurements are therefore á ∣1 ,
á ∣2 , á ∣3 and á ∣4 .

Appendix B. Beating the squeezed cat state

Herewe have claimed that the states y ñ-∣ T1 6 improve over the previously best knownpractical state, the SV, by
up to a factor of 6.We note here that recent work has shown that squeezed cat states (SCSs), given by
y a añ = ñ + - ñ∣ ( )(∣ ∣ )S zSCS , can improve over theQFI of the SVby a factor of 3 [30]. Squeezed cat states have
beenmade in [31–33], so the readermay be lead to believe that our claim of beating the best knownpractical
state by a factor of 6 is invalid. However, on closer investigation of [31–33] the squeezed cat states that have been
made experimentally have aQFI even lower than the SNL. The reason for this is that to obtain a highQFI the
parameters z andα but be optimised over, but the protocols in [31–33] are unable to do this.
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