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Abstract

In this paper we present a search algorithm that finds useful optical quantum states which can be
created with current technology. We apply the algorithm to the field of quantum metrology with the
goal of finding states that can measure a phase shift to a high precision. Our algorithm efficiently
produces a number of novel solutions: we find experimentally ready schemes to produce states that
show significant improvements over the state-of-the-art, and can measure with a precision that beats
the shot noise limit by over a factor of 4. Furthermore, these states demonstrate a robustness to
moderate/high photon losses, and we present a conceptually simple measurement scheme that
saturates the Cramér—Rao bound.

Introduction

The field of optical quantum information has the potential to transform technology with a broad range of
applications, including quantum computing[1, 2], quantum cryptography [3] and quantum metrology [4, 5]. In
order for these applications to benefit from quantum-enhanced performance, non-classical states of light must
be prepared, and it is an ongoing challenge to find methods to engineer quantum states with the desired
properties [6—11]. In this paper we explore an alternative approach and design an algorithm to find
experimentally accessible methods of engineering states with the properties we require. Here we focus on using
the algorithm for quantum metrology, a field which has been instrumental in enhancing the precision of
gravitational wave detectors [12—14] and can be used to measure biological systems with minimal disturbance
[15-18]. As with a recent (independent) algorithm that performed an automated search for new quantum
experiments [19], our algorithm produces a range of novel, and sometimes counter-intuitive, solutions.

In this paper our aim is to find experimentally realisable states, with small photon numbers, that can
measure a phase shift to a high precision. This is important for measurements on fragile systems such as spin
ensembles [20], biological systems [15—18] and atoms [21, 22]. There is a large literature on the theory and
experiment of creating non-classical optical states for quantum metrology, and a wide range of states have been
considered including NOON states [23-25], squeezed states [26—29], and more recently squeezed cat states and
squeezed entangled states [30—34]. The results of our algorithm surpass all of these: we find a number of states
which attain a precision that beats the classical shot noise limit (SNL) by more than a factor of 4, and can improve
over the precision attainable by all other practical states (known to the author) by at least a factor of /6 (see
figure 1). The states we introduce can be made with today’s technology, are robust to moderate /high photon
losses, and can be used to measure a phase shift with a conceptually simple measurement scheme that saturates
the Cramér—Rao bound (CRB).

A quantum state engineering algorithm

The state-engineering scheme we use is shown in figure 2. Firstly, two input states, |1),,) and |¢)o;), are input into
the two modes. The two modes then pass through a sequence of operators O;, where i = 1,.., m, and the final
step is to perform a heralding measurement on one mode, producing the final state |1)¢). With appropriate
choices of input states, operators, and measurements this scheme is able to replicate a wide range of the quantum
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Figure 1. Here we compare different states using the quantum Fisher information (QFI). The QFI is plotted against the average
photon number (7) for two of the quantum states found by our algorithm: |¢1,) and |¢)1,) (labelled T1 and T2). A state with a large
QFI can measure to a high precision, and hence |¢)1;) and |¢1,) give significant improvements over the squeezed vacuum (SV) and the
classical shot noise limit (SNL).
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Figure 2. The state engineering scheme we consider begins with two input states, |t)g,) and |t)g;), which are input into the two modes.
The states then subsequently pass through a number of operators O;. To produce the final quantum state |¢¢) a heralding
measurement is performed on one mode.

state engineering protocols in the literature, such as [8, 10, 31-33]. The main difference between the present
paper and the current literature is that we do not choose the input states, operators, and measurements, but
instead allow a simulation to perform a random search for states with the desired properties. We use this
technique because systematically sorting through all possible combinations of input states, operators, and
measurements is not possible with current computing power—it can be shown that the number of
combinations soon becomes intractable. Contrary to this, our algorithm quickly and efficiently provides new
and sometimes counter-intuitive methods to create useful quantum states.

As our objective is to find practical states for quantum metrology, we construct our state engineering
protocols from elements of an experimentally ready toolbox of quantum optics states, operators, and
measurements, which is summarised in table 1. Here we only introduce the important details of the toolbox;
more details can be found in appendix A. Firstly, the input states we include are the squeezed vacuum (SV) |z),
the coherent state |a), and Fock states |n); the parameters z, « and n are constrained by what is possible
experimentally [7, 29, 35-38].

We next introduce the operators, of which the most important is the beam splitter Uy, where T'is the
probability of transmission (in %), which serves to mix and entangle the two modes. Without this the final state
would just be a set of single-mode linear operators acting on an input state. The states this would create, such as
displaced Fock states and squeezed coherent states, have been studied before [4, 39, 40] and are therefore not of
interest here. Other operators we use are the displacement operator D (3), the phase shift e/%, and the identity
operator I; the latter is included because we are promoting the easiest-to-implement schemes which would
contain as many identities as possible. The final operator is constructed by performing a measurement and then
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Table 1. This table summarises the quantum optics toolbox we use.
Our algorithm selects elements from this toolbox and inserts them
into the scheme in figure 2 in order to engineer non-classical states
with the desired properties. See main text and appendix A for details
of the input states, operators and heralding measurements.

Inputs, |t)g) Operators Heralding measurements
I2) Ur (2
lo) D) ol
[0) el @
1) I @l
|2> |’l/)nCW> <’l/)m5f|5| <4|

inputting a new state, [¢new) (¥measl- This operator works by firstly implementing any one of the heralding
measurements described below, and then inputting one of the allowed input states |¢g) into this mode.

The final step of the state engineering scheme is to perform a heralding measurement on one mode of the
final state. If, for example, we wish to herald with the one photon state, we can perform a photon-number
resolving detection (PNRD), and only keep runs which measure one photon. A measurement outcome of one
photon therefore heralds the desired final state; later we discuss the consequences of this probabilistic
heralding for the application of quantum metrology. The heralding measurement corresponds to acting on
the two-mode, pre-measurement state with (1| ® ﬁ, followed by normalisation. We are then left with the
single mode final state |¢/¢). Recent progress in PNRD has made detections of larger numbers of photons
possible, and transition edge sensors can now resolve at least four photons to a reasonable efficiency [8, 41],
whereas simpler detectors can reliably measure one or two photons [42—44]. The heralding number
measurements we include in the toolbox are therefore (1|, (2|, (3| and (4. Alternatively we can performa
quadrature measurement, (x|, which is achieved with Homodyne detection, preceded by a phase shift which
allows the quadrature phase to be controlled.

We have described the elements of the quantum optics toolbox; we now introduce our algorithm—which
uses the main principles of an evolutionary algorithm—for combining the various elements to engineer
quantum states with the desired properties. Evolutionary algorithms [45-48] begin by creating an initial
population of ‘chromosomes’: each chromosome is a string which encodes a potential solution to the problem at
hand. A fitness function, which returns a fitness value, is then used to identify the solutions which best solve the
problem. The solutions with alarge fitness value are retained and labeled the ‘parents’, whereas the solutions
with insufficient fitness values are discarded. The parents then breed the next generation of ‘offspring’ which is
achieved by ‘mutating’ (making random changes to) the chromosomes of the parents. Often in evolutionary
algorithms the chromosomes of two parents are combined, but we choose not to include this step in our
algorithm. Our algorithm is therefore similar to a random search, but we retain the language of evolutionary
algorithms for clarity of explanation.

After generating the offspring, the fitness function is applied to the offspring, and again the best solutions are
selected from their fitness values. This identifies the next set of parents, and the process repeats until a collection
of the ‘fittest’ individuals remain. Evolutionary algorithms [45—-47] have been successfully utilised to design
antennas [49, 50], shape laser pulses [51], and find new quantum algorithms [48, 52].

A flow chart of our algorithm, which we name Tachikoma, is given in figure 3. Our initial population is
created by randomly selecting inputs, operators and measurements from the quantum optics toolbox in table 1,
and suitable elements of the initial population are selected according to their fitness value. The fitness function
should therefore be chosen based on the properties the user desires for their quantum states. In this paper our
fitness function is the quantum Fisher information (QFI), as a state with a large QFI can measure a phase shift to
ahigh precision.

As shown in figure 3, once a suitable parent is selected from the initial population we mutate it to create an
offspring. If the fitness value of the offspring is greater than that of the parent, the offspring becomes the new
parent for the next generation, and if not we revert back to the parent and repeat this process. If the offspring
repeatedly fail to surpass their parent (an evolutionary dead-end) then we have likely reached a local maxima and
so we store the details of the parent for further analysis and go back to the start of the algorithm. In this manner
Tachikoma mimics natural selection by progressively ‘evolving’ quantum states which become increasingly
suited for their purpose.
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Figure 3. Flow chart of Tachikoma. Our algorithm Tachikoma picks elements from the quantum optics toolbox in table 1 to engineer
quantum states, as described in the main text. To assess the suitability of different states we use a fitness function: in this paper we use
the quantum Fisher information as the fitness function in order to find states suitable for quantum metrology, but in principle any
fitness function can be used which would allow us to find states for different applications.
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Figure 4. This schematic shows how a phase shift can be measured in interferometry. A quantum state |¢) is prepared and undergoes
an unknown relative phase shift ¢ = ¢, — ¢,,, which is applied with the operator U = exp (i(¢,71a + ¢y 7ip)). For the states we
consider the optimal measurement scheme is mixing the modes on a balanced (50:50) beam splitter (BS), followed by photon number
counting. When photon losses are included these can be modeled by “fictitious’ variable transmissivity beam splitters after the phase

Photon
Count

Application to optical quantum metrology

We now show how our algorithm Tachikoma can be used to find states for optical quantum metrology.
Specifically, we wish to find experimentally accessible states with low photon numbers. This is of relevance for
measurements on fragile systems, with examples including spin ensembles [20], biological systems [15-18] and
atoms [21, 22]. In these examples, the number of photons we are able to interact with our system should be
limited to prevent damage to the sample [20, 53]. The relevant resource here is therefore the number of photons
in the probe state: to compare different states we look at their phase-measuring capabilities, given the same
average photon number. Other methods of resource counting can be relevant, such as the total number of
photons used to prepare a quantum state, but we choose not to include these methods here.

4
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We consider the standard optical phase estimation problem of measuring a phase difference ¢ between two
optical modes containing unknown linear phase shifts, as shown in figure 4. The fundamental limit to the
precision with which a state p can measure the phase ¢ is given by the quantum CRB [54, 55]:

1

¢ > ——
VEEQ(p)

where pis the number of independent repeats of the experiment and Fy (p) is the QFI of p. For pure states [))
the QFI is given by [56, 57]

(1

Fo(¥) = 4Var,(G) = 4((G°) — (G)?), )

where G = %(ﬁa — fip) is the generator of the phase shift ¢ = ¢, — ¢, i, () is the photon number operator
in mode a (b), and the expectation values are taken with respect to the state |1)). The QFI is used as our fitness
function for the algorithm; we aim to maximise the QFI, which is equivalent to minimising the phase
uncertainty.

We now introduce the SNL—the best that can be done classically—and the current state-of-the-art in
optical quantum metrology. The SNL can be obtained by inputting a coherent state into a Mach—Zehnder
interferometer. In the schematic in figure 4 this amounts to using the input state |1)) = Ur_sla, 0), where
Ur—so is a 50:50 beam splitter and |c) is a coherent state, which are both defined in appendix A. This state can
measure at the SNL given by §¢ = 1/+/7i, where 7i = (fi, + 7i) is the total number of photons in the
interferometer. A wide range of quantum states have been shown to surpass this, but to the best knowledge of the
author the highest precision attainable by a practical state (a state that can be or has been made experimentally) is
given by a pair of mode-separable SV 1)) = |z, z), where |z) is the SV state which again is defined in appendix A
[4, 39]. This state can, among others, surpass Caves’s squeezed state scheme [26, 27], the NOON state [23-25],
and the recently produced squeezed cat states [30-33] (see appendix B for a discussion of this). The QFI of the SV
and the SNL are shown in figure 1; it is our goal in this paper to find practical states that can out-perform the SV.

The algorithm we constructed excelled in this task and quickly found a number of states that have a
significantly larger QFI than the SV. We highlight two states which stand out because they combine a large QFI
with relative simplicity and experimental feasibility:

lvr1) = N (2|Urlz, 22), 3)
[Yr2) = N12(3|Ur—6sDa(B) |21, 22), 4

where the subscript a represents the first mode in figure 2 and A is the normalisation. We need a two-mode
state to make a phase measurement using the scheme in figure 4, so we use [¢0) = |11;) ® |¢1y). The QFI of
these states is plotted in figure 1. We see that |[¢)1,) improves over the SV by a factor of 3 and, while being more
difficult to implement, |¢)1,) improves over the SV by a factor of 6. Specific values of the parameters, such as the
phases and magnitudes of the squeezed states, are required for the results in figure 1, and these parameter values
were found by numerically optimising for each 7i. For example, for [¢)7) with 7i ~ 1we takez; = 0.97,

z; = 0.97e™and T = 0.95,and for |t)7,) with /i =~ 1 we take z; = 0.3e>%, z, = 1.24e>* and 3 = 1.4e>7\.

All of the states found by Tachikoma involve heralding, which is inherently probabilistic. The probabilities of
success in producing |¢1;) and |11, are approximately 0.1 and 0.09, respectively, with the exact probabilities
depending on 1. Furthermore, the input state [¢)7;) ® |1)1;) is needed for the scheme in figure 4, which requires
two identical input states |t¢)r;), resulting in a probability of success of around 0.01. A quantum metrology
scheme using these states should produce them offline, and when the state is heralded by the appropriate
measurement they can be used by the interferometer to measure the phase shift. This could be enhanced by
using a quantum memory [58, 59], which could store the first state until the second is successfully produced. The
downside of probabilistic heralding is more than made up for by the large precision gains achieved by the states
found by Tachikoma. Indeed, we ran the algorithm without heralding and were unable to find a state with a QFI
(per average photon number) that surpasses the SV. This is in agreement with results in the literature: without
the Fock state inputs in table 1 only Gaussian states can be made, and the optimal Gaussian state is known to be
the SV [39]. Alternatively, a Fock state can be used to create a non-Gaussian state, but (to the best of our
knowledge) the non-Gaussian states in the literature that are created from the input states and operators in
table 1 cannot outperform the SV (for example see [60]).

While alarge QFI does amount to a high precision it is not always the most revealing way to compare states.
In this paper we are concerned with reducing the total number of photons that interact with the system being
measured. We label the total number of photons (resources) R, which is given by R = 7ip, where 7 is the average
number of photons in the probe state and i is the number of times this states is sent through the sample. We can
then define a new measure which is more suited to the above restrictions: I' = Fq /7. Then the CRB can be
written as:
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Figure 5. Here we compare different states using I' = F/7i, which is the QFI ( F) scaled by the average number in the state (7).
Equation (5) shows that this measure can be used to directly compare the phase-measuring potential of different states. We see that
[tb71) and |¢)1) give significant improvements over the alternatives; in particular |1)r,) can beat the SNL by more than 19 times.

1 1 1

M}}ﬁf“f'

)

We see that by fixing R we can use I to compare the performance of different states. In figure 5 we plot I" against
i for |¢ry) and |¢r,). We see that [¢)7,) can improve over the SNL by more than 19 times, which corresponds to
more than a four-fold precision gain. Figure 5 illustrates that with |¢)1,) a large enhancement is possible for small
states (i &~ 0.4), which require smaller squeezed states to create and therefore are more practical. Figure 5 also
shows that |¢1,) is optimal for 7 &~ 1.5 (this is not immediately clear by looking at the QFI). The reason that
|112) peaks around 71 & 1.5 is that at this point the squeezing amplitude needed to make this statesis r = 1.3,
which corresponds to the maximum squeezing allowed by the algorithm (limited by what is experimentally
feasible [29], see appendix A). In order to create |t),) for larger photon numbers, while still retaining a large
value of I', larger squeezed states would be required (similar restrictions apply to the size of the other
states |¢)71 _¢))-

Tachikoma also found the following states:

thr3) = N3 (31Da () Dy (82) Ur—24/0, 2)

[Yr4) = Nps (4| Ur—ssDa(B) |21, )

[thrs) = Nra(xn = 01Ur—os|2, 2)

lthr6) = N1 (1| Ur—7sla, z). (6)

All these states improve over the SV by at least a factor of two. We will see below that |t)73) is the most robust to
photon losses, and without loss it has a QFI between |¢)11) and |¢)75). |¢r4) has a QFI even greater than |¢)7) but
involves resolving four photons, whereas states |¢)1s) and |1 1¢) are the easiest to implement.

The results of the algorithm are sometimes unexpected. For example, the operator |tney) (¥meqs| did not give
asignificant enhancement and the simpler schemes were just as effective. States [t/ ) therefore only require
linear operators and heralding measurements to be made. Also, we experimented with between m = 2 and
m = 12 operators O in the engineering scheme, but increasing the number of operators only made small
improvements, and in |11 _¢) only one or two operators are needed. Tachikoma is efficient to run: after
calibration it only took a few days of running on a single node of the HPC cluster at the University of Sussex to
produce all the states presented in this paper. Longer runs just produced more copies of the same states.
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Figure 6. The transmission probability through the interferometer, 7, is plotted against the precision, 6¢ (scaled by y), for various
states. The precision is found using equation (1). We see that the state |¢/r3), found by our algorithm, shows significant improvements
over the SNLand SV, even with moderate to high photon losses. We explain in the main text why we include two different-sized SV
states. The parameters used here for [t)r3) are: 3; = 1.22¢*, 3, = 0.38¢°% and z = 0.62¢>81.

The measurement scheme

We wish to use our states to measure a phase shift using the setup in figure 4. We therefore require a pair of
identical states to input into the two paths, [)) = |¢1;) ® |¢¥r;), where |¢1;) is one of the states produced by
Tachikoma, or can be an SV for comparison (note that in this paper we take 7 to be the total number of photons
inthe state [¢)r;) ® [thri)). We have quantified the performance of different states using the QFI and CRB, but it
is important to now address the limitations of using the QFI as a figure of merit in quantum metrology [61-63].
In general, the precision as obtained by the QFI is achievable with an asymptotically large number of repeats, /.
However, from a practical point of view it is clear that only some finite number of repeats 1 will be possible. To
factor this in we have performed a Bayesian simulation of the proposed experiment. Using the measurement
scheme in figure 4, which involves mixing the modes on a balanced beam splitter followed by PNRD (see
appendix A for details of the PNRD), we have determined the phase shift, from a flat prior knowledge, using the
Bayesian approach described in [30]. For all path-symmetric pure states (i.e. the states in this paper) the
measurement scheme in figure 4 is optimal and saturates the QFI [64]. Indeed, our Bayesian simulation confirms
that we come close to saturating the absolute bound given by the QFI for i = O (102). In such regimes it is then
clear that the states produced by Tachikoma can significantly outperform the SNL and SV, in terms of absolute
phase precision, when assuming the same average photon number.

The effects of loss

We next investigate the effects of loss on the states produced by Tachikoma. Loss can be modeled by adding
‘fictitious’ beam splitters after the phase shift [65, 66], as shown in figure 4, and results in a mixed state p which
typically has a reduced non-classical enhancement. The QFI for a general density matrix p can be expressed as
[54,55,67]

Fa(p) = Yo [(MI0p (8)/0010) P, @
i A+ )\]‘
where ); are the eigenvalues and | \;) a corresponding set of orthonormal eigenvectors of p.

The states |7 ) have an intrinsic robustness to loss because they contain small numbers of photons and
they are separable between the modes. As a result they all improve over the SV up to at least 15% loss, which is the
relevant loss rate for a number of experiments: losses as low as 10% have already been achieved in table top
interferometry experiments [68], and near-future gravitational wave detectors are expected to have total losses of

7
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9%-17% [69]. The most robust state is [¢)73), which is shown in figure 6. We see that |¢)13) improves over the SV
for losses up to 30% and can beat the SNL with up to 50% loss.

In figure 6 we have included two different SV states because there are a number of valid comparisons that can
be made. The first SV (z = 0.42) has the same average number 7 as |[¢)13). However, it can be disputed whether
this is a fair comparison, because in order to create |1)13) an SV is required with z = 0.62, and we therefore also
plot this state. We see in figure 6 that |1)73) provides a significant precision enhancement over both of these SV
states.

Discussion

We have seen that our algorithm Tachikoma has been constructed so that it can be easily edited to find quantum
states for applications other than quantum metrology. The crucial change would be to the fitness function that
we use to select successful states: here we use the QFI, but other measures can be used in order to make states
suitable for quantum cryptography [3], quantum computing [1, 2, 70], quantum teleportation [71], or boson
sampling [72]. We could also extend Tachikoma to utilise quantum state engineering techniques that we have
omitted in this paper, mainly due to practicality: we could create a three-mode entangled state before heralding
[6], include feed forwarding [73], or look at cavity systems which allow for different operations to be

performed [74].

In conclusion, we have created an algorithm that can be used to find optical quantum states with specific
properties. In this paper we have focused on using the algorithm for quantum metrology, and we have found
states that can surpass the best-known practical states by a factor of /6 in the precision, which amounts to over a
four-fold improvement over the classical shot noise limit. The states are experimentally accessible, robust to
photon losses, and can be utilised for precise phase-measurements using a conceptually simple measurement
scheme. We therefore expect that an experiment could confirm these results in the near future.

Acknowledgments

The author would like to thank Jacob Dunningham, Timothy Proctor, Adam Stokes, Robert Bennett and
Konstantinos Meihanetzidis for helpful discussions. Nearing completion of this work we became aware of
related techniques in [19]. This work was funded by the UK EPSRC through the Quantum Technology Hub:
Networked Quantum Information Technology (grant reference EP/M013243/1).

Appendix A. Quantum optics toolbox details

Input states—The SV is given by |z) = § (z)|0), where the squeezing operatoris § (z) = exp [% (z*a" — z&*z)]

and z = rei%, where ris the (positive and real) amplitude, 6, € [0, 27]is the squeezing angle and 4 (a") is the
annihilation (creation) operator. Squeezed states can be made up to r & 1.4, but this is extremely challenging
experimentally so we set the limit to » = 1.3 [29]. The coherent state is given by |a) = D () |0), where the
displacement operator is D () = exp(adt — o*@), a = |ale!, where || is the amplitude, and . € [0, 27]is
the coherent state phase. The amplitude of the coherent state can be large in experiments, so instead it is limited
by the numerical methods we use: we set the limit to o = 4. The final input state is the Fock state of which the
simplest is the vacuum |0). Single photons, |1), can be emitted from a quantum dot [35, 36] or heralded [37]. We
also consider the two photon state, |2), which has been made in [7, 38]. Higher number Fock states can be made,
e.g. by heralding, but we consider these states to be too difficult to produce reliably.

Operators—The beam splitter is described by the unitary operator Uy = e~ i(a'b+e b)) \ohere 3 and b
are annihilation operators for the two modes, and we choose the arbitrary phase to be ¢, = —m /2. Here
T = 100 cos? 0, is the transmissivity of the beam splitter (in %) and therefore for a 50:50 beam splitter 6, = /4
giving Ur_so. Next, the displacement operator, D (3) (defined above), is implemented by mixing the state with a
large local oscillator at a highly transmissive beam splitter [75] (G has the same restrictions as ). The phase
operator is given by el%, where i = d@%dand 6, € [0, 27]. The identity operator is as expected. The final
operator is constructed by performing a measurement and then inputting a new state and is given by
[Ynew) (Pmeas)> Where [teq) is the heralding measurement state, and |ty ) is the new state.

Measurements—After we have applied a number of operators we perform a heralding measurement on one
mode of the final state. For example, if we wish to herald with the one photon state we can perform a number
resolving detection (details below), and only keep runs which measure one photon. The measurement is given by
aprojection [76]: to follow the single photon example we project with |1) (1| ® I. We are then left witha
separable state |1) ® |t¢), but we can ignore the measurement mode, and after normalisation we are left with
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the final one mode state: |¢)¢). This whole process can be more easily modeled by acting on the two-mode, pre-
measurement state with (1] ® . In the main text we drop the identity and just write (1], and this measurement is
always performed on the first mode of figure 2.

The quadrature measurement can be performed by Homodyne detection, preceded by a phase shift which
allows the quadrature phase to be controlled. The eigenstates of the quadrature operator are given in [77] by
l) = S0 o (nlxy) |n), where A is the quadrature angle, x, is the quadrature eigenvalue, and the wave function is

1 1

N ¢ V2 ) & (—inX)
T/ 2 ()12 € n(n)e >

(xln) =

where H, (x,) is the Hermite polynomial of order n. This quadrature heralded is therefore given by (x|, and has
been implemented in [31, 33]. Note that we assume a perfect quadrature measurement here whereas in an
experiment we would have to detect x, in a certain small range.

Next we consider performing a photon-number resolving detection. Recent progress in PNRD has made
larger number detections possible and transition edge sensors can now resolve at least four photonsto a
reasonable efficiency [8, 41]. Somewhat simpler detectors can measure one or two photons, for example by using
time-multiplexing [42, 43] or a fan-out detector [44]. Our number heralding measurements are therefore (1],
(2], (3]and (4.

Appendix B. Beating the squeezed cat state

Here we have claimed that the states [¢)71 _ ) improve over the previously best known practical state, the SV, by
up to a factor of 6. We note here that recent work has shown that squeezed cat states (SCSs), given by

[scs) = NS(2)(Ja) + |—a)), can improve over the QFI of the SV by a factor of 3 [30]. Squeezed cat states have
been made in [31-33], so the reader may be lead to believe that our claim of beating the best known practical
state by a factor of 6 is invalid. However, on closer investigation of [31-33] the squeezed cat states that have been
made experimentally have a QFI even lower than the SNL. The reason for this is that to obtain a high QFI the
parameters zand « but be optimised over, but the protocols in [31-33] are unable to do this.
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