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Abstract
We investigate the competitive adsorption of a two-component gas on the surface of an
adsorbent whose adsorption properties vary due to the adsorbent deformation. The essential
difference of adsorption isotherms for a deformable adsorbent both from the classical
Langmuir adsorption isotherms of a two-component gas and from the adsorption isotherms of
a one-component gas is obtained, taking into account variations in the adsorption properties of
the adsorbent in adsorption. We establish bistability and tristability of the system caused by
variations in adsorption properties of the adsorbent in competitive adsorption of gas particles
on it. We derive conditions under which adsorption isotherms of a binary gas mixture have two
stable asymptotes. It is shown that the specific features of the behavior of the system under
study can be described in terms of a potential of the known explicit form.
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Nomenclature

Cn concentration of gas particles of species n
Ea

n, Ed
n activation energies for adsorption and desorption,

respectively, of particles of species n
Ed

n(x) activation energy for desorption of adparticles of
species n from the surface of a deformable
adsorbent

Eex unit vector along the 0X -axis
EFn(x, t) time-step adsorption-induced force acting on the

adsorption site occupied by an adparticle of
species n

EFn(x) adsorption-induced force acting on the
adsorption site permanently occupied by an
adparticle of species n

EF(x, t) effective time-continuous adsorption-induced
force acting on the adsorption site

G ratio of the constant adsorption-induced forces
acting on the adsorption site occupied by
adparticles of species 2 and 1, respectively

g coupling parameter in adsorption of a
one-component gas or a two-component gas
whose particles identically act on the adsorbent

gc critical value of g in adsorption of a
one-component gas

gn coupling parameter of adparticles of species n
I+(g) width of the bistability interval in the case of

adparticles identically acting on an adsorbent
In,m widths of the (first, n = 2, m = 1), (second,

n = 4, m = 3) and (single, n = 2, m = 3)
bistability intervals

Kn classical adsorption equilibrium constant for a
one-component gas of species n

k+
n , k−

n pre-exponential factors of the rate constants for
adsorption and desorption ka

n , kd
n , respectively, of

particles of species n in the classical case
kd

n(x) rate coefficient for desorption of adparticles of
species n from the surface of a deformable
adsorbent

kB Boltzmann constant
`n dimensionless concentration of gas particles of

species n
`b

1,k the kth bifurcation value of `1; k = 1, 2, 3, 4
`b

d , `
b
t , `

b
u bifurcation values of `1 giving two two-fold

solutions
`c

1,k the kth critical value of `1; k = 1, 2, 3;
(`c

1,+ ≡ `c
1,2, `

c
1,− ≡ `c

1,3)
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`t
1,1, `

t
1,2 boundary values of `1 of the tristability interval

`+ summary dimensionless concentration of gas
particles

`b
+,k the kth bifurcation value of `+; k = 1, 2

`c
+ critical value of `+

`M
+ Maxwell concentration

`but
1 , Sbut

0 ,

gbut
1 , Gbut coordinates of a point in the four-dimensional

space of control parameters {`1, S0, g1, G}

giving a five-fold three-component stationary
solution ξ but, θbut

1 , θbut
2

m0, mn masses of a vacant adsorption site and a gas
particle of species n, respectively

meff(2) effective mass of oscillator
N total number of adsorption sites
Nn number of adsorption sites occupied by

adparticles of species n
Nb, N0 numbers of occupied and vacant adsorption sites,

respectively
P+, P−,

P1, Pd ,

Pt , Pu, Pbut singular points of the bifurcation curve
R0, R(ξ) ratios of the residence times of adparticles of

species 2 and 1 on the surface of nondeformable
and deformable adsorbents, respectively

Er running coordinate of the adsorption site
S0 ratio of the dimensionless concentrations of gas

particles of species 2 and 1
St , Sd , Su values of S0 giving two two-fold solutions
Sc

k the kth critical value of S0; k = 1, 2, 3;
(Sc

+ ≡ Sc
2, Sc

−
≡ Sc

3)
SM

0 Maxwell value of S0

S(ξ) ratio of the surface coverages by adparticles of
species 2 and 1

T absolute temperature
t time
U (ξ) potential in the adiabatic approximation
Uk value of the potential U (ξ) at ξ = ξk ;

k = 1, 2, 3, 4, 5
U a(ξ) potential U (ξ) as `1 → ∞

Vn(x) potential of the adsorption-induced force EFn(x)

−Vn maximum increment of the activation energy for
desorption of adparticles of species n caused by
the adsorbent deformation in adsorption of a
one-component gas of species n

w+ width of the interval of instability of θ+

x spatial variable in equations (58), (68) and (71)
xeq(2) equilibrium position of the oscillator in

adsorption of a two-component gas
xeq

n (θn) equilibrium position of the oscillator in
adsorption of a one-component gas of species n

xmax
n maximum displacement of the equilibrium

position of oscillator in adsorption of a
one-component gas of species n

Gn, ga
c, h,

I a
+, I a

−
, M,

q, qa, Sa
+,

Sa
−
, Sa

c ,

U M, U a
M,

wa quantities defined in the text

D(ξ), h(ξ),

Ia(g1, G)

L(ξ ; g1, G, S0),

L1(ξ ; g1),

L2(ξ ; g1, G),

Lc(ξ ; g1, G)

Sa(g1, G),

w(ξ) functions defined in the text

Greek symbols

α friction coefficient
ε arbitrary small positive value
η positive solution of one of the

equations: (58), (68) and (71)
2 collection of the surface coverages θ1 and θ2

θL
n classical Langmuir surface coverage by

adparticles of species n
θn surface coverage by adparticles of species n
θ a

n , θ a
n,k single and kth asymptotic values of θn ,

respectively; k = 1, 2, 3
θ a

n,+, θ
a
n,− doubly degenerate asymptotic values of θn

θ a
c triply degenerate asymptotic value of θn

θ+ surface coverage by adparticles of both species
θ+,k solutions of equation (36); k = 1, 2, 3
θb

+,k the kth bifurcation value of θ+; k = 1, 2
θ c

+ critical value of θ+

θ0 vacant part of the adsorbent surface
~ restoring force constant
ξ dimensionless coordinate of oscillator
ξ a, ξ a

k single and kth asymptotic values of ξ ,
respectively; k = 1, 2, 3

ξ a
+, ξ a

−
doubly degenerate asymptotic values of ξ

ξ a
c triply degenerate asymptotic value of ξ

ξM
+ , ξM

−
values of ξ at which potential (67) with `+ = `M

+
has equal minima

ξ a
M+, ξ

a
M−

values of ξ at which the potential U a(ξ) with
S0 = SM

0 has equal minima
ξ b

k , θb
1,k,

θb
2,k components of the kth two-fold stationary

solution; k = 1, 2, 3, 4
ξ c

k , θ c
1,k,

θ c
2,k components of the kth three-fold stationary

solution; k = 1, 2, 3; (ξ c
+ ≡ ξ c

2 , ξ c
−

≡ ξ c
3 ;

θ c
n,+ ≡ θ c

n,2, θ
c
n,− ≡ θ c

n,3)
ξk roots of equation (18); k = 1, 2, 3, 4, 5
τ a

n lifetime of a vacant adsorption site in the
classical adsorption of a one-component gas of
species n

τ d
n , τ d

n (ξ) classical and coordinate-dependent residence
times of adparticles of species n on the surface of
nondeformable and deformable adsorbents,
respectively

τ ad
n time taken for the surface coverage θn to reach

the stationary value in the Langmuir adsorption
of a one-component gas of species n

τr relaxation time of a massless oscillator in the
linear case

τθ relaxation time of θn(t) in the Langmuir
adsorption

2
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χn constant adsorption-induced force acting on the
adsorption site occupied by an adparticle of
species n

ωM vibration frequency of an oscillator of mass M
β, β+,

β−, δu,

δn+1,n, θ
u
1 ,

τM quantities defined in the text

1. Introduction

Problems of adsorption on the surface of different bodies
belong to a wide class of problems of physics, chemistry
and biology that are very important both from the theoretical
point of view and for various practical applications. The
results of numerous investigations show that adsorption of
particles leads to considerable changes in the physical and
chemical characteristics of adsorbents. A detailed analysis of
the changes in the properties of the adsorbent surface due to
adsorption is given, for example, in [1–11].

Since processes of adsorption and desorption are
obligatory stages of heterogeneous catalytic reactions, the
results of the adsorption theory are extremely important
for investigation of various problems of heterogeneous
catalysis [12–17].

Generalizations of the classical Langmuir adsorption
theory aimed at a more correct description of the
adsorbent surface and adparticles (adsorbed particles) give
the qualitatively new behavior of the amount of adsorbed
substance and its kinetics. Extensive material obtained on
the basis of different models and applications to various
problems of adsorption and catalysis are widely presented
in the literature (see e.g. [8, 13–22]). In particular, due to
lateral interactions between adparticles, adsorption isotherms
can have a hysteresis shape, and different structural changes
in the adsorbent surface occur (reviews of the theoretical
and experimental results are given, for example, in [8–11,
19–22]). In turn, a qualitative change in the surface structure
in adsorption leads to a series of specific features of oscillatory
surface reactions and formation of different spatiotemporal
patterns (for the oscillatory kinetics in heterogeneous catalysis
and related problems, see for example the reviews [23–25] and
the monograph [26]).

It is established in [27] that, parallel with lateral
interactions between adparticles, there is another factor (the
adsorption-induced deformation of an adsorbent) leading
to hysteresis-shaped isotherms of localized adsorption of a
one-component gas on the flat energetically homogeneous
surface of a solid adsorbent. It is worth noting that, as early as
1938, based on the idea of a change in adsorption properties of
the adsorbent surface in adsorption, Zeldovich [28] predicted
a hysteresis of adsorption isotherms if the typical time of
adsorption and desorption is much less than the relaxation
time of the surface.

In recent years, it has been established that there is an
essential influence of memory effects on the surface diffusion
of adparticles over the adsorbent surface in the case where the
relaxation time of the adsorbent is comparable with (or greater
than) typical times for moving adparticles (see for example
the review [29] and references therein). Dynamical changes

in the properties of the surface by moving particles are taken
into account in some models (e.g. in [30, 31]), which, to some
extent, is similar to the Zeldovich idea of an absorbent varying
its adsorption properties in adsorption.

Since an actual adsorbate has several species of particles,
in adsorption, particles of different species compete for
adsorption sites. This leads not only to a decrease in the
number of adparticles of a species relative to that for
one-component adsorption [19, 21, 22, 32, 33] but also to a
qualitative change in the shape of adsorption isotherms with
regard to lateral interactions between adparticles [20]. In view
of hysteresis-shaped isotherms of localized adsorption of a
one-component gas on the flat surface of a solid adsorbent due
to the adsorption-induced deformation of an adsorbent [27],
it is of interest to investigate the influence of this factor
on changes in the classical extended Langmuir adsorption
isotherms of a multicomponent gaseous system.

In the present paper, we study specific features of
adsorption isotherms of a two-component gas on the surface
of a solid adsorbent whose adsorption properties vary in
adsorption.

In section 2, a model of adsorption of a two-component
gas is proposed, taking into account variations in the
adsorption properties of an adsorbent caused by its
deformation in adsorption. We obtain a system of equations
that describes the kinetics of the surface coverage and
the displacement of adsorption sites. The influence of
the adsorbent deformation on the adsorption isotherms is
investigated in section 3. It is established that there is
a considerable redistribution of the amount of adsorbed
substances as compared with that in the classical case, even
for a negligible quantity of particles of one species in a
gas mixture. The obtained adsorption isotherms essentially
depend on the introduced coupling parameters and differ both
from the Langmuir adsorption isotherms of a two-component
gas and from the adsorption isotherms of a one-component
gas for an adsorbent whose adsorption properties vary in
adsorption. We establish bistability and tristability of the
system caused by variations in the adsorption properties of the
adsorbent in competitive adsorption. Conditions under which
adsorption isotherms of a binary gas mixture have two stable
asymptotes are derived. In section 4, within the framework
of the overdamped approximation and essential difference
in the linear relaxation times of the dynamical variables,
the behavior of the system under study is described in terms
of a potential whose explicit form is obtained. The specific
features of isotherms of competitive adsorption are explained
with the use of the single-, two- or three-well potential.

2. General relations

We consider localized monolayer competitive adsorption of
particles of a two-component gas on the flat surface of
a solid adsorbent by using the classical Langmuir model
generalized to the case of variations in adsorption properties
of the adsorbent in adsorption/desorption of gas particles
[27]. Gas particles are adsorbed on adsorption sites located at
the adsorbent surface and the total number of sites N does not
change with time. All adsorption sites have equal adsorption
activity and each adsorption site can be bound with only one
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gas particle. We introduce the Cartesian coordinate system
with the origin on the adsorbent surface and the 0X -axis
directed into the adsorbent so that the adsorbent and the gas
occupy the regions x > 0 and x < 0, respectively.

Following [27], we simulate each vacant adsorption
site by a one-dimensional linear oscillator of mass m0 that
oscillates perpendicularly to the surface about its equilibrium
position x = 0.

The binding of a gas particle with an adsorption site is
accompanied by a change in the spatial distribution of the
charge density of the bound adsorption site as compared with
that of a vacant one. This change depends on the nature of
adsorption bonds and specific features of both the adsorbent
and gas particles (see e.g. [3, 8, 9, 23–26, 34]).

This leads to a change in the interaction of the bound
adsorption site with neighboring atoms of the adsorbent
located both on the surface and in the nearest subsurface
region. As a result, the resulting force acting on the bound
adsorption site changes compared to that acting on the vacant
adsorption site. This can be regarded as the appearance of
an adsorption-induced force EFn(Er , t) acting on the adsorption
site occupied by an adparticle of species n = 1, 2 (here and
below, the subscript n = 1, 2 denotes the species of particles),
where Er is the running coordinate of the adsorption site.
Under the action of this force, the bound adsorption site
tends to a new equilibrium position. However, as soon as the
adparticle leaves the adsorption site, the last site becomes
vacant and relaxes to its nonperturbed equilibrium position
x = 0. For the subsequent adsorption of other gas particles on
this vacant adsorption site, two essentially different situations
are possible: a gas particle occupies the site after or before
it reaches the nonperturbed equilibrium position. In the first
case, a new adparticle on the adsorption site does not ‘fill’
the space occupied by previous adparticles. In the second, a
particle is adsorbed on the surface locally deformed by the
previous adparticle (not necessarily of the same species), i.e.
the retardation of relaxation of the surface occurs or, in other
words, adsorption with memory takes place.

We consider the case where the force EFn(Er , t) is normal
to the boundary and depends only on the coordinate x :
EFn(Er , t) ≡ EFn(x, t) = Eex Fn(x, t), where Eex is the unit vector
along the 0X -axis.

The time-step force EFn(x, t) acts on the adsorption
site only during discrete time intervals where the site is
bound. Thus, at any instant, the adsorption site is in one
of three states: vacant or bound with an adparticle of
species 1 or 2. Instead, we consider the approximation of
an effective time-continuous adsorption-induced force EF(x, t)
acting on the adsorption site that takes into account the
presence of an adparticle on the adsorption site in the
mean, i.e. the adsorption site is permanently bound with
an adparticle but with the time-dependent probability (the
mean occupancy of an adparticle on an adsorption site) equal
to the surface coverage by adparticles of species n, θn =

Nn(t)/N , where Nn(t) is the number of adsorption sites
occupied by adparticles of species n at the time t . Since
an adsorption site can be bound only with one adparticle,
EF(x, t) = EF1(x) θ1 + EF2(x) θ2, where EFn(x) = Eex Fn(x) is the
adsorption-induced force acting on the adsorption site
permanently occupied by an adparticle of species n, and,

hence, EF(x, t) = Eex F(x, t), F(x, t) = F1(x) θ1 + F2(x) θ2.
This approximation is similar to the mean-field approximation
used in the adsorption theory, taking into account lateral
interactions between adparticles (see e.g. [8, 21]). By
expanding Fn(x) in the Taylor series in the neighborhood of
x = 0 and keeping only the first term of the expansion, and
expressing the adsorption-induced force EFn(x) in terms of the
potential, Fn(x) = −

dVn(x)

dx , we get

Vn(x) ≈ −χn x, n = 1, 2, (1)

where

χn = −
dVn(x)

dx

∣∣∣∣
x=0

is the constant adsorption-induced force acting on the
adsorption site occupied by an adparticle of species n.

We introduce the dimensionless quantity G = χ2/χ1,
which is positive or negative for parallel (sign χ1 = sign χ2) or
antiparallel (sign χ1 = −sign χ2) adsorption-induced forces,
respectively.

By disregarding the internal motions in the
adparticle–adsorption site system, i.e. considering the
motion of the bound adsorption site as a whole, and taking
into account a change in the mass of the oscillator in
adsorption within the framework of this approximation, we
obtain the following equation of motion of an oscillator of
variable mass under the action of the adsorption-induced
force:

d

dt

(
meff(2)

dx

dt

)
+ α

dx

dt
+ ~ x = χ1 θ1 + χ2 θ2, (2)

where ~ is the restoring force constant, α is the friction
coefficient, meff(2) = m0 + m1 θ1 + m2 θ2 is the effective mass
of the oscillator that varies in adsorption, mn is the mass
of a gas particle of species n and the symbol 2 ≡ {θ1, θ2}

denotes a collection of the surface coverages. Since θn 6 1, the
effective mass of the oscillator is less than M = m0 + m1 + m2.

It follows from equation (2) that, due to adsorption, the
equilibrium position of the oscillator shifts from x = 0 (for a
vacant adsorption site) to a new position xeq(2) defined by
the relation

xeq(2) = xeq
1 (θ1) + xeq

2 (θ2), (3)

where xeq
n (θn) = xmax

n θn is the equation for determination of
the equilibrium position of the oscillator in the adsorption of
a one-component gas of species n and xmax

n ≡ xeq
n (1) = χn/~

is the maximum stationary displacement of the oscillator from
its nonperturbed equilibrium position x = 0 in the case of total
surface coverage (θn = 1).

Within the framework of the used approximation, the
forces of lateral interactions between adparticles are parallel
to the adsorbent surface and the adsorption-induced forces
EFn(x) are perpendicular to the surface, which means that
the forces EFn(x) are caused by the interaction of bound
adsorption sites with neighboring subsurface atoms of the
adsorbent. Nevertheless, the lateral interactions between
adparticles affect the adsorption-induced force EF(x, t) (and,
hence, a normal displacement of the plane of adsorption sites)
via the surface coverages θ1 and θ2.
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In the Langmuir theory of kinetics on a nondeformable
adsorbent (χn = 0, n = 1, 2) neglecting interactions between
adparticles, the rate constants for adsorption and desorption ka

n
and kd

n of particles of species n, respectively, do not depend on
the concentration of particles in the gas phase and are defined
by the Arrhenius relations

ka
n = k+

n exp

(
−

Ea
n

kBT

)
, kd

n = k−

n exp

(
−

Ed
n

kBT

)
, n = 1, 2,

(4)

where Ea
n and Ed

n are the activation energies for adsorption and
desorption, respectively, k+

n and k−
n are the pre-exponential

factors, T is the absolute temperature and kB is the Boltzmann
constant.

The Hamiltonian of the adparticle–adsorbent system
contains the term −χ1 x N1 − χ2 x N2 caused by the adsorbent
deformation in adsorption due to the adsorption-induced force
field EF(x, t). This implies that an adparticle of species n
is not only in a potential well of constant depth Ed

n but also
in the adsorption-induced potential Vn(x). Hence, for parallel
adsorption-induced forces, an adparticle of any species is in
a deeper potential well than on a nondeformable adsorbent.
As a result, in the case at hand, for desorption of an
adparticle of species n, it must get an energy greater than
Ed

n by the value |Vn(x)| = χn x , which can be regarded as the
increment of the activation energy for desorption Ed

n of an
adparticle of species n caused by the adsorbent deformation.
For antiparallel adsorption-induced forces, the additions χn x
to the activation energies for desorption Ed

n of adparticles of
different species n have opposite signs. Thus, the adsorbent
deformation increases the activation energy for desorption
of adparticles of one species and decreases the activation
energy for desorption of adparticles of another species. Note
that the quantities Ed

n and χn x can be interpreted as the first
and second terms, respectively, of the Taylor series of the
coordinate-dependent activation energy for desorption Ed

n(x),
i.e. Ed

n(x) = Ed
n + χn x + · · · .

It is well known that lateral interactions between
adparticles essentially change adsorption isotherms of a
binary gas mixture (see e.g. [20]). In the present paper, to
illustrate that there is another factor (the adsorption-induced
deformation of the adsorbent) leading to qualitative changes
in isotherms of competitive adsorption of a two-component
gas, we do not take into account lateral interactions between
adparticles.

The adsorbent deformation in adsorption affects the
desorption rates of adparticles and, hence, the surface
coverage. Assuming that the pre-exponential factors k−

n are
not changed, we obtain the following expression for the rate
coefficients for desorption:

kd
n(x) = kd

n exp

(
−

χn x

kBT

)
. (5)

Thus, the rate coefficients for desorption (5) are
coordinate-dependent functions, and gas particles are
adsorbed on the surface whose adsorption characteristics vary
with time.

According to (5), for G > 0, the desorption rates of
adparticles of both species decrease due to the adsorbent

deformation in adsorption. For G < 0, the joint action of
adparticles of both species on the adsorbent leads to the
opposite results: the desorption rate of adparticles decreases
for one species and increases for another.

With regard to variations in the adsorption properties
of the adsorbent in adsorption, the kinetics of the surface
coverages are described by the equations

dθn

dt
= ka

nCn θ0 − kd
n θn exp

(
−

χn x

kBT

)
, n = 1, 2, (6)

where Cn is the concentration of gas particles of species n
that is kept constant, θ0 = 1 − θ+ = N0(t)/N is the vacant
part of the adsorbent surface, θ+ = θ1 + θ2 = Nb(t)/N is the
surface coverage by adparticles of both species, Nb(t) =

N1(t) + N2(t) and N0(t) are, respectively, the numbers of
occupied and vacant adsorption sites at the time t , and Nb(t) +
N0(t) = N .

By setting in (6) χn = 0, we obtain the known system of
two linear equations that describes the Langmuir kinetics of
adsorption of a two-component gas [18].

By introducing the dimensionless coordinate of oscillator
ξ = x/xmax

1 , we obtain the following autonomous system
of three nonlinear differential equations that describes the
kinetics of the surface coverages and the normal displacement
of adsorption sites in localized adsorption with regard
to variations in adsorption properties of the adsorbent in
adsorption:

dθn
dt = ka

nCn θ0 − kd
n θn exp

(
−

gn

Gn
ξ

)
, n = 1, 2,

d
dt

(
meff(2)

dξ

dt

)
+ α

dξ

dt = ~ (θ1 + G θ2 − ξ).
(7)

Here, the dimensionless quantity (called a coupling parameter
of adparticles of species n)

gn = |Vn|/kBT, n = 1, 2 (8)

is the maximum increment of the activation energy for
desorption of adparticles of species n (normalized by
kB T ) due to the adsorbent deformation in adsorption of a
one-component gas of species n, Vn ≡ Vn(xmax

n ) = −χ2
n /~,

G1 = 1, G2 ≡ G, g2 = g1 G2.
By setting in (7) C2 = 0 and θ2 = 0, we obtain the system

of two differential equations that describes the kinetics of the
amount of a one-component gas of species 1 adsorbed on a
deformable adsorbent [27].

For a given value of ξ , the average coordinate-dependent
residence times of adparticles on the surface of a deformable
adsorbent τ d

n (ξ) = 1/kd
n(ξ), n = 1, 2

τ d
1 (ξ) = τ d

1 exp (g1 ξ ), τ d
2 (ξ) = τ d

2 exp (g1 G ξ ) (9)

increase for G > 0 compared to the classical residence times

τ d
n =

1

kd
n

, n = 1, 2 (10)

and, furthermore, the greater the displacement of the
adsorption sites from their nonperturbed equilibrium position,
the greater the increase. Since the residence time of
adparticles with greater value of |χn| increases more, the

5
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surface is more intensively occupied by particles of this
species and this process rapidly grows with ξ . By denoting
the ratio of the residence times of adparticles of different
species on the adsorbent surface by

R(ξ) =
τ d

2 (ξ)

τ d
1 (ξ)

(11)

we obtain
R(ξ) = R0 w(ξ), (12)

where

R0 ≡ R(0) =
τ d

2

τ d
1

(13)

is the ratio of the residence times of adparticles of different
species on the surface of a nondeformable adsorbent and the
quantity

w(ξ) = exp
(

g1 (G − 1) ξ
)

(14)

characterizes a variation in ratio (13) due to the different
actions of adparticles of both species on the adsorbent. In the
special case of an identical action of all adparticles on the
adsorbent (χ1 = χ2), we have w(ξ) = 1. According to (14),
for G > 1, the quantity w(ξ) can reach large values, which
essentially affects the surface coverages θ1 and θ2.

Expressions (9), (11), (12) and (14) are also true for
G < 0. However, in this case, the adsorbent deformation
caused by the joint action of adparticles of both species leads
to an increase in the residence time of adparticles of one
species and a decrease in the residence time of adparticles of
other species compared to the classical residence times (10).

3. Stationary case

3.1. General relations

In the stationary case, system (7) is reduced to the system
`1 =

θ1
θ0

exp (−g1 ξ),

`2 =
θ2
θ0

exp (−g1 G ξ),

ξ = θ1 + G θ2,

(15)

where `n = Cn Kn is the dimensionless concentration of gas
particles of species n and Kn = ka

n/kd
n is the adsorption

equilibrium constant for a one-component gas of species n in
the linear case (χn = 0).

After simple transformations, we obtain the following
expressions for the surface coverages:

θ1 =
ξ

1 + G S(ξ)
, (16)

θ2 = S(ξ) θ1 (17)

as functions of the coordinate ξ , which is determined from the
transcendental equation

`1 =
ξ exp (−g1 ξ)

D(ξ)
, (18)

where
D(ξ) = 1 − ξ + (G − ξ) S(ξ), (19)

S(ξ) =
θ2

θ1
= S0 w(ξ), (20)

S0 ≡ S(0) =
`2

`1
. (21)

Thus, the problem under study is reduced to the investigation
of the equilibrium position of the oscillator ξ in an
adsorption-induced force field, i.e. dependence of a solution
of equation (18) on the control parameters `1, χ1 and `2, χ2.
In what follows, as control parameters, we use `1, g1 (for
particles of species 1) and S0, G (for particles of species 2)
equal to, respectively, `2 and χ2 normalized by `1 and χ1. For
the classical adsorption of a binary gas mixture, the quantity
S0 for C2 = C1, called the separation factor [19, 22] (or the
adsorbent selectivity of species 2 in relation to species 1 [21,
32]), is independent of the gas concentration. Thus, w(ξ)

characterizes the deviation of the quantity S(ξ) from its
classical analogue S0 due to the adsorbent deformation in
adsorption.

To pass to the case of adsorption of a one-component
gas of species 1, we set C2 = 0 in (16)–(21), which yields
ξ = θ1 and the following equation for θ1 on a deformable
adsorbent [27]:

`1 =
θ1

1 − θ1
exp (−g1 θ1). (22)

According to (20), the quantity S(ξ) depends on both
the dimensional concentrations of gas particles of both
species and the adsorption-induced forces.

Passing in relations (14) and (16)–(20) to the limit
χ1, χ2 → 0, we obtain the classical extended Langmuir
(Markham–Benton) isotherms of a binary gas mixture [10,
18, 21]

θL
n =

`n

1 + `1 + `2
, n = 1, 2 (23)

and limχ1, χ2→0 S(ξ) = S0. Since the adsorbent surface is
more intensively occupied by gas particles with greater
dimensionless concentration, for S0 � 1, we can neglect the
presence of particles of species 2 in the binary gas mixture,
and the problem under study can be regarded as the problem
of adsorption of a one-component gas.

It follows from (20) that S(ξ) is equal to S0 only for
χ1 = χ2. In this special case, the adsorbent deformation in
adsorption leads to an increase in the numbers of adparticles
of each species not changing their ratio S0.

For χ1 6= χ2, the quantity S(ξ) nonlinearly depends on the
concentrations `1 and `2 and the parameters g1 and G, and the
problem of neglect of gas particles of the second species in a
binary gas mixture in adsorption for S0 � 1 remains. In the
general case, to substantiate the passage from two-component
adsorption to one-component adsorption, it is necessary to
investigate in detail the behavior of S(ξ) as a function of
the control parameters in the entire range of their variation.
Nevertheless, several qualitative conclusions can be drawn
without awkward calculations. To this end, for χ1 6= χ2, we
consider the case of the total coverage (θ+ = 1), which is
realized for large (infinite, in the limit) concentrations of gas
particles provided that S0 6= 0. By using relations (16)–(20),
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we obtain the following asymptotic values of the surface
coverages θ a

n = lim`1→∞ θn, n = 1, 2:

θ a
1 =

G − ξ a

G − 1
, θ a

2 =
ξ a

− 1

G − 1
, (24)

where ξ a is a root of the equation

D(ξ) = 0 (25)

which belongs to the interval (1, G) if G > 1 or (G, 1) if
G < 1. Since the concentration `1 is positive, the coordinate ξ

tends to its asymptotic value ξ a in a half neighborhood of the
point ξ a where sign D(ξ) = sign ξ , which yields

lim
ξ→ ξ a

`1(ξ) = +∞. (26)

By using (24), we obtain the simple expression for the
asymptotic ratio of surface coverages

S(ξ a) ≡
θ a

2

θ a
1

=
ξ a

− 1

G − ξ a
. (27)

Thus, for the total coverage, under the condition

ξ a >
G + 1

2
if G > 1 or ξ a <

G + 1

2
if G < 1

(28)
the number of adparticles of species 2 is greater than the
number of adparticles of species 1 even if S0 � 1, which
indicates the necessity of taking account of particles of both
species in problems of adsorption of binary gas mixtures. In
what follows, the realization of condition (28) for S0 � 1 will
be shown for specific systems.

For given values of g1, G and S0, equation (25) can have
several roots that belong to the above-mentioned interval and
satisfy condition (26). In this case, the quantities ξ a and θ a

n
have an additional subscript indicating the number of the root,
and the functions ξ(`1) and θn(`1) have several horizontal
asymptotes in the limit `1 → +∞.

Analysis shows that, for G 6= 1, the function ξ(`1) has
three horizontal asymptotes ξ = ξ a

1 , ξ = ξ a
2 and ξ = ξ a

3 if g1 >

ga
c , where ga

c = 4/(G − 1)2, and S0 ∈ (I a
−
, I a

+), where I a
±

= Sa
±

if G > 1 or I a
±

= Sa
∓

if G < 1

Sa
±

=
1 ∓ wa sign(G − 1)

1 ± wa sign(G − 1)
exp (2 qa β±),

wa =

√
1 −

1

qa
, qa =

g1

ga
c

,

β± = β ± wa sign(G − 1), β =
1 + G

1 − G
. (29)

For the interval [I a
−
, I a

+], its width Ia(g1, G) = I a
+ − I a

−
and the

coordinate of its center Sa(g1, G) = (Sa
+ + Sa

−
)/2 are equal to

Ia(g1, G) = 2{(2qa − 1) sinh h − h cosh h} (Sa
c)

qa , (30)

Sa(g1, G) = {(2qa − 1) cosh h − h sinh h} (Sa
c)

qa , (31)

where h = 2 wa qa = 2
√

qa(qa − 1) and Sa
c = exp (2β) is the

critical value of S0 for which the interval [I a
−
, I a

+] degenerates

into a point (Sa
+ = Sa

−
= Sa

c ) for g1 = ga
c . The interval [I a

−
, I a

+]
exists for g1 > ga

c and lies from the left (if G > 1) or from the
right (if G ∈ [0, 1)) of Sa

c ; for G < 0, depending on qa > 1, the
interval can both contain and not contain Sa

c .
If the coupling parameter g1 is close to the critical ga

c , i.e.
qa = 1 + ε, 0 < ε � 1, then

Ia(g1, G) ≈
8

3
ε3/2 Sa

c , Sa(g1, G) ≈ (1 + 2β ε) Sa
c . (32)

For a very strong coupling, g1 � ga
c (qa � 1)

Ia(g1, G) ≈ 2 Sa(g1, G), Sa(g1, G) ≈
1

8qa
exp

(
4qa

1 − G

)
.

(33)
For S0 6∈ [I a

−
, I a

+], the function ξ(`1) has only one horizontal
asymptote ξ = ξ a

1 , whereas, for S0 ∈ (I a
−
, I a

+), it has three
horizontal asymptotes. Furthermore, the appearance of two
additional asymptotes and their specific features essentially
depend on the value of G.

For G > 1, as S0 increases from a value less than Sa
−

,
for S0 = Sa

−
+ 0, there appear two infinitely close asymptotes

ξ = ξ a
2 and ξ = ξ a

3 above the asymptote ξ = ξ a
1 (ξ a

1 < ξ a
2 < ξ a

3 );
furthermore, the asymptote ξ = ξ a

3 , along with the asymptote
ξ = ξ a

1 , is stable and the asymptote ξ = ξ a
2 is unstable,

which means that they are, respectively, asymptotes of the
corresponding stable and unstable branches of the function
ξ(`1). In the limiting case S0 = Sa

−
, the asymptotes ξ =

ξ a
2 and ξ = ξ a

3 coalesce into one line ξ = ξ a
−
, where ξ a

−
=

β− (1 − G)/2, which is already not an asymptote of ξ(`1)

because `1(ξ) does not satisfy condition (26) for ξ = ξ a
−

. The
distance between the asymptotes ξ = ξ a

2 and ξ = ξ a
3 increases

with S0 ∈ (Sa
−
, Sa

+). Moreover, the unstable ξ = ξ a
2 and stable

ξ = ξ a
1 asymptotes approach each other and, for S0 = Sa

+,
coalesce into one doubly degenerate asymptote ξ = ξ a

+ , where
ξ a

+ = β+ (1 − G)/2, which, for S0 > Sa
+, disappears, and the

function ξ(`1) again has one asymptote but ξ = ξ a
3 .

For G < 1, the function ξ(`1) has three horizontal
asymptotes if S0 ∈ (Sa

+, Sa
−
). However, its behavior with

variation in S0 differs from that considered above for G >

1. For G ∈ [0, 1), as S0 increases, for S0 = Sa
+, the doubly

degenerate asymptote ξ = ξ a
+ appears below the asymptote

ξ = ξ a
1 . As S0 negligibly increases, this asymptote splits

into two infinitely close asymptotes: stable ξ = ξ a
3 and

unstable ξ = ξ a
2 (ξ a

1 > ξ a
2 > ξ a

3 ). As S0 ∈ (Sa
+, Sa

−
) increases,

the distance between the asymptotes ξ = ξ a
2 and ξ = ξ a

3
grows and the unstable ξ = ξ a

2 and stable ξ = ξ a
1 asymptotes

approach each other and, for S0 = Sa
−

, coalesce into one line
ξ = ξ a

−
, which is already not an asymptote of the function

ξ(`1) because `1(ξ) does not satisfy condition (26) for ξ = ξ a
−

.
As a result, for S0 > Sa

−
, the function ξ(`1) again has one

asymptote but ξ = ξ a
3 .

Thus, for G > 0, the function ξ(`1) has one horizontal
doubly degenerate asymptote ξ = ξ a

+ if the value of S0

coincides with the right end point (for G > 1) or the left end
point (for G ∈ [0, 1)) of the interval [I a

−
, I a

+].
Asymptotes of the function ξ(`1) for G < 0 are

investigated in [35].
According to (16) and (17), for S0 ∈ (I a

−
, I a

+), the
functions θ1(`1) and θ2(`1) also have three horizontal
asymptotes θ1 = θ a

1,k and θ2 = θ a
2,k , k = 1, 2, 3, two of which

7
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are stable and one is unstable. At the end points of this
interval, the doubly degenerate asymptotic values θ a

1,− and
θ a

2,− (for S0 = Sa
−

) or θ a
1,+ and θ a

2,+ (for S0 = Sa
+) of the surface

coverages θ1 and θ2 are equal to

θ a
1,± =

1 ± wa sign(G − 1)

2
, θ a

2,± =
1 ∓ wa sign(G − 1)

2
(34)

and |θ a
1,± − θ a

2,±| = wa increases with the coupling parameter
g1. Since only the surface coverages (34) consistent with
condition (26) have a physical meaning, we obtain that, for
G > 0, these quantities are θ a

1,+ and θ a
2,+, which yields θ a

1,+ >

θ a
2,+ for G > 1 and θ a

1,+ < θ a
2,+ for G ∈ [0, 1).

In the special case g1 = ga
c (S0 = Sa

c ), ξ a
+ = ξ a

−
≡ ξ a

c =

(1 + G)/2, whereas θ a
1,+ = θ a

1,− ≡ θ a
c and θ a

2,+ = θ a
2,− ≡ θ a

c ,
where θ a

c = 1/2, are equal to each other and, unlike ξ a
c ,

independent of G.

3.2. Identical action of adparticles on the adsorbent: χ1 = χ2

In this simplest case, g1 = g2 ≡ g, G = 1, and the required
quantities ξ and θn are defined only by one quantity θ+,

ξ = θ+, θ1 =
θ+

1 + S0
, θ2 = S0 θ1. (35)

The surface coverage θ+ is a solution of the equation

`+ =
θ+

1 − θ+
exp (−g θ+), (36)

where
`+ = `1 + `2 = (1 + S0) `1 (37)

is the summary dimensionless concentration of gas particles.
Since equation (36) coincides with the equation for

one-component adsorption (22) with replacements of θ1

by θ+ and `1 by `+, the problem of adsorption of a
two-component gas is reduced to the problem of adsorption
of a one-component gas with the dimensionless concentration
l+. This enables us to directly use the results in [27] for the
one-component adsorption.

First, consider the case of a small coupling parameter,
g � 1. By using (35) and (36), we get

θn ≈ θL
n

{
1 + g

`+

(1 + l+)2

}
, n = 1, 2. (38)

Since the second term on the right-hand side of (38) is
positive, the adsorbent deformation in adsorption increases
the number of adparticles of both species. This result agrees
with the general conclusion presented below of an increase in
the number of adparticles due to the adsorbent deformation,
which is true for any value of g. Indeed, by rewriting (36) in
the form

θ+

1 − θ+
= `+ exp (g θ+) (39)

and taking into account that the quantities θ+/(1 − θ+) and
`+ are equal to the ratios of the number of bound adsorption
sites to the number of vacant adsorption sites, respectively,
with and without regard for the adsorbent deformation
in adsorption, we immediately establish that the surface
coverage θ+ is greater than that in the Langmuir case for

any gas concentration. The difference between the number of
adparticles in the nonlinear (g 6= 0) and linear (g = 0) cases
increases with the coupling parameter g.

By using analysis of adsorption isotherms in [27], we
obtain that θ+ essentially depends on the values of g.
For g < gc = 4, as in the Langmuir case, the system is
monostable: there is a single-valued correspondence between
the concentration `+ and the surface coverage θ+. For g > gc,
the situation cardinally changes: if `+ 6∈ [`b

+,1, `b
+,2], where

`b
+,1 and `b

+,2 are the bifurcation concentrations whose explicit
expressions are given below, then, as before, for every `+,
there is a unique θ+, whereas, for any `+ ∈ (`b

+,1, `b
+,2),

there are three values of θ+: θ+,1 < θ+,2 < θ+,3. Furthermore,
the stationary solutions θ+,1 and θ+,3 of system (7) are
asymptotically stable and the stationary solution θ+,2 is
unstable.

If the concentration `+ ∈ [`b
+,1, `b

+,2] tends to the end point
`b

+,1 (or `b
+,2) of the interval, then the stable θ+,3 (or θ+,1) and

unstable θ+,2 solutions approach each other and, in the limit
`+ = `b

+,1 (or `+ = `b
+,2), coalesce into the two-fold solution

θb
+,1 (or θb

+,2) equal to

θb
+,1 =

1 + w+

2
or θb

+,2 =
1 − w+

2
, (40)

where the quantity

w+ =

√
1 −

4

g
(41)

is the width of the interval of instability of θ+ symmetric
about 1/2.

The bifurcation concentrations `b
+,1 and `b

+,2 for which
the dynamical system (7) has two stationary solutions, one of
which (θb

+,1 or θb
+,2) is two-fold, are equal to [27]

`b
+,k =

(
g θb

+,k − 1
)

exp (−g θb
+,k), k = 1, 2. (42)

The bifurcation concentrations `b
1,k, k = 1, 2, are defined by

`b
+,k with the use of relation (37).

Thus, for g > gc, there is an interval of values of `+ whose
end points `b

+,1, `b
+,2 and width

I+(g) = `b
+,2 − `b

+,1

=

{
(g − 2) sinh

gw+

2
− gw+ cosh

gw+

2

}
exp

(
−

g

2

)
(43)

depend on the coupling parameter g so that the system is
bistable if the concentration `+ belongs to this interval. We call
this interval of concentrations `+ the bistability interval of the
system. Note that relation (43) coincides with the width of the
interval of pump intensity obtained in [36] for bistability of the
function of a macromolecule in repeating cycles of reactions.

If the coupling parameter g is close to the critical gc, i.e.
g = 4 (1 + ε), 0 < ε � 1, then the bistability interval is very
narrow

I+(g) ≈
8

3
exp (−2) ε3/2 (44)

the stationary solutions θ+,1, θ+,2 and θ+,3 are close to each
other, and w+ ≈ ε1/2. In the limit ε → 0 , the bistability

8
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Figure 1. Adsorption isotherms of adparticles of species 1 for the
one-component (curve 1) and two-component (curve 2) gas for
g = 6, G = 1, S0 = 0.5.

interval disappears and three stationary solutions coalesce
into the three-fold solution θ c

+ = 1/2. Thus, for g = 4 and
`+ = `c

+ = exp (−2) ≈ 0.135, the dynamical system (7) has
one three-fold stationary solution.

The comparison of the S-shaped adsorption isotherms of
adparticles of species 1 in figure 1 for the one-component
(curve 1) and two-component (curve 2) gas for g = 6 > gc

clearly illustrates the influence of particles of species 2 in the
gas mixture on the behavior of the surface coverage θ1. In this
and subsequent figures for the surface coverages θn(`1) and
the equilibrium position of oscillator ξ(`1), the parts of curves
corresponding to stable and unstable stationary solutions are
shown, respectively, by solid and broken lines.

The obtained adsorption isotherms essentially differ
from the classical Langmuir isotherms. At the same time,
the presence of particles of species 2 in the gas phase
leads only to quantitative changes in adsorption isotherms
of a one-component gas for a deformable adsorbent [27]:
a decrease in the amount of adsorbed substance and
displacement and a decrease in the bistability interval of the
system, which completely agrees with relations (35), (37)
and (42).

As the concentration `1 increases from zero, the surface
coverage θ1 increases along the lower stable branch of the
isotherm and the increment of θ1 is determined by both
an increase in the gas concentration and a change in the
adsorption properties of the adsorbent due to its deformation.
Since the lower stable branch of the isotherm ends at `1 =

`b
1,2, a negligible excess of the bifurcation concentration

`b
1,2 is accompanied by the jump of θ1 to the upper stable

branch of the isotherm, i.e. a stepwise increase in the surface
coverage solely due to a change in adsorption properties of
the adsorbent. This transition can include many gas particles
(furthermore, of both species) successively taking part in the
process of adsorption–desorption on the same adsorption site.
Thus, at this stage, some interaction between the particle
leaving the adsorption site and the particle binding with it
occurs.

A subsequent increase in the concentration `1 slightly
affects the surface coverage θ1 that varies along the upper
stable branch because the majority of adsorption sites are
already bound.

In passing through the bifurcation concentration `b
1,2,

desorption of adparticles essentially decreases due to a
considerable increase in their activation energy for desorption.
As a result, for returning from the upper stable branch of
the isotherm to its lower stable branch, the concentration
`1 must be lower than `b

1,2. As `1 decreases from a value
greater than `b

1,2, the surface coverage θ1 decreases along the
upper stable branch of the isotherm up to its end at `1 =

`b
1,1. In passing through the bifurcation concentration `b

1,1, the
surface coverage jumps down to the lower stable branch of the
isotherm and then decreases along this branch.

The behavior of the surface coverage θ1 versus `1 agrees
with the principle of perfect delay [37, 38]: a system that is
in a stable state at the initial time remains in this state with
variation in a parameter (the concentration `1 in the case at
hand) as long as the state exists.

According to (35), the specific features of adsorption
isotherms are also true for the coordinate ξ characterizing
the displacement of the plane of adsorption sites from its
nonperturbed position. For example, the curves in figure 1
also describe the equilibrium position of the oscillator versus
`1 in adsorption of a one-component and two-component gas
if, instead of θ1, ξ (for one-component adsorption) and (2/3) ξ

(for two-component adsorption) are laid off along the ordinate
axis.

3.3. Equilibrium position of the oscillator

The equilibrium position of the oscillator ξ(`1) is a solution
of equation (18). To analyze solutions of this equation, we
plot the function `1(ξ) inverse to the required ξ(`1), i.e.
the right-hand side of (18). The abscissas of the points
of intersection of the graph of the function `1(ξ) with a
horizontal line corresponding to the given concentration `1 >

0 are solutions of equation (18). Thus, the problem under
study is reduced to the investigation of the function `1(ξ)> 0
depending on the control parameters g1, G and S0.

Points of possible finite local extrema of the function
`1(ξ) are solutions of the equation

L(ξ ; g1, G, S0) = 0, (45)

where

L(ξ ; g1, G, S0) = L1(ξ ; g1) + G S(ξ) L2(ξ ; g1, G) (46)

the quantity

L1(ξ ; g1) = 1 + g1ξ (ξ − 1) (47)

is associated with adsorption of a one-component gas of
species 1 and the quantity

L2(ξ ; g1, G) = 1 + g1ξ (ξ − G) (48)

is caused by the presence of particles of species 2 in the binary
gas mixture.

In the special case where adparticles of species 2
do not affect the adsorbent deformation, χ2 = 0 (G = 0),
equation (45) coincides with the equation

L1(ξ ; g1) = 0 (49)

9
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Table 1. Control parameters for five-fold solutions.

Control parameters Solutions

Number Gbut gbut
1 `but

1 Sbut
0 ξ but θ but

1 θ but
2

1 2 3 4 exp (−3) exp (−3)/4 1 2/3 1/6
2 1/2 12 exp (−6) 4 exp (3) 1/2 1/6 2/3
3 −1 3 1/4 1 0 1/6 1/6

for points of possible extrema of `1(ξ) in adsorption of a
one-component gas of species 1.

Note that equation (45) is also reduced to (49) in another
special case investigated in section 3.2 of the identical action
of all adparticles on the adsorbent, χ1 = χ2 (G = 1).

We denote real roots of equation (45) for S0 > 0 by ξ b
k ,

where k = 1, 2, . . ., and call roots ξ b
k for which the bifurcation

concentrations `b
1,k = `1(ξ

b
k ) > 0 bifurcation coordinates. By

using (16), (17) and (45)–(48), for G 6= 0, 1, we obtain
the following relations for the bifurcation surface coverages
θb

1,k = θ1(ξ
b
k ) and θb

2,k = θ2(ξ
b
k ):

θb
1,k =

L2(ξ
b
k ; g1, G)

g1 (1 − G)
, θb

2,k =
L1(ξ

b
k ; g1)

g1G (G − 1)
. (50)

The function `1(ξ) has a finite local extremum at the point
ξ = ξ b

k if the function

Lc(ξ ; g1, G) = 2ξ − 1 + (ξ − G) L1(ξ ; g1) (51)

is not equal to zero at this point. In this case, ξ b
k , θb

1,k, θb
2,k

are the components of the kth two-fold stationary solution of
system (7). Otherwise, for

Lc(ξ
b
k ; g1, G) = 0 (52)

the investigation of `1(ξ) at this point must be continued. By
ξ c

k , k = 1, 2, 3, we denote real roots of the cubic equation (52).
Both the number of these roots and their values depend on g1

and G. We call roots ξ c
k for which the critical concentrations

`c
1,k = `(ξ c

k ) > 0 critical coordinates. The critical values of
S0 > 0 denoted by Sc

k are determined from (45) for ξ = ξ c
k .

The critical surface coverages θ c
1,k and θ c

2,k are defined by
relations (50) with ξ b

k replaced by ξ c
k . Hence, ξ c

k , θ c
1,k, θ c

2,k
are the components of the kth at least three-fold stationary
solution of system (7).

The more detailed analysis shows that equation (18)
has a maximum (five-fold) multiple root for three values
Gbut

= 2, 1/2, −1 of the parameter G and the corresponding
values of g1, `1, S0. In the four-dimensional (4D) space of
control parameters {`1, S0, g1, G}, a point with coordinates
`but

1 , Sbut
0 , gbut

1 , Gbut (a butterfly-type catastrophe [37, 38])
gives a five-fold stationary solution of system (7). In the
three-dimensional (3D) space of solutions {ξ, θ1, θ2}, this
five-fold solution is a point with coordinates ξ but, θbut

1 , θbut
2 .

The values of the three five-fold stationary solutions of
system (7) and the corresponding control parameters are given
in table 1.

In the general case, the analysis of stationary solutions of
system (7) depending on control parameters is a complicated
problem. To investigate the problem, we proceed as follows:
first, by fixing a value of G, we select a 3D subspace of
control parameters {`1, S0, g1} from the original 4D space.

Among all 3D subspaces thus obtained, there are only three
subspaces for G = Gbut, each of which contains a unique point
with coordinates `but

1 , Sbut
0 , gbut

1 , giving a five-fold stationary
solution of system (7). Moreover, in these three cases, analytic
expressions are relatively simple. Then, by using the results
of the analysis of stationary solutions of system (7) in these
special cases, we can draw the corresponding conclusions for
other values of G for which system (7) does not have five-fold
stationary solutions. Since the case of negative values of G is
of interest in its own right, the case G = −1 is not investigated
here. In view of the fact that the cases G = 2 and 1/2 are
similar (see table 1), below, we consider the case G = 2.

3.4. Case G = 2

In this case, equation (52) has three roots

ξ c
1 = 1, ξ c

2 ≡ ξ c
+ = 1 + q,

ξ c
3 ≡ ξ c

−
= 1 − q, q =

√
1 −

3

g1
(53)

which are points of inflection of the function `1(ξ) and,
furthermore, at the points ξ = ξ c

+ and ξ = ξ c
−
, d3 `1(ξ)/dξ 3

6=

0, whereas, at the point ξ = ξ c
1 , d3 `1(ξ)/dξ 3

6= 0 if g1 6=

3 and d3 `1(ξ)/dξ 3
= d4 `1(ξ)/dξ 4

= 0, d5 `1(ξ)/dξ 5
6= 0 if

g1 = 3. According to (53), the function `1(ξ) has one point
of inflection ξ c

1 if g1 < 3 and three points of inflection if
g1 > 3; furthermore, only two of them (ξ c

+ and ξ c
−

) depend
on the coupling parameter g1. This result essentially differs
from the results of adsorption of a one-component gas or a
two-component gas for G = 1 for which the function `1(ξ)

has only one point of inflection, ξ c
= 1/2, for g1 = 4. If

limg1→3 +0 , then the three roots (53) coalesce into one triple
root.

The critical parameters `c
1,k and Sc

k (re-denoted as follows:
`c

1,2 ≡ `c
1,+, `

c
1,3 ≡ `c

1,−, Sc
2 ≡ Sc

+, Sc
3 ≡ Sc

−
) are equal to

`c
1,1 = 2 (g1 − 1) exp (−g1), `c

1,± =
4

g1ξ
c
∓ − 2

exp (−g1ξ
c
±
),

(54)

Sc
1 =

exp (−g1)

2 (g1 − 1)
, Sc

±
=

g1ξ
c
±

− 2

4
exp (−g1ξ

c
±
). (55)

Non-negativity of `1 and S0 imposes the following restrictions
on g1: g1 > 1 for ξ c

1 and g1 ∈ [3, 4) for ξ c
±

. Thus, the
function `1(ξ)> 0 has three points of inflection only for g1 ∈

(3, 4) and, hence, an essential difference between adsorption
isotherms of two-component and one-component gases are
expected precisely in this range of values of g1. The quantities
`c

1,1, `c
1,± and Sc

1, Sc
±

as functions of the coupling parameter g1

are arranged as follows: `c
1,+ > `c

1,− > `c
1,1 and Sc

1 > Sc
+ > Sc

−

for any g1 ∈ (3, 4) and coincide (`c
1,1 = `c

1,± = `but
1 ≈ 0.199

and Sc
1 = Sc

±
= Sbut

0 ≈ 0.0124) for g1 = 3.
By substituting (54) and (55) into (50), we obtain the

critical surface coverages θ c
n,k (re-denoted as follows: θ c

n,2 ≡

θ c
n,+, θ c

n,3 ≡ θ c
n,−, where n = 1, 2)

θ c
1,1 = 1 −

1

g1
, θ c

1,± =
2

g1
, θ c

2,1 =
1

2g1
, θ c

2,± =
g1ξ

c
±

− 2

2g1
.

(56)
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Figure 2. Graphical solution of equation (18) for different values of S0: (a) S0 = 0.001 (1), 0.003 (2), 0.005 (3); (b) S0 = Sc
−

(1), 0.0055 (2),
Sc

+ (3); (c) S0 = 0.0057 (1), 0.005 75 (2), 0.0058 (3); (d) S0 = Sc
1 (1), 0.007 (2), 0.01 (3); G = 2, g1 = 3.5. Horizontal dashed lines correspond

to constant values of the concentration `1.

In the degenerate case g1 = 3, we have θ c
1,1 = θ c

1,± = θbut
1 =

2/3 and θ c
2,1 = θ c

2,± = θbut
2 = 1/6.

In the case g1 = 3.5 considered below, ξ c
+ ≈ 1.378, ξ c

−
≈

0.622 and `c
1,1 ≈ 0.151, `c

1,+ ≈ 0.182, `c
1,− ≈ 0.161, Sc

1 ≈

0.006 04, Sc
+ ≈ 0.005 68, c

−
≈ 0.005 02.

The graphs of `1(ξ) for different values of S0 are shown
in figure 2. The required solutions ξ of equation (18) are the
abscissas of the points of intersection of a dashed horizontal
line corresponding to the given `1 with the graph of `1(ξ).

For low concentrations `2 such that S0 < Sc
−

, the curve of
the function `1(ξ) intersects any horizontal line of the given
`1 at one point, which gives a unique value of ξ for any
`1 (figure 2(a)). An increase in S0 is accompanied by an
increase in the number of adparticles of species 2 and,
hence, the effective adsorption-induced force F(x) acting on
adsorption sites, which increases their displacement from the
nonperturbed equilibrium position ξ = 0. For the least critical
S0 = Sc

−
(curve 1 in figure 2(b)), the function `1(ξ) has a point

of inflection at ξ = ξ c
−

and is equal to the critical concentration
`c

1,− at this point. A negligible increase in S0 leads to the
deformation of the curve in the neighborhood of the point ξ c

−

so that a minimum and a maximum of `1(ξ) appear, equal
to the bifurcation concentrations `b

1,1 and `b
1,2 (`b

1,1 < `b
1,2 <

`c
1,−), respectively, at the points ξ = ξ b

1 and ξ = ξ b
2 . As S0

increases, the bifurcation concentrations `b
1,1 and `b

1,2 decrease
and the width I2,1 = `b

1,2 − `b
1,1 of the interval [`b

1,1, `b
1,2],

called the first bistability interval of the system, increases

(cf I2,1 for curves 2 and 3 in figure 2(b)). The situation is
similar to that in the adsorption of a one-component gas [27]
or a two-component gas for G = 1 if values of the coupling
parameter are greater than critical: for `1 6∈ [`b

1,1, `b
1,2], there

is a single-valued correspondence between the concentration
`1 and the coordinate ξ ; for any `1 ∈ (`b

1,1, `b
1,2), there are

three values of the coordinate ξ : ξ1 < ξ2 < ξ3; furthermore, the
stationary solutions ξ1 and ξ3 of system (7) are asymptotically
stable and the stationary solution ξ2 is unstable. If the
concentration `1 ∈ [`b

1,1, `b
1,2] tends to the end point `b

1,1 (or
`b

1,2) of the interval, then the stable ξ3 (or ξ1) and unstable
ξ2 solutions approach each other and, in the limit `1 = `b

1,1 (or
`1 = `b

1,2), coalesce into the two-fold solution ξ b
1 (or ξ b

2 ). Thus,
for S0 ∈ (Sc

−
, Sc

+), the system is monostable if `1 6∈ [`b
1,1, `b

1,2]
and bistable if `1 ∈ [`b

1,1, `b
1,2].

For the second critical value S0 = Sc
+ (curve 3 in

figure 2(b)), the function `1(ξ) has a point of inflection at
ξ = ξ c

+ and is equal to the maximum critical concentration
`c

1,+ at this point. As S0 ∈ (Sc
+, Sc

1) increases, the behavior
of `1(ξ) (figure 2(c)) is similar to that in figure 2(b) for
S0 ∈ (Sc

−
, Sc

+). First, the function changes the shape in the
neighborhood of the point ξ c

+ so that `1(ξ) has a minimum and
a maximum equal to the bifurcation concentrations `b

1,3 and
`b

1,4 (`b
1,3 < `b

1,4 < `c
1,+), respectively, at the points ξ = ξ b

3 and
ξ = ξ b

4 . This yields the second bistability interval [`b
1,3, `b

1,4]
of the system of width I4,3 = `b

1,4 − `b
1,3 nonintersecting with

the first. As S0 increases, the bifurcation concentrations

11
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Figure 3. Bifurcation curve for G = 2, g1 = 3.5.

`b
1,3 and `b

1,4 decrease and the width I4,3 increases (cf I4,3

for the curves in figure 2(c)). An increase in S0 ∈ (Sc
+, Sc

1)

leads, first, to the partial overlapping of the first and second
bistability intervals and then to their complete overlapping,
where the second bistability interval includes the first
(curve 3 in figure 2(c)). In the case of overlapping bistability
intervals, for any concentration `1 ∈ (`t

1,1, `t
1,2), where

[`t
1,1, `t

1,2] = [`b
1,1, `b

1,2] ∩ [`b
1,3, `b

1,4], `t
1,1 = max (`b

1,1, `b
1,3),

`t
1,2 = min (`b

1,2, `b
1,4), there are five values of the coordinate

ξ : ξ1 < ξ2 < ξ3 < ξ4 < ξ5; furthermore, the stationary
solutions ξ1, ξ3 and ξ5 of system (7) are asymptotically
stable and the stationary solutions ξ2 and ξ4 are unstable.
Thus, for `1 ∈ [`t

1,1, `t
1,2], the system is tristable. We call the

concentration interval [`t
1,1, `t

1,2] a tristability interval of the
system.

If the concentration `1 ∈ [`t
1,1, `t

1,2] tends to the end point
of the interval, then a stable solution and an unstable solution
approach each other and, in the limit `1 = `t

1,1 (or `1 =

`t
1,2), coalesce into a two-fold solution. In this case, system

(7) has four stationary solutions (two asymptotically stable,
one unstable and one two-fold). For `1 = `t

1,1, the two-fold
solution is ξ b

1 if `b
1,1 > `b

1,3 or ξ b
3 if `b

1,1 < `b
1,3. For `1 = `t

1,2,
the two-fold solution is ξ b

2 if `b
1,2 < `b

1,4 or ξ b
4 if `b

1,2 > `b
1,4.

The arguments for a two-fold solution for the end points
of the tristability interval must be corrected for two values
of S0 ∈ (Sc

+, Sc
1) denoted by Sd and St and corresponding,

respectively, to the equality of the lower (for S0 = Sd ≈

0.005 78) or upper (for S0 = St ≈ 0.005 89) end points of the
bistability intervals, i.e. the cases of equal minima `b

1,1 =

`b
1,3 ≡ `b

d ≈ 0.155 (`t
1,1 = `b

d ) or maxima `b
1,2 = `b

1,4 ≡ `b
t ≈

0.158 (`t
1,2 = `b

t ) of `1(ξ). For `t
1,1 = `b

d (or `t
1,2 = `b

t ), if the
concentration `1 ∈ [`t

1,1, `
t
1,2] tends to the end point `b

d (or
`b

t ) of the interval, then simultaneously two pairs of stable
and unstable solutions approach each other and, in the limit
`1 = `b

d (or `1 = `b
t ), coalesce into two two-fold solutions. In

these two cases, system (7) has three stationary solutions (one
asymptotically stable and two two-fold). As soon as `1 leaves
the tristability interval, both two-fold solutions disappear and
the system becomes monostable.

It is worth noting one more case where system (7) has one
asymptotically stable and two two-fold stationary solutions.
This case occurs for the value of S0 ∈ (Sc

+, Sc
1), denoted by Su

(Su ≈ 0.005 764), for which two bistability intervals have only
one common point `b

u such that `b
1,2 = `b

1,3 ≡ `b
u ≈ 0.1582, i.e.

the maximum of `1(ξ) at ξ = ξ b
2 is equal to the minimum

of this function at ξ = ξ b
3 : `1(ξ

b
2 ) = `1(ξ

b
3 ) ≡ `b

u . Unlike the
cases considered above for two-fold solutions, in this case, a
negligible variation (furthermore, in any side) in `1 from `b

u
is accompanied by the disappearance of one two-fold solution
and the splitting of the second into two (stable and unstable)
solutions.

Three values—Sd , St and Su—of S0 ∈ (Sc
+, Sc

1), for which
the system has two two-fold solutions, are arranged as
follows: St > Sd > Su .

As S0 ∈ (Sc
+, Sc

1) increases, the first bistability interval
decreases and the points ξ b

1 and ξ b
4 at which `1(ξ) has the

minimum and the maximum, respectively, approach each
other. For S0 = Sc

1, the points coalesce into one ξ c
1 at which the

function `1(ξ) has a point of inflection and is equal to the least
critical concentration `c

1,1 (curve 1 in figure 2(d)). For S0 > Sc
1,

the inflection of `1(ξ) disappears and the function has one
minimum and one maximum at the points ξ = ξ b

3 and ξ = ξ b
2 ,

respectively (curves 2 and 3 in figure 2(d)). Thus, for S0 > Sc
1,

the system has only one bistability interval [`b
1,3, `b

1,2] of
width I2,3 = `b

1,2 − `b
1,3.

For other values of g1 ∈ (3, 4), qualitative analysis of
specific features of stationary solutions of system (7) can be
made by using the behavior of the critical values of `1 and
S0 [35].

Specific features of the behavior of system (7) for G = 2
can be clearly illustrated by plotting a bifurcation surface,
which is a set of multiple roots of equation (18), in the
3D space of control parameters {`1, S0, g1}. Instead of this
surface, we plot the bifurcation curve `1(S0), which is the
projection of the section of this bifurcation surface by a plane
of a fixed value of g1 onto the plane (S0, `1). To this end, by
using (18) and (45), we obtain the following representation of
this bifurcation curve in the parametric form, which is true for
any G 6= 0, 1:

S0 = −
1

G

L1(ξ ; g1)

L2(ξ ; g1, G)

1

w(ξ)
,

`1 =
G

1 − G

L2(ξ ; g1, G) exp (−g1ξ)

1 + g1(1 − ξ)(G − ξ)
.

(57)

The bifurcation curve in figure 3 plotted for the same values
of g1 and G as in figure 2 has several singular points,
which are shown in figure 3(b), where a part of the curve
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is scaled up for the most interesting range S0 ∈ (Sc
−
, Sc

1),
`1 ∈ (`c

1,1, `
c
1,+). The points P1 ≡ (Sc

1, `c
1,1), P+ ≡ (Sc

+, `c
1,+),

and P− ≡ (Sc
−
, `c

1,−) are the cusps of the bifurcation curve
corresponding to the points of inflection of the function
`1(ξ) at ξ = ξ c

1 , ξ c
+ and ξ c

−
, respectively. The self-intersection

points of the bifurcation curve Pd ≡ (Sd , `b
d), Pt ≡ (St , `b

t )

and Pu ≡ (Su, `b
u) correspond to the system with two two-fold

stationary solutions. For any point of the first quadrant of
this plane lying outside the bifurcation curve, system (7)
has one asymptotically stable stationary solution, i.e. it is a
domain of monostability of the system. For a point lying in
the curvilinear quadrangle Pt Pu Pd P1, which is the domain
of intersection of two curvilinear triangles P1 P+ Pd and
P1 P− Pt , system (7) has five stationary solutions (three
asymptotically stable and two unstable), i.e. it is the domain of
tristability of the system. If a point lies in one of the domains
(the curvilinear triangles Pt P+ Pu and Pu P− Pd and the
domain Bt Pt P1 Pd Bd , Bt and Bd being symbolic notations
for points of the upper and lower branches of the bifurcation
curve, respectively, in the limit S0 → ∞), then system (7) has
three stationary solutions (two asymptotically stable and one
unstable), i.e. they are domains of bistability of the system.
At any point of the bifurcation curve, except for the points
of the boundary of the curvilinear quadrangle Pt Pu Pd P1 and
the singular points P+ and P−, system (7) has two stationary
solutions (one asymptotically stable and one two-fold).
At a nonvertex point of the boundary of the quadrangle
Pt Pu Pd P1, system (7) has four stationary solutions (three
structurally stable—furthermore, two asymptotically stable
and one unstable—and one two-fold). At the singular points
Pd , Pt and Pu , system (7) has three stationary solutions (one
asymptotically stable and two two-fold). At the singular points
P+ and P−, system (7) has one three-fold stationary solution.
At the singular point P1, system (7) has three stationary
solutions (two asymptotically stable and one three-fold).

Motion in the plane (S0, `1) along a line can be
accompanied by the appearance of new solutions, the
disappearance of existing solutions, and a change in solution
stability in intersecting the bifurcation curve. This depends on
both the point of intersection and the line itself if it intersects
the bifurcation curve at a singular point and the direction of
motion. Independently of the line, its intersection with the
bifurcation curve at a nonsingular point is accompanied by
the appearance/disappearance (depending on the direction of
motion) of a pair of stationary (stable and unstable) solutions
of system (7). In entering the domain Pt P+ Pu or Pu P− Pd

through the cusp P+ or P−, respectively, a stable solution splits
into three solutions (two stable and one unstable) and changes
its stability. In entering the domain Pt P+ Pu P1 through the
cusp P1, an unstable solution splits into three solutions (two
unstable and one stable). In leaving these domains along a
line passing through the cusp, three solutions (two stable and
one unstable in the domains Pt P+ Pu and Pu P− Pd or two
unstable and one stable in the domain Pt P+ Pu P1) coalesce
into a three-fold solution at the cusp with its subsequent
transformation outside the point into a simple stable (for the
points P+ and P−) or unstable (for the point P1) solution.
In entering/leaving the domain of tristability Pt Pu Pd P1

from/for the domain of monostability through the points Pd ,
Pt or Pu , which are unique common points of these domains,

two two-fold solutions simultaneously appear/disappear. If a
line enters the domain Pt P+ Pu from the domain Pu P− Pd

(or, conversely, enters the domain Pu P− Pd from the domain
Pt P+ Pu) through their common point Pu , then a stable
solution and an unstable solution coalesce into a two-fold
solution at the point Pu that disappears as it moves away
from the point, whereas another two-fold solution appears at
this point and then splits into a pair of stable and unstable
solutions. A similar behavior of the system occurs in the
motion from one domain of bistability to another through their
common point (Pd for the domains of bistability Pu P− Pd and
Bt Pt P1 Pd Bd or Pt for the domains of bistability Pt P+ Pu

and Bt Pt P1 Pd Bd ).
The bifurcation curve for other values of g1 ∈ (3, 4) is

similar to the curve in figure 3. As g1 decreases, the triangles
Pu P− Pd and Pt P+ Pu and the quadrangle, Pt Pu Pd P1

decrease and, in the limit g1 → 3, shrink to the point Pbut ≡

(Sbut
0 , `but

1 ), and tristability of the system is impossible for
g1 6 3. As g1 increases, the triangles Pu P− Pd and Pt P+ Pu

elongate toward the ordinate axis and along it, respectively,
and, furthermore, in the limit g1 → 4, the vertex P− of the
triangle Pu P− Pd lies on the ordinate axis (P− ≡ (0, `c

1),
where `c

1 = exp (−2) is the critical concentration in the
adsorption of a one-component gas of species 1, and the vertex
P+ of the triangle Pt P+ Pu is at infinity ( P+ ≡ (exp (−6), ∞).

The graphs of the equilibrium position of oscillator
ξ(`1) and the surface coverage θn(`1) in figures 4 and 5,
respectively, clearly illustrate their essential dependence on
the value of S0. In the most interesting range S0 ∈ (Sc

−
, Sc

1)

(figures 4(b)–(h) and 5(b)–(h)), these characteristics are
shown only in a small interval of `1 in which the adsorption
isotherms essentially differ from the classical Langmuir ones.

For S0 < Sc
−

, the coordinate ξ increases with the
concentration `1 and tends to its asymptotic value ξ a

determined from equation (25) (figure 4(a)). According to
the analysis in section 3.1, ξ a

∈ (1, 2); the numerical analysis
shows that ξ a increases with S0. The adsorption isotherms in
figure 5(a) are similar to the classical Langmuir isotherms.
However, unlike the Langmuir case for which the ratio θ2/θ1 is
the constant equal to S0, variations in the adsorption properties
of the adsorbent in the competitive adsorption lead to the
dependence of this ratio on the concentration `1. As `1

increases, the ratio θ2/θ1 increases and considerably exceeds
the Langmuir one (for large values of `1, approximately by a
factor of 50).

For S0 ∈ (Sc
−
, Sc

+), the coordinate ξ(`1) (figure 4(b)) and
the surface coverage θn(`1) (figure 5(b)) have a hysteresis in
the first bistability interval of the system.

As the concentration `1 increases from zero, both the
coordinate ξ and the surface coverages θn increase along their
lower stable branches ending at the bifurcation concentration
`1 = `b

1,2. At this concentration, ξ and θn jump up to their
upper stable branches solely due to a change in adsorption
properties of the adsorbent. For convenience, transitions
between stable branches of ξ(`1) are shown in figure 4 by
light vertical straight lines with arrows indicating the direction
of transition. Arrows under and above the stable branches of
ξ(`1) indicate the direction of variation in `1. Furthermore,
as the concentration `1 increases from `b

1,2, the coordinate ξ

and the surface coverages θn increase along the upper stable
branches and tend to their asymptotic values ξ a and θ a

n .
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Figure 4. Equilibrium position of oscillator ξ versus the concentration `1 for different values of S0: S0 = 0.003 (a), 0.0055 (b), Su (c),
0.005 77 (d), Sd (e), 0.005 85 (f), St (g), 0.005 93 (h), 0.01 (i); G = 2, g1 = 3.5.

The transition of the coordinate ξ from the lower stable
branch to the upper one at the bifurcation concentration `b

1,2
is accompanied by an increase in the activation energy for
desorption of adparticles, which hampers their desorption.
As a result, as the concentration `1 decreases from a value
greater than `b

1,2, the reverse transition of ξ and θn from their
upper stable branches to the lower ones occurs at the lower
bifurcation concentration `b

1,1 < `b
1,2.

The curves in figures 4(c) and 5(c) correspond to the
special case S0 = Su where the system has two bistability
intervals with a common point `1 = `b

u . Each of the functions
ξ(`1) and θn(`1) has three stable and two unstable branches
(the j th unstable branch connects the j th and ( j + 1)th
stable branches, where j = 1, 2). However, the behaviors
of these functions are different. The coordinate ξ(`1) has
two successive hystereses in the touching bistability intervals
(figure 4(c)). As the concentration `1 increases from zero, the
coordinate ξ increases along the first stable branch up to its
end at `1 = `b

u , then jumps up to the second stable branch and

increases with `1 along this branch up to its end at `1 = `b
1,4,

then jumps up to the third stable branch and increases along
it, tending to its asymptotic value ξ a. As the concentration
`1 decreases from a value greater than `b

1,4, the coordinate
ξ successively jumps down from the third stable branch to
the second and from the second stable branch to the first one
at the bifurcation concentrations `b

u and `b
1,1, respectively, at

which these branches end; furthermore, the transitions from
the first and third stable branches to the second go along the
same vertical straight line `1 = `b

u .
The behavior of the surface coverage θ2(`1) in figure 5(c)

is similar to the behavior of the coordinate ξ(`1) in figure 4(c).
Note that a similar behavior of θ2(`1) and ξ(`1) also occurs for
other values of S0 (cf curve 2 in figures 5(c)–(i) with the curve
in figures 4(c)–(i)).

The surface coverage θ1(`1) has another behavior (see
curve 1 in figure 5(c)). The different location of the second
and third stable branches of θ1(`1) and θ2(`1) illustrates the
essentially different behavior of the surface coverages θ1
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Figure 5. Surface coverages θn by adparticles of species n (n = 1, curve 1; n = 2, curve 2) versus the concentration `1. The values of S0, G
and g1 are the same as in figure 4.

and θ2 in transition between stable branches at bifurcation
concentrations of `1. The transition of the surface coverages
θn from the first stable branch to the second leads to their
stepwise increase. However, in transition of the surface
coverages θn from the second stable branch to the third,
the value of θ2 increases stepwise, whereas the value of θ1

decreases stepwise. Thus, as the concentration `1 increases,
the surface coverage θ2 continuously increases with `1

along its stable branches and increases stepwise in transition
between stable branches at a bifurcation concentration of
`1, whereas the surface coverage θ1 can continuously both
increase and decrease with `1 along its stable branches and
both increase and decrease stepwise in transition between
stable branches at a bifurcation concentration of `1. This
different behavior of θ1(`1) and θ2(`1) is caused by the
different growth of the residence times of adparticles of
different species on the deformable adsorbent in adsorption
and, furthermore, quantity (14) characterizing this difference
exponentially increases with displacement of adsorption sites
from their nonperturbed equilibrium position. This leads to a
greater amount of adparticles of species 2 relative to that of

species 1 (cf the third stable branches of θ1(`1) and θ2(`1)),
whereas, in the classical case, θ2 � θ1. This result agrees
with condition (28), according to which, for ξ a > 1.5, the
asymptotic ratio S(ξ a) defined by relation (27) is greater
than 1. Indeed, in the considered case, ξ a

≈ 1.65, which yields
S(ξ a) ≈ 1.85.

One more specific feature is a self-tangency point of
θ1(`1) (the point of contact of four branches of the function:
two stable (first and third) and two unstable branches) at `1 =

`b
u . As was discussed above, in this special case, there are three

stationary coordinates: two two-fold (ξ b
2 and ξ b

3 , ξ b
2 < ξ b

3 ) and
one stable lying between them and equal to the ordinate
of the point of intersection of the second stable branch of
ξ(`1) with the vertical straight line `1 = `b

u (figure 4(c)). By
taking into account the principle of perfect delay [37, 38]
and the condition for transition between stationary solutions
of the system (according to which all components (ξ , θ1, θ2)
of a stationary three-component solution simultaneously go
from their stable branches at a bifurcation concentration at
which these branches end to the other corresponding stable
branches), as `1 increases, a discontinuous transition of θ1
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to the second stable branch occurs at `1 = `b
u rather than a

continuous transition to the third stable branch touching with
the first stable branch at `1 = `b

u . Furthermore, as `1 increases,
the surface coverage θ1 decreases along the second stable
branch up to its end at `1 = `b

1,4, then jumps down to the
third stable branch and decreases along this branch tending
to its asymptotic value θ a

1 . As the concentration `1 decreases
from a value greater than `b

1,4, the surface coverage θ1 varies
along the third stable branch up to its end at `1 = `b

u , then
jumps up to the second stable branch (furthermore, along the
same vertical straight line as for increasing `1, rather than
continuously going to the first stable branch touching the third
stable branch at `1 = `b

u), then varies along the second stable
branch up to its end at `1 = `b

1,1, then jumps down to the first
stable branch and decreases along this branch.

It turns out that the equality of the two bifurcation values
of the surface coverage θ1 for `1 = `b

u and S0 = Su (θb
1,2 =

θb
1,3 ≡ θu

1 ) shown in figure 5(c) also occurs for other values of
the parameters g1 and G; the values of `b

u and Su depend on g1

and G. By using (50) and (48), we obtain that, in this case, the
bifurcation coordinates ξ b

2 and ξ b
3 are symmetrically located

about G/2 : ξ b
2 = G/2 − η and ξ b

3 = G/2 + η. For G = 2, the
quantity η is a positive solution of the equation

g1x

1 + g1x2
= tanh g1x (58)

the quantities Su and `b
u are expressed in terms of η as follows:

Su =
cosh g1η

cosh 2g1η

η (1 − η tanh g1η)

(1 + η2) tanh 2g1η − 2η
exp (−g1),

`b
u = 2

g1(1 − η2) − 1

1 + g1η(1 + η)
exp (g1(η − 1)),

(59)

and the bifurcation surface coverages have the form

θu
1 = 1 − η2

−
1

g1
, θb

2,2 =
1

2

{
1

g1
+ η (η − 1)

}
,

θb
2,3 =

1

2

{
1

g1
+ η (η + 1)

}
.

(60)

Equation (58) has a nonzero solution η for g1 > 3 and
its value increases with g1: η ∈ (0, 1) for g1 ∈ (3, ∞).
According to (60), as g1 increases, the difference δu

= θu
1 −

θb
2,3 decreases from its maximum value limg1→3δ

u
= 0.5 to the

minimum value limg1→∞δu
= −1. For example, δu

≈ 0.453
for g1 = 3.01 and δu

≈ −0.774 for g1 = 10. For g1 = 3.5
(figures 4(c) and 5(c)), η ≈ 0.468 and the values of θu

1 and
θb

2,3 are close to each other (δu
≈ 0.01).

The curves in figures 4(d)–(h) and 5(d)–(h) correspond
to different cases of tristability of the system: partial
(figures 4(d), (h) and 5(d), (h)) and complete (figures 4(e)–(g)
and 5(e)–(g)) overlapping of the bistability intervals
[`b

1,1, `b
1,2] and [`b

1,3, `b
1,4]. In the domain `1 ∈ [`t

1,1, `t
1,2], the

coordinate ξ(`1) and the surface coverage θ2(`1) have two
‘parallel’ hystereses.

As the concentration `1 increases/decreases, the behavior
of ξ(`1) in figure 4(d) is similar to the behavior of this function
in figure 4(c) but the transitions of ξ from the second (as `1

increases) and third (as `1 decreases) stable branches to the
second stable branch go along the different vertical straight
lines `1 = `b

1,2 and `1 = `b
1,3 rather than the same one as in

figure 4(c).
The behavior of θ1(`1) in figure 5(d) is similar to

its behavior in figure 5(c) but with the replacement of
the self-tangency point of θ1(`1) in figure 5(c) by two
self-intersection points of θ1(`1) in figure 5(d), one of which
is the point of intersection of the first and third stable branches
and the second is the point of intersection of the unstable
branches. Note that the intersection of two stable branches
of θ1(`1) means only the same value of θ1 for two different
displacements of adsorption sites ξ for the corresponding
value of `1, i.e. a partial degeneration of two stationary
three-component solutions of the problem with respect to
one component (θ1 in this case) rather than a continuous
transition between stable branches of θ1(`1) at the point of
their intersection, which is forbidden by the condition for
transition between stationary solutions of the system.

In the special case S0 = Sd where system (7) has two
two-fold stationary solutions, the behavior of ξ(`1) and
θn(`1) in figures 4(e) and 5(e) is similar to their behavior
in figures 4(d) and 5(d) only for increasing `1. As the
concentration `1 decreases from a value greater than `b

1,4,
these quantities vary along their third stable branches up
to their end at `1 = `b

d ; then ξ and θ2 successively jump
down, first, to the second stable branches and then to the first
stable branches, whereas θ1 successively, first, jumps up to
the second stable branch and then jumps down to the first
stable branch. Then ξ and θn decrease along their first stable
branches.

The curves in figures 4(f) and 5(f) distinctly illustrate
discontinuous transitions of ξ and θn from the third stable
branches directly to the first stable branches at `1 = `b

1,3
for S0 ∈ (Sd , St ) as the concentration `1 decreases, which
implies that a stationary solution of system (7) on the second
stationary branch can be achieved only for increasing `1.

In the special case S0 = St where system (7) has two
two-fold stationary solutions (figures 4(g) and 5(g)), as the
concentration `1 increases from zero, ξ and θn increase along
their first stable branches up to their end at `1 = `b

t . At this
bifurcation concentration, ξ and θ2 successively jump up,
first, to their second stable branches and then to the third
stable branches, whereas θ1, first, jumps up to the second
stable branch and then jumps down to the third stable branch.
Then ξ and θn vary along their third stable branches. As the
concentration `1 decreases from a value greater than `b

t , the
behavior of ξ(`1) and θn(`1) (‘disregard’ of the second stable
branches) is similar to their behavior in figures 4(f) and 5(f).

The curves in figures 4(h) and 5(h) for S0 ∈ (St , Sc
1)

illustrate that ξ(`1) and θn(`1) ‘disregard’ the second
stationary branches both for increasing (from a value less
than `b

1,1) and decreasing (from a value greater than `b
t )

concentration `1. Thus, a stationary solution of system (7)
on the second stable branch cannot be achieved by transition
from any other stable branch and, hence, a tristable system
behaves like a bistable one.

As is seen in figures 4(c)–(h) and 5(c)–(h), the length of
the second stable branch decreases as S0 ∈ [Su, Sc

1] increases
(most clearly, it is illustrated by the second stable branch of
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Figure 6. Equilibrium position of oscillator ξ versus the concentration `1 for different values of S0: S0 = 0.0003 (a), 0.000 475 (b),
0.000 48 (c), 0.000 55 (d), 0.000 64 (e), 0.000 66 (f); G = 2, g1 = 5.

θ1(`1)) and becomes equal to zero for S0 = Sc
1, which leads to

the union of two unstable branches.
For S0 > Sc

1, the coordinate ξ(`1) (figure 4(i)) and the
surface coverage θ2(`1) (figure 5(i)) have a single hysteresis
in the domain ` ∈ [`b

1,3, `b
1,2], whereas the surface coverage

θ1(`1) has a loop: two intersecting stable branches connected
by the unstable branch (figure 5(i)). Transitions between the
stable branches of θ1(`1) are discontinuous at ` = `b

1,2 (as
`1 increases) and ` = `b

1,3 (as `1 decreases) rather than a
continuous transition at the point of their intersection.

The curves in figure 5(i) illustrate that the asymptotical
value θ a

2 of the surface coverage θ2 considerably exceeds the
asymptotical value θ a

1 of the surface coverage θ1 (S(ξ a) ≈

7.12). Thus, due to a great displacement of adsorption sites
(ξ a

≈ 1.88), the adsorbent surface is occupied mainly by
adparticles of species 2 rather than adparticles of species 1
as in the Langmuir case.

3.5. Adsorption isotherms with several asymptotes

As has been shown in section 3.1, the coordinate ξ(`1) and
the surface coverages θn(`1) have three horizontal asymptotes
(two stable and one unstable) if g1 > ga

c and, for example,
S0 ∈ (Sa

−
, Sa

+) for G > 1. For G = 2, ga
c = gc = 4 and Sa

c =

exp(−6) ≈ 0.002 48.
The graphs of ξ(`1) and θn(`1) for g1 = 5 depicted

in figures 6 and 7, respectively, illustrate specific features
of these functions in the case where a stationary solution
of system (7) has several asymptotes. In this case, Sa

−
≈

0.000 4734 and Sa
+ ≈ 0.000 6462.

For S0 < Sa
−

, the coordinate ξ(`1) (figure 6(a)) and the
surface coverages θn(`1) (figure 7(a)) have a hysteresis typical

of these quantities in adsorption of a one-component gas for
values of the coupling parameter greater than critical [27] or
a two-component gas; for example, for g1 ∈ (3, 4) and S0 ∈

(Sc
−
, Sc

+) (see figures 4(b) and 5(b)). The coordinate ξ(`1)

consists of three branches: two stable branches (the lower
stable branch for `1 ∈ [0, `b

1,2] and the upper stable branch
for `1 ∈ [`b

1,1, ∞) that approaches its horizontal asymptote
ξ = ξ a

1 as `1 increases) and one unstable branch connecting
them. The surface coverages θn(`1) have a similar shape. For
all considered values of S0, the lower stable branch of θ2(`1)

in figure 7 almost coincides with the abscissa axis.
For S0 ∈ (Sa

−
, Sa

+), the behavior of ξ(`1) and θn(`1)

qualitatively differs from their behavior in figures 4 and 5.
For S0 > Sa

−
, there appears an isolated piece of ξ(`1) with a

semi-infinite domain of definition `1 ∈ [`b
1,3, ∞) (figure 6(b)).

This isolated piece consists of stable and unstable branches
starting at the bifurcation concentration `b

1,3 and rapidly
tending to closely lying asymptotes ξ = ξ a

3 and ξ = ξ a
2 (ξ a

3 >

ξ a
2 ), respectively, as `1 increases. Thus, the range of values of

the positive-definite function ξ(`1) consists of two intervals
(ξ ∈ [0, ξ a

1 ) and ξ ∈ (ξ a
2 , ξ a

3 )) with a gap ξ ∈ (ξ a
1 , ξ a

2 ) between
them. According to the principle of perfect delay [37, 38],
the transition from the first piece (ξ ∈ [0, ξ a

1 )) of ξ(`1) to the
isolated piece (ξ ∈ (ξ a

2 , ξ a
3 )) with variation in `1 is impossible

for any initial value of `1. If the initial state of the system lies
on the stable branch of the isolated piece of ξ(`1), then, as the
concentration `1 decreases, the coordinate ξ varies along this
branch up to its end at `1 = `b

1,3, then jumps down to the upper
stable branch of the first piece of ξ(`1) and varies along it in
the same way as in figure 6(a).

Since the behavior of the surface coverage θ2(`1) in
figure 7(b) is similar to the behavior of the coordinate ξ(`1)
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Figure 7. Surface coverages θn by adparticles of species n (n = 1, curve 1; n = 2, curve 2) versus the concentration `1. The values of S0, G
and g1 are the same as in figure 6.

in figure 6(b), all conclusions for ξ(`1) remain true for θ2(`1).
Moreover, this also holds for other values of S0 (cf curve 2 in
figures 7(c)–(f) with the curve in figures 6(c)–(f)).

The surface coverage θ1(`1) in figure 7(b) also has the
isolated piece. However, unlike the isolated pieces of θ2(`1)

and ξ(`1) (figure 6(b)), it lies below the asymptote θ1 = θ a
1,1

of the first piece of θ1(`1), θ a
1,1 > θ a

1,2 > θ a
1,3.

As S0 ∈ (Sa
−
, Sa

+) increases, the isolated piece of ξ(`1)

shifts to the ordinate axis (the bifurcation concentration `b
1,3

decreases), its thickness increases, and, at a certain interval
of `1, the system is tristable (figures 6(c)–(e)). As above,
the transition from the first piece of ξ(`1) to the isolated
piece with variation in `1 is impossible. However, as the
concentration `1 decreases, the transition from the stable
branch of the isolated piece of ξ(`1) to the lower stable branch
(rather than the upper stable branch as in figure 6(b)) of the
first piece of ξ(`1) occurs at `1 = `b

1,3.
Unlike the surface coverage θ2(`1), the pieces of the

surface coverage θ1(`1) in figures 7(c)–(e) intersect one
another. However, the continuous transition between stable
branches of the different pieces of θ1(`1) at the point of
their intersection is forbidden by the condition for transition
between stationary solutions of the system.

For S0 > Sa
+, the gap between two pieces of ξ(`1)

disappears (`b
1,4 is finite) and the function ξ(`1) is continuous

and has three stable and two unstable branches (figure 6(f)).
There are two bistability intervals (`b

1,3, `b
1,1) and (`b

1,2, `b
1,4)

and one tristability interval (`b
1,1, `b

1,2) between them. The
graph of θ1(`1) in figure 7(f) is also continuous and consists
of three stable branches and two unstable branches connecting
them. However, the shapes of θ1(`1) and θ2(`1) are essentially
different. For `1 > `b

1,4, the adsorption sites are considerably

displaced from their nonperturbed equilibrium position ξ =

0 so that ξ(`1) is, in fact, a constant (figure 6(f)). In this
case, an almost monolayer coverage of the surface mainly by
adparticles of species 2 occurs (cf the flat regions of the curves
in figure 7(f)), whereas, in the classical case, the surface
coverage by adparticles of species 2 is less than 0.1% of the
total coverage.

4. Adiabatic approximation

The specific features of stationary solutions of system (7)
investigated in section 3 can be explained with the use
of a potential. To this end, we consider the last equation
of system (7) in the overdamped approximation where the
masses of an adsorption site and adparticles are low and
the friction coefficient is so large that the first term on the
left-hand side of this equation can be neglected compared
to the second. By using the well-known results for a linear
free oscillator of constant mass [39], this approximation is
correct if

τ 2
M � τ 2

r , (61)

where τM = 1/ωM , ωM =
√

~/M is the vibration frequency
of an oscillator of mass M , and τr = α/~ is the typical
relaxation time of a massless oscillator.

Furthermore, we consider the case where the relaxation
time of the coordinate ξ(t) of a massless oscillator is much
greater than the relaxation times of the surface coverages
θn(t), n = 1, 2, in the linear case; i.e. the variables ξ and θn

are slow and fast, respectively. In this case, τr � τθ , where

τθ ≈ 2

{(
1

τ ad
1

+
1

τ ad
2

)
−

√(
1

τ ad
1

−
1

τ ad
2

)2

+
4

τ a
1 τ a

2

}−1

(62)
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τ ad
n = τ a

n τ d
n /(τ a

n + τ d
n ) is the time taken for the surface

coverage θn to reach the stationary value in the case of the
Langmuir adsorption of a one-component gas of species n,
and τ a

n = 1/ka
nCn can be regarded as the typical lifetime of a

vacant adsorption site in this case. By using the principle of
adiabatic elimination of the fast variables θn(t) in (7) [40], we
set dθn/dt = 0, n = 1, 2, and express the surface coverage θ1

versus the slow variable ξ as follows:

θ1 =
`1

`1 (1 + S(ξ)) + exp(−g1 ξ)
. (63)

The surface coverage θ2 is defined by relation (17) with θ1

given by relation (63). The coordinate ξ(t) is determined as a
solution of the nonlinear differential equation

α
dξ

dt
= −

dU (ξ)

dξ
(64)

that describes the motion of a massless oscillator in the
potential

U (ξ) =
~

2

{
ξ 2

− 2 h(ξ)

}
, (65)

where the second term on the right-hand side of (65) caused
by the adsorption-induced force acting on an adsorption site
has the form

h(ξ) = `1

∫ ξ

0
dy

1 + G S(y)

`1 (1 + S(y)) + exp(−g1 y)
. (66)

Relations (17), (63) and (64) correctly describe the behavior
of the dynamical variables ξ(t) and θn(t) for times t � τθ , for
which the fast variables θn(t) forget the initial data.

The shape of U (ξ) essentially depends on the control
parameters `1, g1, S0 and G. The stationary solutions ξk

of equation (64), where the subscript k is the number
of a stationary solution, are roots of equation (18) and,
furthermore, the number of roots can vary from 1 to 5
depending on the values of the control parameters. The roots
are enumerated so that ξk+1 > ξk , and Uk ≡ U (ξk). For simple
roots, the odd and even values of k correspond to the stable
(minima of U (ξ)) and unstable (maxima of U (ξ)) stationary
solutions of equation (64), respectively. For a double root

ξk , the potential has a point of inflection at ξ = ξk and
equation (64) has a two-fold stationary solution.

In the special case G = 1, relation (65) is reduced to
the potential in adsorption of a one-component gas on a
deformable adsorbent [27] with ` replaced by `+

U (ξ) =
~

2

{
ξ 2

− 2 ξ −
2

g
ln

`+ + exp (−g ξ )

`+ + 1

}
. (67)

By using the results for one-component adsorption [27],
we conclude that, for g > 4 and `+ ∈ (`b

+,1, `b
+,2), U (ξ) is

a two-well potential with local minima at ξ = ξ1 and ξ3

separated by a maximum at ξ = ξ2, where ξk, k = 1, 2, 3, are
the coordinates determined from equation (36) with regard to
relation (35). Thus, the system under study is bistable. For
g < 4 and any concentrations `1 and `2 as well as for g > 4
and `+ 6∈ [`b

+,1, `b
+,2], the potential U (ξ) has one minimum

and, hence, the considered system is monostable.
Note that for `+ = `M

+ , where `M
+ = exp(−g/2),

potential (67) is an even function about ξ = 1/2. Hence,
in this case, U (ξ) is either a single-well potential
with minimum at ξ = 1/2 equal to U M

≡ U (1/2) =

(~/8) {(8/g) ln cosh (g/4) − 1} if g 6 4 or, for g > 4, a
symmetric two-well potential with maximum value U M at
ξ = 1/2 and two equal minima at ξ = ξM

+ and ξM
−

, where
ξM
±

= 1/2 ± (2/g) η and η is a positive solution of the
equation

4 x

g
= tanh x . (68)

Following [37, 38], for g > 4, the quantity `M
+ may be called

a Maxwell concentration.
In another special case G = 0, the potential U (ξ) is also

defined by relation (67) with `+ replaced by `1/(1 + `2).
In what follows, we analyze the potential U (ξ) in the

case G = 2, for which the coordinate ξ(`1) and the surface
coverages θn(`1) have been investigated in sections 3.4
and 3.5

For g1 ∈ (3, 4), U (ξ) is a single-well potential if S0 < Sc
−

.
For the given values of g1 and S0, the depth of the well |U1|

and the position of its minimum ξ1 increase with `1. As S0

increases, for S0 > Sc
−

, the situation cardinally changes and,
for the given value of g1, the shape of the potential essentially
depends on the values of `1 and S0. If S0 ∈ (Sc

−
, Sc

+), then
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Figure 9. Normalized potential for G = 2, g1 = 3.5, S0 = 0.005 85, and different values of the concentration `1: `1 = `b
1,1 (1), 0.155 (2) (a);

0.1558 (1), 0.156 (2), 0.157 (3) (b); `b
1,2 (1), 0.159 (2), `b

1,4 (3) (c).

the potential has either two minima if `1 ∈ (`b
1,1, `b

1,2) or one
minimum if `1 6∈ [`b

1,1, `b
1,2].

For S0 = 0.0055 ∈ (Sc
−
, Sc

+), the curves in figure 8(a)
illustrate the two-well shape of the potential for `1 ∈

(`b
1,1, `b

1,2), where `b
1,1 ≈ 0.1575 and `b

1,2 ≈ 0.159. The curves
in figure 8(b) show essential changes in the shape of the
potential for the bifurcation concentrations `b

1,1 (curve 1)
and `b

1,2 (curve 3); namely, as `1 increases, the single-well
potential for `1 < `b

1,1 is transformed into a two-well potential
for `1 > `b

1,1, and then the two-well potential for `1 ∈

(`b
1,1, `b

1,2) is transformed into a single-well potential for `1 >

`b
1,2. Curve 1 in figure 8(a) shows the appearance of the second

stationary (metastable because U1 < U3) state of the system at
the greater displacement ξ3 (ξ3 > ξ1) of the oscillator from its
nonperturbed equilibrium position ξ = 0. An increase in `1 is
accompanied by an increase in the depths of both wells and
a decrease in the barrier δ2,1 = U2 − U1 between the wells.
Since the increment of the depth of the second well with `1

is greater than that of the first well, for some value of `1

(called a Maxwell concentration), the wells have equal depths
(curve 2 in figure 8(a)) and, for greater values of `1, the
second well is deeper than the first (curve 3 in figure 8(a)),
i.e. the state of the system becomes metastable in the first well
and stable in the second. Nevertheless, within the framework
of the overdamped approximation, following the principle of
perfect delay [37, 38], as `1 increases, the oscillator remains
in the first well rather than moving to the second. For the
transition of the system from the metastable state to the stable
state according to the Maxwell principle of the choice of the
global minimum of the potential [37, 38], thermal fluctuations
or the inertia effect (as in [41] in the case of one-component
adsorption) or both these factors should be taken into account.
This situation remains up to the bifurcation concentration
`b

1,2 for which the barrier δ2,1 = 0 (curve 3 in figure 8(b)).
A negligible excess of this bifurcation concentration leads to
the transformation of U (ξ) into a single-well potential, which
is accompanied by the displacement of the oscillator to the
unique equilibrium position at the point ξ3 or, in terms of
ξ(`1), the transition of the coordinate ξ(`1) from its lower
stable branch to the upper one at `1 = `b

1,2 (see figure 4(b)).
In turn, this is accompanied by transitions of the surface

1.0 ξ
-1.13

1.4 1.60.8 1.81.2

1 2

3

2.0

-1.10

-1.06

-1.02

-0.98

4

5

2U
κ

a

Figure 10. Normalized potential for `1 = ∞, G = 2, g1 = 5, and
different values of S0: S0 = 0.0004 (1), 0.0005 (2), SM

0 (3),
0.0006 (4), 0.0007 (5).

coverages θn(`1) from their lower stable branches to the upper
ones (figure 5(b)).

The curves in figure 9 for S0 = 0.005 85 ∈ (Sd , St )

illustrate the transformation of the two-well potential U (ξ)

for `1 < `b
1,1 ≈ 0.154 into a three-well potential, and vice

versa for `1 > `b
1,2 ≈ 0.158 as `1 increases. For the bifurcation

concentration `b
1,1, the potential has two wells and a point

of inflection between them (curve 1 in figure 9(a)). As `1

increases, the potential is deformed in the neighborhood
of this point of inflection so that there appears one more
well (curve 2 in figure 9(a)). The depths of the wells at
ξ = ξk , where k = 1, 3, 5, decrease with ξ : |U1| > |U3| >

|U5|. As `1 increases, this inequality is replaced, first,
by |U1| > |U5| > |U3| (curve 1 in figure 9(b)) and then
by |U5| > |U3| > |U1| (curves 2 and 3 in figure 9(b)),
i.e. the deepest well successively moves away from the
nonperturbed equilibrium position ξ = 0 as `1 increases. For
the bifurcation concentration `b

1,2 the barrier between the first
and second wells disappears, δ2,1 = 0 (curve 1 in figure 9(c)).
A negligible excess of this bifurcation concentration leads to
the transformation of U (ξ) into a two-well potential and, as
a result, the displacement of the oscillator to the equilibrium
position at the point ξ3 or, in terms of ξ(`1), the transition
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Figure 11. Normalized potential for G = 2, g1 = 5, the concentration `1 = 10 (1), 20 (2), ∞ (3), and S0 = 0.0005 (a), SM
0 (b), 0.0006 (c).

of the coordinate ξ(`1) from its first stable branch to the
second at `1 = `b

1,2 (figure 4(f)). In turn, this is accompanied
by transitions of the surface coverages θn(`1) from their first
stable branches to the second (figure 5(f)). As `1 increases,
the two-well potential is transformed so that the barrier
between the two remaining wells δ4,3 = U4 − U3 decreases
and becomes equal to zero for the bifurcation concentration
`b

1,4 ≈ 0.161 (curve 3 in figure 9(c)). For `1 > `b
1,4, only one

well of the potential U (ξ) most remote from the nonperturbed
surface remains and the oscillator shifts to the bottom of this
well at ξ = ξ5.

By taking into account the different increase in the
residence times of adparticles of different species on the
surface with displacement of adsorption sites from the non-
perturbed adsorbent surface (see (9)–(14)), we can draw
the conclusion that there is a considerable increase in the
fraction of adparticles of species 2 in the total amount of
adsorbed substance in the transition of adsorption sites to a
more remote well. This conclusion explains, in particular, the
opposite behavior of the surface coverages θ1(`1) and θ2(`1)

in figures 5(c)–(f) and (i) in passing through the bifurcation
value `b

1,4: the stepwise decrease in θ1(`1) and the stepwise
increase in θ2(`1) are caused by the displacement of the
adsorption sites to the most remote well.

As has been shown in section 3.1, the specific feature of
adsorption of a two-component gas on a deformable adsorbent
is two stable horizontal asymptotes of the coordinate ξ(`1)

and the surface coverages θn(`1) for some values of control
parameters. To explain this effect in terms of the potential
U (ξ), we investigate its behavior in the limiting case of
infinitely large values of `1. By passing in (66) to the limit
`1 → ∞, we obtain

U a(ξ) ≡ lim
`1→∞

U (ξ) =
~

2

{
ξ 2

− 2 ξ −
2

g1
ln

1 + S(ξ)

1 + S0

}
.

(69)

For a finite `2, S0 = 0 and relation (69) is reduced to the
parabolic potential

U a(ξ) = ~ ξ

(
ξ

2
− 1

)
(70)

with a minimum at the point ξ = 1.
By taking into account that the functions ξ(`1) and

θn(`1) have two stable horizontal asymptotes if g1 > ga
c and

S0 ∈ (Sa
−
, Sa

+) for G > 1, we conclude that, for these values of

G, g1 and S0, U a(ξ) is a two-well potential and the system
under study is bistable in a semi-infinite interval of values
of `1.

It is worth noting that for S0 = SM
0 , where SM

0 =

exp(2βqa) and the quantities β and qa are defined by
(29), the potential U a(ξ) is an even function about ξ =

ξ a
c = (1 + G)/2. In this case, U a(ξ) is either a single-well

potential with a minimum at ξ = ξ a
c equal to U a

M ≡ U a(ξ a
c ) =

(~/2)
{
ξ a

c (ξ a
c − 2) + (2/g1) ln ((1 + SM

0 )/2))
}

if g1 6 ga
c or,

for g1 > ga
c , a symmetric two-well potential with maximum

value U a
M at ξ = ξ a

c and two equal minima at ξ = ξ a
M+ and

ξ = ξ a
M−

, where ξ a
M±

= ξ a
c ± (2/(g1 (G − 1))) η and η is a

positive solution of the equation

x

qa
= tanh x . (71)

Note that equation (71) with qa replaced by g1/4 coincides
with equation (68). For g1 > ga

c , the quantity SM
0 may be called

a Maxwell value of the parameter S0.
The curves in figure 10 clearly illustrate the essential

dependence of the potential U a(ξ) on the value of S0. In
this case, ξ a

c = 3/2, SM
0 ≈ 0.000 553, and η ≈ 0.355. For S0 <

Sa
−

≈ 0.000 473 (curve 1) and S0 > Sa
+ ≈ 0.000 646 (curve 5),

the potential has one well; furthermore, in the second case,
the well is deeper and considerably more shifted from the
nonperturbed adsorbent surface ξ = 0. For S0 ∈ (Sa

−
, Sa

+, ), the
potential has two wells; moreover, the first well is deeper
than the second if S0 ∈ (Sa

−
, SM

0 ) (curve 2) and the second
well is deeper than the first if S0 ∈ (SM

0 , Sa
+) (curve 4).

Curve 3 corresponds to the symmetric two-well potential. The
two-well potential U a(ξ) leads to two disconnected pieces
of ξ(`1) (see figures 6(b)–(e)) and the corresponding specific
features of θ1(`1) and θ2(`1) (see figures 7(b)–(e)).

The curves in figure 11 show the approach of the potential
U (ξ) to the two-well potential U a(ξ) as `1 increases. For
large values of `1, the behavior of the two-well potential U (ξ)

is similar to U a(ξ): the first well is deeper if S0 ∈ (Sa
−
, SM

0 )

(figure 11(a)), the second well is deeper if S0 ∈ (SM
0 , Sa

+)

(figure 11(c)), and, for the Maxwell value SM
0 of the parameter

S0, the depths of two wells are equal (figure 11(b)). Since
the first well of the potential does not disappear with an
increase in the concentration `1, according to the principle of
perfect delay [37, 38], the oscillator, which was in this well
at low concentrations, remains in it for arbitrarily large values
of `1.
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5. Conclusions

In the present paper, we have investigated isotherms of
competitive adsorption of a two-component gas on the
surface of a solid adsorbent whose adsorption properties
vary in adsorption due to the adsorbent deformation. It
has been established that taking account of the adsorbent
deformation in adsorption essentially changes the shape of
adsorption isotherms relative to the Langmuir isotherms.
The specific features of adsorption isotherms (bistability and
tristability of the system, two stable asymptotes of adsorption
isotherms, and an essential redistribution of the quantities
of adsorbed particles of different species as compared
with those in the classical case) depend on values of the
parameters expressed in terms of the phenomenological
constant adsorption-induced forces χ1 and χ2. The values of
these forces can be determined knowing the experimental data
of changes in the first interplanar spacing (along the normal to
the surface) xmax

n due to the total monolayer coverage of the
adsorbent surface by adparticles of species n in the adsorption
of a one-component gas. In terms of the measured xmax

n , the
required forces and the coupling parameters are expressed as
follows:

χn = ~ xmax
n , gn = ~ (xmax

n )2/kBT,

n = 1, 2, G = xmax
2 /xmax

1 .
(72)

Given the reliable experimental data for xmax for different
absorbents and adsorbates and based on the values of
the parameters calculated by relations (72), it is possible
to indicate adsorbent–adsorbate systems for which the
established effects caused by the adsorbent deformation in
adsorption occur. According to (72), this is more probable for
adsorbents with considerable displacement of adsorption sites
in adsorption. Possibly, in experiments aimed at searching
for these effects, it makes sense to use single crystal solid
substrates of a ‘soft’ material, admitting a considerable normal
displacement of the adsorbent surface in adsorption.

It is also worth noting that the used mean-field
approximation requires that the relaxation time of a bound
adsorption site to a new equilibrium position caused by
adsorption is much greater than the average time between
collisions of gas particles with the adsorption site and the
average residence time of an adparticle on the surface. For this
relaxation time to be much more greater than the vibrational
period of a vacant adsorption site, the friction coefficient must
not be negligible. This imposes some conditions on its value,
which depends on the concentration of particles in the gas
phase, so that many gas particles can successively take part
in adsorption on the same adsorption site before it reaches the
equilibrium position.

The proposed model of competitive adsorption of a
two-component gas on a deformable adsorbent should be
regarded as only the first step for describing adsorption
on a deformable adsorbent. The subsequent development
of the model requires taking account of various factors
(lateral interactions between adparticles, fluctuations, energy
inhomogeneity of the adsorbent surface, etc) not considered
here.
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