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Abstract

®

CrossMark

By analytically continuing the coupling constant g of a coupled quantum theory, one can, at least
in principle, arrive at a state whose energy is lower than the ground state of the theory. The idea
is to begin with the uncoupled g = O theory in its ground state, to analytically continue around an
exceptional point (square-root singularity) in the complex-coupling-constant plane, and finally to
return to the point g = 0. In the course of this analytic continuation, the uncoupled theory ends
up in an unconventional state whose energy is lower than the original ground-state energy.

However, it is unclear whether one can use this analytic continuation to extract energy from the
conventional vacuum state; this process appears to be exothermic but one must do work to vary

the coupling constant g.
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(Some figures may appear in colour only in the online journal)

1. Introduction

The analytic structure of eigenvalues of self-coupled systems,
such as the quantum anharmonic oscillator, has been studied
in great depth. Singularities in the coupling-constant plane
have been identified as the cause of the divergence of per-
turbation theory [1, 2]. These singularities are typically
square-root branch points and are associated with the
phenomenon of level crossing. These singularities are some-
times referred to as exceptional points [3]. Studies of cou-
pling-constant analyticity have revealed a remarkable and
generic phenomenon, namely, that the eigenvalues belonging
to the spectrum of the Hamiltonian are analytic continuations
of one another as functions of the complex coupling constant.
Thus, the energy levels of a quantum system, which are
discrete when the coupling constant is real and positive, are
actually smooth continuations of one another in the complex-

4 Author to whom any correspondence should be addressed.
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coupling-constant plane [4], and a simple geometric picture of
quantization emerges: The discrete eigenvalues of a quantum
system are in one-to-one correspondence with the sheets of
the Riemann surface. The different energy levels of the
Hamiltonian are merely different branches of a multivalued
energy function.

While this picture of quantization has emerged from
studies of coupling-constant singularities of self-coupled
systems, this paper argues that an even more elaborate picture
arises from studies of coupled quantum systems. Consider, for
example, the simple case of two coupled quantum harmonic
oscillators, one having natural frequency v > 0 and the other
having natural frequency w > 0. For definiteness, we assume
that v > w. The Hamiltonian for such a system has the form

H=p*> + v + ¢* + wh?* + gxy, (1

where g is the coupling parameter. For sufficiently large |g|
the eigenvalues of H become singular. To demonstrate this we

© 2016 The Royal Swedish Academy of Sciences Printed in the UK


mailto:cmb@wustl.edu
mailto:alexander.felski@t-online.de
mailto:nimahassanpourghady@wustl.edu
mailto:spk@physik.uni-heidelberg.de
mailto:A.Beygi@ThPhys.Uni-Heidelberg.DE
http://dx.doi.org/10.1088/0031-8949/92/1/015201
http://crossmark.crossref.org/dialog/?doi=10.1088/0031-8949/92/1/015201&domain=pdf&date_stamp=2016-11-30
http://crossmark.crossref.org/dialog/?doi=10.1088/0031-8949/92/1/015201&domain=pdf&date_stamp=2016-11-30

Phys. Scr. 92 (2017) 015201

C M Bender et al

rewrite the potential V (x, y) = v%x2 + w?y? + gxy as
2 2
%) + yz(wz - g—). ©)

Vix,y) = yz(x +
(x, ) 17

We see immediately that on the line x + gy/2v% = 0 in the
(x, y) plane V(x,y) becomes unbounded below if gZ>
4v%w?%. Thus, while the potential has a positive discrete
spectrum when the coupling constant g lies in the range

—2uw < g < 2w, 3

we expect there to be singular points at g = +2vw in the
coupling-constant plane. This result raises the question, What
is the nature of the singular points at +2uw?

Coupled-oscillator models have been studied in great
detail in many papers [5—11] and in particular for oscillator
models of the type in (1). The presence of singularities at
g = +2ww was noted in [6]; however, the nature of singu-
larities and the Riemann sheet structure was not identified in
any of these papers.

In this paper we show that the Riemann surface for the
coupled-oscillator Hamiltonian (1) consists of four sheets.
The singularities at g = 21w are square-root singularities,
like the exceptional-point singularities of self-coupled oscil-
lators. However, if we cross either of the square-root branch
cuts, we enter a second sheet of the Riemann surface on
which two new square-root branch points appear. These new
branch points are located at g = +i(w? — v?). If we cross
either of the branch cuts emanating from these new branch
points, we enter a third sheet of the Riemann surface where
there are yet another pair of square-root singularities at
g = +2ww, unconnected with the singularities on sheets one
and two. Crossing either of the branch cuts emanating from
these singularities at g = £2ww takes us to a fourth sheet of
the Riemann surface. Not all energy levels of the coupled
harmonic oscillator mix among themselves as g varies on this
four-sheeted Riemann surface. Rather, each energy level
belongs to a quartet of energies that are analytic continuations
of one another. We find that the four sheets of the Riemann
surface correspond to four distinct spectral phases of the
coupled oscillator system (1).

We give a detailed description of these spectral phases in
section 2. We explain below how such spectral phases arise.
Let us consider a single harmonic oscillator, whose dynamics
are defined by the Hamiltonian

H=p? + vx&2 4)

This simple quantum system actually has two spectral phases
characterized by two distinct spectra. To understand why, we
assume that v is a positive parameter and we note that the nth
eigenvalue E,, which is defined by the eigenvalue problem

—di—zzwm + A% (x) = By (x) (¢ — 0asx — +00),
3
is given by
E,=@2n+Dr (n=0,1,23,..).

In [12] it was observed that if we analytically continue v in a

semicircle in the complex-v plane, that is, if we let v = re? (r
real) and allow ¢ to run from O to 7, the eigenvalues change
sign even though the Hamiltonian remains unchanged. By
this analytic continuation we reach a new phase of the har-
monic oscillator whose spectrum is negative and unbounded
below. Thus, the Hamiltonian (4) of the harmonic oscillator
has two distinct and independent real spectra that are related
by analytic continuation in the natural frequency v of the
oscillator.

How can one Hamiltonian (4) have two different spectra?
The answer to this question is that the positive spectrum is
obtained by imposing the boundary conditions in (5) in a pair
of Stokes wedges [4, 13—15] centered about the positive-real-
x and negative-real-x axes. We refer to the positive spectrum
as the conventional one. These wedges have angular opening
/2. The negative spectrum is defined by imposing the
boundary conditions in a pair of Stokes wedges containing
and centered about the upper and lower imaginary-x axes. We
refer to the negative spectrum as the unconventional spectrum
of the harmonic oscillator. These Stokes wedges also have
angular opening of 7/2. To understand the configuration of
the wedges we examine the WKB geometrical-optics
approximation [4]

P~ eil/xz/2 (6)

to the solutions of the harmonic-oscillator eigenvalue
equation (5). On the basis of (6) we can see that the 90°
wedges in which the eigenfunctions vanish rotate clockwise
through an angle of 7/2 as v rotates anticlockwise through an
angle of 7. Thus, these two phases are analytic continuations
of one another and are analytically connected by rotations in
the complex-frequency plane.

A principal result of this paper is that, if we analytically
continue the physical system consisting of two coupled har-
monic oscillators described by the Hamiltonian in (1) in the
coupling constant parameter g, we obtain all four possibilities
for the phases of the two oscillators in which each oscillator is
in a conventional or an unconventional phase. Thus, all four
phases are analytically connected on the Riemann surface of
the complex coupling constant g, even though the frequencies
v and w are held fixed and positive.

In section 2 we construct analytically the four-sheeted
Riemann surface for the coupled harmonic oscillator model
(1). In section 3 we examine the Riemann surface defined by
the partition function for some zero-dimensional quantum
field theories. In general, the number of sheets in the complex
Riemann surface for these theories is smaller than the number
of sheets for the corresponding quantum-mechanical problem.
For example, for the zero-dimensional quantum field theory
that is analogous to the quantum-mechanical oscillator model
of (1), the Riemann surface only has two sheets and not four
sheets. For a coupled pair of sextic models, the Riemann
surface has six sheets, indicating that this theory has six
different phases. Section 4 gives some brief concluding
remarks.
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2. Energy levels of the coupled harmonic oscillator

In this section we examine the analytic structure of the
eigenvalues of the coupled harmonic oscillator Hamiltonian
(1). We begin by examining the ground state, whose eigen-
function has the general form

b (x, y) = em /2 2ty (7)

where a, b, and ¢ are constants to be determined. We sub-
stitute (7) into the eigenvalue equation Hiy = E), which has
the explicit form

— Y + 1/2)(21/} - wyy + w2y2¢ + gxyi/) = Ex). (8)

We then equate the coefficients of x%, y?, xy, and x%° and
obtain the four equations

V2 =a®+ 2,
w? =b* + 2,
0 =2ac + 2bc + g, )]

E=a+b. (10)

Subtracting the first equation from the second and combining
the result with the third and fourth equations allows us to
calculate a, b, and ¢, which we then eliminate in favor of a
single quartic polynomial equation for the eigenvalue E:

E*Y =202 + WHE>+ 2 — w?)? +g>=0. an

The solution to this equation involves nested square roots,
E(g) = [V? + w? + (42w? — gHl/2]1/2 (12)

and from this equation we see that E(g) is a four-valued
function of the coupling constant g.

Let us make a grand tour of the Riemann surface on
which E(g) is defined. We begin on Sheet 1, where both
square-root functions are real and positive when their argu-
ments are real and positive. There are two obvious square-root
branch points (zeros of the inner square root) and these are
located at g = +2ww. Square-root branch cuts emerge from
each of these branch points and, as shown on figure 1, we
have chosen to draw these branch cuts as vertical lines going
downward. On Sheet 1

EOQ)=v+w (13)

and because we assume that v and w are real and positive we
see that both oscillators are in their conventional ground
states.

There are no other singularities on Sheet 1 that allow us
to change the sign of the outer square root. This is because at
such a singular point the argument of the outer square root
function would have to vanish:

V2 4 w4 42wt — g2 =0.
The solution of this equation is obtained by squaring
v? 4+ w? = — J4rrn? — gz:

—8 = — W, 15)

(14)

so —g? is positive. The solution in (15) is spurious because
both terms in (14) are positive.

Sheet 1:
Complex-g plane

-2vm +2vw

>

e
Cmm

Figure 1. Sheet 1 of the complex Riemann surface of E(g) in (12).
On this sheet both the inner and outer square roots are positive when
their arguments are positive. Branch points are indicated by blue dots
and branch cuts by red dashed lines. On this sheet E(0) = v + w.

If we analytically continue E(g) through either of the
branch cuts on Sheet 1, we arrive on Sheet 2, where the inner
square root changes sign. Therefore, on this sheet

EO)=v—uw, (16)

assuming that v > w. Thus, the x oscillator is in its conven-
tional ground state but the y oscillator is in its unconventional
ground state. Because the inner square root returns negative
values when its argument is positive, the solution for —g? in
(15) is not spurious. Therefore, there are new branch cuts
associated with the sign change of the outer square root; these
branch cuts emanate from branch points located at

g = +i(? — w). (17)

All four branch cuts on Sheet 2 are shown on figure 2. If we
now pass through a branch cut emanating from +2uw, we
return to Sheet 1 but if we pass through a branch cut ema-
nating from either branch point in (17), we enter Sheet 3.

On Sheet 3 there are two pairs of square-root branch cuts.
The branch points on the imaginary axis coincide with those
on Sheet 2. However, there is a new pair of branch points on
the real axis at g = +2ww. Although these branch points
appear at the same locations as on Sheets 1 and 2, they are
unrelated to those branch points. We show this explicitly in
figure 3 by drawing the associated branch cuts differently. On
this sheet both the inner and outer square-root functions in
(12) are negative and

EO0)=—-—v+w (18)

when v — w is positive. Now the x oscillator is in an
unconventional ground state and the y oscillator is in a con-
ventional ground state.

If we now pass through a branch cut emanating from
(17), we return from Sheets 3 to 2. However, if pass through a
branch cut emanating from +2vw, we enter Sheet 4. On this
sheet there are only two branch points, which are located at
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Sheet 2:

Complex-g plane Q +i(vi- w?)
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Figure 2. Sheet 2 of the complex Riemann surface of E(g) in (12).
On this sheet the inner square root in (12) is negative and the outer
square root is positive when their arguments are positive. On this
sheet E(0) is ¥ — w (assuming that ¥ — w is positive).

Jm = ———>

Sheet 3: .
Complex-g plane © +i(vi-w?)
-2vm +2vw
/y %\
‘—// \\h

© -i(vi- w?)

Figure 3. Sheet 3 of the complex Riemann surface of E(g) in (12).
On this sheet both the inner and outer square roots are negative when
their arguments are positive and thus E(0) = —v + w.

+2ww (see figure 4). On Sheet 4
EQ)=—-v—w. (19)

Both oscillators are now in unconventional ground states.

To summarize, figures 1-4 describe each of the four
branches of the function E(g) in (12). On these four branches
E(0) takes the values given in (13), (16), (18), and (19). From
these four values of E(0) we infer that by analytically con-
tinuing the two-coupled-oscillator system in (1) through the
entire Riemann surface we access both phases, conventional
and unconventional, of both oscillators, even though the two
frequency parameters v and w are held fixed.

Sheet 4:
Complex-g plane

Figure 4. Sheet 4 of the complex Riemann surface of E(g) in (12).
On this sheet the inner square root is positive while the outer square
root is negative when their arguments are positive. On this

sheet E(0) = —v — w.

The four-fold structure of the ground-state energy is
repeated for all of the energy levels. To verify this, we con-
struct the eigenfunctions associated with the other energy
levels of the theory. These eigenfunctions consist of the
exponential in (7) multiplied by a polynomial P (x,y). If
P (x, y) has the form

P(x,y) =Ax + By + Cxy + D, (20)

the eigenvalue equation (8) leads to the three coupled
equations (9) together with four alternatives for E:

ED = (a + b)D, 2D

EA = A(3a + b) — 2Bc, (22)

EB = B(a + 3b) — 2Ac, (23)

EC = D(g + 2bc + 2ac) + 3C(a + D). (24)

For the quartet of ground-state energy levels described above,
D=1,A=B=C=0,sothat P(x, y) = 1. We assign the
label (0, 0) to this quartet because it reduces to the (con-
ventional and unconventional) ground states of the x and y
oscillators when g = 0 and ¢ = 0. We use the designation
(0, 1) for the quartet P(x,y) =y, (1, 0) for the quartet
P(x, y) = x,and (1, 1) for the quartet P (x, y) = xy that give
rise to spectra in the decoupling limit g = 0, ¢ = 0. In this
limit, it follows again that a?> = v? and b* = w?, leading to
four quartets with the additional three spectra arising from
(22) for (1,0) when B=C =D =0, (23) for (0,1) when
A=C=D=0 and (24) for (1,1) when A = B =D = 0.
These four quartets are illustrated in figure 5 for the case
v =2 and w = 1. We emphasize that the energy levels of
different quartets are not analytic continuations of one another
but the elements of each quartet are analytic continuations of
one another and branches of a four-valued function defined on
exactly the same the Riemann surface pictured in figures 1-4.
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>
80
9]
c
w — 3v+3m
— 3V+
V430  —— 3v-m
v+ — 3V-3
0] -v+3w
—V+W v-3m
V- ———3V+3m
— Y =30)  —3V+@©
-3v-w
——=3v-3m
(0,0) (0,1) (1,0) (1,1)

Figure 5. First four quartets of energy levels associated with the
Hamiltonian (1). The quartets are labeled (m, n), and the quartets
shown are for m = 0, 1 and n = 0, 1. We have chosen the values
v =2 and w = 1 and have plotted the values of E(0) to scale. Note
that each energy eigenvalue corresponds to the lowest such state on a
different Riemann sheet.

3. Partition functions for zero-dimensional field
theories

3.1. Interacting quadratic field theory

Let us examine the zero-dimensional field-theoretic equiva-
lent of the Hamiltonian (1). The partition function for this
field theory is given by the integral

2@ = [ [axayeriiedten, (25)

where both integration paths run from —oo0 to c©. We can
evaluate the integral exactly by rearranging the terms in the

exponential as we did in (2):
Z(g) = f f dx dy e ey/@AP W= /@A) (26)

Simple transformations then reduce this to a product of two
gaussian integrals,

2dxdy —x2—y?
Z(g) = ff = ;

which evaluate to

27)

27

Z(g) =
4202 — g2

(28)

This partition function is a double-valued function of g
and is defined on a two-sheeted Riemann surface. Like the
coupled harmonic oscillator discussed in section 2 the square-
root singularities are located at g = +2ww. However, unlike
the case of the coupled harmonic oscillator, the Riemann
surface has two sheets and not four; these sheets correspond
to the two possible signs of Z(g) and these two sheets cor-
respond to the analogs of the conventional-conventional
theory and the unconventional-unconventional theory. (To
obtain the unconventional-unconventional theory from the
conventional-conventional theory we replace x by ix and y by

iy and this changes the sign of the partition function.) There is
no analytic continuation to the partition function for a mixed
unconventional-conventional theory. This is because the path
of integration is included with the integral that defines the
partition function. Given an eigenvalue differential equation
we are free to choose the boundary conditions (we can require
that the eigenfunctions vanish as x — 400 or as x — Fioco)
but there is no such freedom in the case of an integral. To
obtain other phases we would have to change the path of
integration in the definition of the partition function.

We can generalize this calculation by including in the
partition function external fields J and K coupled to the x and
y fields:

20, K; ) = [ [drdy et e,

Evaluating this integral by following the same procedure as
above, we now find a more elaborate singularity structure,

Z(g) =

2.2 2
b 4P — g

(sz2 + K%? — gK])

ex ,

P

which is again defined on a two-sheeted Riemann surface but
in addition has essential singularities at the square-root branch
points. Consequently, all of the Green’s functions, which are
obtained by taking derivatives with respect to the external
sources, have increasingly stronger singularities at g = +2uw.

3.2. Interacting sextic field theory

A higher-power selfinteracting field theory that possesses a
conventional real spectrum and in addition possesses a real
‘PT -symmetric spectrum has a sextic interaction of the form
¢°. We thus examine a field theory that describes the coupling
of two sextic oscillators and we choose a symmetric form for
the coupling. The partition function for the zero-dimensional
version of this coupled quantum field theory is

Z(g) = f dx dy e*"->0-exy’, (29)

This sextic theory is more difficult to examine analytically.
We begin by expanding the coupling term as a series in

powers of g:
ffdx dy e—x -y x3ny3n

(= g)
Z(g) = Z
n=0
Since the x and y integrals run from — o0 to oo, only even
values of n contribute to the partition function. When 7 is
even, we have

[ areien - lr(ﬁ + 1),
o 3026

but if n is odd, the integral vanishes. Thus, we make the
replacement n = 2m and re-express the partition function as a
sum over m:

(30)

1 0 g2m 2( 1)
VA = =T -1 31
(&)= 2 om), m + 5 (31)
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This sum is a hypergeometric series:

2
Z(g)zérz(l/é)zﬂ(l I.Ls ) (32)

66 2 4
In general, the hypergeometric series has a radius
of convergence of 1. (This is easy to verify by using the
Stirling approximation for the Gamma function.) This implies
that Z(g) has a singularity on the circle |g| = 2.
It is important to identify the precise location and nature
of this singularity. To do so we use the linear transformation
formula [16]

I'e)I'(c —a — b)
I'(c — a)T'(c — b)
X Fila,b;a+b—c+1;1—2)
. Z)Cfabe‘(c)I‘(a +b—0)
I'(a)I'(b)
X Fi(c—a,c—b,c—a—b+1;1-—72).

2F1(a, b; C, Z) =

This transformation makes the singularity explicit because the
hypergeometric function is analytic in the unit circle.
Applying this transformation gives

ST T3(1/6 1 1 5 2
Z(g):ﬂ-z—(/) Fl2 2. 2.1 - &
9I%(1/3) 6 6 6 4
2\1/6 -
+(1g_) JT L(—-1/6)
4 9
11 7 g°
Fl— — —1— =], 33
X“(3 36 4) 53

from which we conclude that Z(g) is defined on a six-sheeted
Riemann surface and that the branch points on all six sheets
of the Riemann surface are located at g = +2, which corre-
sponds with the singularities of the coupled harmonic oscil-
lator model at £2uw withv = w = 1.

More generally, we can examine the Green’s functions
G, of the theory, which are defined as integrals of the form

Ga,;b’ = ffdx dy xo‘yﬁe*)‘é*y(’*gﬂyi

where « and (3 are integers. It is necessary that o + (3 is even
for the Green’s function to be nonvanishing. Following the
same analysis as above, we find that all Green’s functions are
defined on a six-sheeted Riemann surface and that the sin-
gularity in the complex-g plane has the form

- g_2 (I-a—-p)/6
4 .

Thus, like the Green’s functions for the coupled harmonic
oscillator, we see that the singularity becomes stronger with
increasing « and 3, but the Green’s functions are always six-
valued functions of g.

(34)

4. Conclusions

We have shown that a coupled quantum theory has a rich
analytic structure as a function of the coupling constant.

By analytically continuing in the coupling constant we can
obtain different spectral phases of the uncoupled theory.
Indeed, if we think of the coupling constant as an external
classical source, then by varying this external source in a
closed loop in the complex-coupling-constant plane we can
even imagine extracting energy from the conventional ground
state of such a theory, at least in principle. For example, we
can begin with the uncoupled harmonic-oscillator system (1)
in its conventional ground state (13). We then turn on the
source g, smoothly and continuously vary g, and finally turn
off g again when the system is in the unconventional ground
state (19). Such a process appears to be exothermic because it
extracts an amount of energy equal to 2v 4+ 2w. However,
varying the coupling constant may require that we do work on
the system. Until now, it is not clear what it means to vary a
coupling constant through complex values. However,
remarkable progress on this is currently being made from an
experimental point of view. It is experimentally possible to
vary the parameters of a system and by doing so to analyti-
cally continue from one energy state to another. Such a pro-
cess has actually been achieved in the laboratory by smoothly
varying the parameters of a microwave cavity [17] and, in
doing so, going continuously from one frequency mode to
another. More recently, experiments have been performed in
which an exceptional point is dynamically encircled [18, 19].
That is, a combination of physical parameters is varied in real
time, and the system response is measured, allowing one to
access different Riemann surfaces. While [19] emphasizes
robust switching, [18] concerns itself with energy transfer
between different states of a system, such as has been con-
sidered here in our illustrative prototypical system. An
experimental approach, whether optomechanical or using
light, acoustic, matter waves, or microwaves may in the future
yield experimental verification of the analytic continuation
discussed in this work.

Finally, these studies have been performed for linear
couplings between the oscillators, which led to the four-fold
structure shown here. It is to be expected that other types of
couplings lead to different, possibly more complicated Rie-
mann surfaces.
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