We present cosmological results from the measurement of baryon acoustic oscillations (BAO) in galaxy, quasar and Lyman-α forest tracers from the first year of observations from the Dark Energy Spectroscopic Instrument (DESI), to be released in the DESI Data Release 1. DESI BAO provide robust measurements of the transverse comoving distance and Hubble rate, or their combination, relative to the sound horizon, in seven redshift bins from over 6 million extragalactic objects in the redshift range 0.1 < z < 4.2. To mitigate confirmation bias, a blind analysis was implemented to measure the BAO scales. DESI BAO data alone are consistent with the standard flat ΛCDM cosmological model with a matter density Ωm=0.295±0.015. Paired with a baryon density prior from Big Bang Nucleosynthesis and the robustly measured acoustic angular scale from the cosmic microwave background (CMB), DESI requires H0=(68.52±0.62) km s-1 Mpc-1. In conjunction with CMB anisotropies from Planck and CMB lensing data from Planck and ACT, we find Ωm=0.307± 0.005 and H0=(67.97±0.38) km s-1 Mpc-1. Extending the baseline model with a constant dark energy equation of state parameter w, DESI BAO alone requirew=-0.99+0.15-0.13. In models with a time-varying dark energy equation of state parametrised by w0 and wa, combinations of DESI with CMB or with type Ia supernovae (SN Ia) individually prefer w0 > -1 and wa < 0. This preference is 2.6σ for the DESI+CMB combination, and persists or grows when SN Ia are added in, giving results discrepant with the ΛCDM model at the 2.5σ, 3.5σ or 3.9σ levels for the addition of the Pantheon+, Union3, or DES-SN5YR supernova datasets respectively. For the flat ΛCDM model with the sum of neutrino mass ∑ mν free, combining the DESI and CMB data yields an upper limit ∑ mν < 0.072 (0.113) eV at 95% confidence for a ∑ mν > 0 (∑ mν > 0.059) eV prior. These neutrino-mass constraints are substantially relaxed if the background dynamics are allowed to deviate from flat ΛCDM.

The International School for Advanced Studies (SISSA) was founded in 1978 and was the first institution in Italy to promote post-graduate courses leading to a Doctor Philosophiae (or PhD) degree. A centre of excellence among Italian and international universities, the school has around 65 teachers, 100 post docs and 245 PhD students, and is located in Trieste, in a campus of more than 10 hectares with wonderful views over the Gulf of Trieste.
SISSA hosts a very high-ranking, large and multidisciplinary scientific research output. The scientific papers produced by its researchers are published in high impact factor, well-known international journals, and in many cases in the world's most prestigious scientific journals such as Nature and Science. Over 900 students have so far started their careers in the field of mathematics, physics and neuroscience research at SISSA.
ISSN: 1475-7516
Journal of Cosmology and Astroparticle Physics (JCAP) covers all aspects of cosmology and particle astrophysics and encompasses theoretical, observational and experimental areas as well as computation and simulation. An electronic-only journal, JCAP is jointly owned by IOP Publishing and SISSA.
A.G. Adame et al JCAP02(2025)021
J. Yu et al JCAP01(2025)126
Dark Energy Spectroscopic Instrument (DESI) uses more than 2.4 million Emission Line Galaxies (ELGs) for 3D large-scale structure (LSS) analyses in its Data Release 1 (DR1). Such large statistics enable thorough research on systematic uncertainties. In this study, we focus on spectroscopic systematics of ELGs. The redshift success rate (fgoodz) is the relative fraction of secure redshifts among all measurements. It depends on observing conditions, thus introduces non-cosmological variations to the LSS. We, therefore, develop the redshift failure weight (wzfail) and a per-fibre correction (ηzfail) to mitigate these dependences. They have minor influences on the galaxy clustering. For ELGs with a secure redshift, there are two subtypes of systematics: 1) catastrophics (large) that only occur in a few samples; 2) redshift uncertainty (small) that exists for all samples. The catastrophics represent 0.26% of the total DR1 ELGs, composed of the confusion between [O ii] and sky residuals, double objects, total catastrophics and others. We simulate the realistic 0.26% catastrophics of DR1 ELGs, the hypothetical 1% catastrophics, and the truncation of the contaminated 1.31 < z < 1.33 in the AbacusSummit ELG mocks. Their Pℓ show non-negligible bias from the uncontaminated mocks. But their influences on the redshift space distortions (RSD) parameters are smaller than 0.2σ. The redshift uncertainty of DR1 ELGs is 8.5km s-1 with a Lorentzian profile. The code for implementing the catastrophics and redshift uncertainty on mocks can be found in https://github.com/Jiaxi-Yu/modelling_spectro_sys.
N.P. Avis Kozar et al JCAP02(2025)007
We perform a global fit of dark matter interactions with nucleons using a non-relativistic effective operator description, considering both direct detection and neutrino data. We examine the impact of combining the direct detection experiments CDMSlite, CRESST-II, CRESST-III, DarkSide-50, DarkSide-50-S2-Only, LUX, LZ, PandaX-II, PandaX-4T, PICO-2L, PICO-60, SIMPLE, XENON100, and XENON1T along with neutrino data from IceCube, ANTARES, DeepCore, and Super-Kamiokande. While current neutrino telescope data lead to increased sensitivity compared to underground nuclear scattering experiments for dark matter masses above 100 GeV, our future projections show that the next generation of underground experiments will significantly outpace solar searches for most dark matter-nucleon elastic scattering interactions.
Ananda F. Smith et al JCAP01(2025)005
Much of modern cosmology relies on the Cosmological Principle, the assumption that the Universe is isotropic and homogeneous on sufficiently large scales, but it remains worthwhile to examine cosmological models that violate this principle slightly. We examine a class of such spacetimes that maintain homogeneity but break isotropy through their underlying local spatial geometries. These spacetimes are endowed with one of five anisotropic model geometries of Thurston's geometrization theorem, and their evolution is sourced with perfect fluid dust and cosmological constant. We show that the background evolution of these spacetimes induces fluctuations in the observed cosmic microwave background (CMB) temperature with amplitudes coupled to the curvature parameter ΩK. In order for these fluctuations to be compatible with the observed CMB angular power spectrum, we find |ΩK| ≲ 10-5. This strongly limits the cosmological consequences of these models.
A.G. Adame et al JCAP04(2025)012
We present the DESI 2024 galaxy and quasar baryon acoustic oscillations (BAO) measurements using over 5.7 million unique galaxy and quasar redshifts in the range 0.1 < z < 2.1. Divided by tracer type, we utilize 300,017 galaxies from the magnitude-limited Bright Galaxy Survey with 0.1 < z < 0.4, 2,138,600 Luminous Red Galaxies with 0.4 < z < 1.1, 2,432,022 Emission Line Galaxies with 0.8 < z < 1.6, and 856,652 quasars with 0.8 < z < 2.1, over a ∼ 7,500 square degree footprint. The analysis was blinded at the catalog-level to avoid confirmation bias. All fiducial choices of the BAO fitting and reconstruction methodology, as well as the size of the systematic errors, were determined on the basis of the tests with mock catalogs and the blinded data catalogs. We present several improvements to the BAO analysis pipeline, including enhancing the BAO fitting and reconstruction methods in a more physically-motivated direction, and also present results using combinations of tracers. We employ a unified BAO analysis method across all tracers. We present a re-analysis of SDSS BOSS and eBOSS results applying the improved DESI methodology and find scatter consistent with the level of the quoted SDSS theoretical systematic uncertainties. With the total effective survey volume of ∼ 18 Gpc3, the combined precision of the BAO measurements across the six different redshift bins is ∼0.52%, marking a 1.2-fold improvement over the previous state-of-the-art results using only first-year data. We detect the BAO in all of these six redshift bins. The highest significance of BAO detection is 9.1σ at the effective redshift of 0.93, with a constraint of 0.86% placed on the BAO scale. We find that our observed BAO scales are systematically larger than the prediction of thePlanck 2018-ΛCDM at z < 0.8. We translate the results into transverse comoving distance and radial Hubble distance measurements, which are used to constrain cosmological models in our companion paper.
Raphaël Kou and Antony Lewis JCAP01(2025)033
One approach to reconciling local measurements of a high expansion rate with observations of acoustic oscillations in the CMB and galaxy clustering (the "Hubble tension") is to introduce additional contributions to the ΛCDM model that are relevant before recombination. While numerous possibilities exist, none are currently well-motivated or preferred by data. However, future CMB experiments, which will measure acoustic peaks to much smaller scales and resolve polarization signals with higher signal-to-noise ratio over large sky areas, should detect almost any such modification at high significance. We propose a method to capture most relevant possible deviations from ΛCDM due to additional non-interacting components, while remaining sufficiently constraining to enable detection across various scenarios. The phenomenological model uses a fluid model with four parameters governing additional density contributions that peak at different redshifts, and two sound speed parameters. We forecast possible constraints with Simons Observatory, explore parameter degeneracies that arise in ΛCDM, and demonstrate that this method could detect a range of specific models. Which of the new parameters gets excited can give hints about the nature of any new physics, while the generality of the model allows for testing with future data in a way that should not be plagued by a posteriori choices and would reduce publication bias. When testing our model with Planck data, we find good consistency with the ΛCDM model, but the data also allows for a large Hubble parameter, especially if the sound speed of an additional component is not too different from that of radiation. The analysis with Planck data reveals significant volume effects, requiring careful interpretation of results. We demonstrate that Simons Observatory data will mitigate these volume effects, so that any indicated solution to the Hubble tension using our model cannot be mimicked by volume effects alone, given the significance of the tension.
Peter Ade et al JCAP02(2019)056
The Simons Observatory (SO) is a new cosmic microwave background experiment being built on Cerro Toco in Chile, due to begin observations in the early 2020s. We describe the scientific goals of the experiment, motivate the design, and forecast its performance. SO will measure the temperature and polarization anisotropy of the cosmic microwave background in six frequency bands centered at: 27, 39, 93, 145, 225 and 280 GHz. The initial configuration of SO will have three small-aperture 0.5-m telescopes and one large-aperture 6-m telescope, with a total of 60,000 cryogenic bolometers. Our key science goals are to characterize the primordial perturbations, measure the number of relativistic species and the mass of neutrinos, test for deviations from a cosmological constant, improve our understanding of galaxy evolution, and constrain the duration of reionization. The small aperture telescopes will target the largest angular scales observable from Chile, mapping ≈ 10% of the sky to a white noise level of 2 μK-arcmin in combined 93 and 145 GHz bands, to measure the primordial tensor-to-scalar ratio, r, at a target level of σ(r)=0.003. The large aperture telescope will map ≈ 40% of the sky at arcminute angular resolution to an expected white noise level of 6 μK-arcmin in combined 93 and 145 GHz bands, overlapping with the majority of the Large Synoptic Survey Telescope sky region and partially with the Dark Energy Spectroscopic Instrument. With up to an order of magnitude lower polarization noise than maps from the Planck satellite, the high-resolution sky maps will constrain cosmological parameters derived from the damping tail, gravitational lensing of the microwave background, the primordial bispectrum, and the thermal and kinematic Sunyaev-Zel'dovich effects, and will aid in delensing the large-angle polarization signal to measure the tensor-to-scalar ratio. The survey will also provide a legacy catalog of 16,000 galaxy clusters and more than 20,000 extragalactic sources.
Basheer Kalbouneh et al JCAP02(2025)076
Studies show that the model-independent, fully non-perturbative covariant cosmographic approach is suitable for analyzing the local Universe (z ≲ 0.1). However, accurately characterizing large and inhomogeneous mass distributions requires the fourth-order term in the redshift expansion of the covariant luminosity distance dL(zn).
We calculate the covariant snap parameter and its spherical harmonic multipole moments using the matter expansion tensor and the evolution equations for lightray bundles.
The fourth-order term adds 36 degrees of freedom, since the highest independent multipole of the snap is the 32-pole (dotriacontapole) (ℓ=5).
Including this term helps to de-bias estimations of the covariant deceleration parameter. Given that observations suggest axially symmetric anisotropies in the Hubble diagram for z ≲ 0.1 and theory shows that only a subset of multipoles contributes to the signal, we demonstrate that only 12 degrees of freedom are needed for a model-independent description of the local universe. We use an analytical axisymmetric model of the local Universe, with data that matches the Zwicky Transient Facility survey, in order to provide a numerical example of the amplitude of the snap multipoles and to forecast precision.
A.G. Adame et al JCAP01(2025)124
We present the measurement of Baryon Acoustic Oscillations (BAO) from the Lyman-α(Lyα) forest of high-redshift quasars with the first-year dataset of the Dark Energy Spectroscopic Instrument (DESI). Our analysis uses over 420 000 Lyα forest spectra and their correlation with the spatial distribution of more than 700 000 quasars. An essential facet of this work is the development of a new analysis methodology on a blinded dataset. We conducted rigorous tests using synthetic data to ensure the reliability of our methodology and findings before unblinding. Additionally, we conducted multiple data splits to assess the consistency of the results and scrutinized various analysis approaches to confirm their robustness. For a given value of the sound horizon (rd), we measure the expansion at zeff = 2.33 with 2% precision, H(zeff) = ( 239.2 ± 4.8 ) (147.09 Mpc /rd ) km/s/Mpc. Similarly, we present a 2.4% measurement of the transverse comoving distance to the same redshift, DM(zeff) = ( 5.84 ± 0.14 ) (rd/147.09 Mpc) Gpc. Together with other DESI BAO measurements at lower redshifts, these results are used in a companion paper to constrain cosmological parameters.
Luca Orusa et al JCAP02(2025)029
The cosmic-ray flux of positrons is measured with high precision by the space-borne particle spectrometer AMS-02. The hypothesis that pulsars and their nebulae can significantly contribute to the excess of the AMS-02 positron flux has been consolidated after the observation of a γ-ray emission at GeV and TeV energies of a few degree size around a few sources, that provide indirect evidence that electron and positron pairs are accelerated to very high energies from these sources. By modeling the emission from pulsars in the ATNF catalog, we find that combinations of positron emission from cataloged pulsars and secondary production can fit the observed AMS-02 data. Our results show that a small number of nearby, middle-aged pulsars, particularly B1055-52, Geminga (J0633+1746), and Monogem (B0656+14), dominate the positron emission, contributing up to 80% of the flux at energies above 100 GeV. From the fit to the data, we obtain a list of the most important sources for which we recommend multi-wavelength follow-up observations, particularly in the γ-ray and X-ray bands, to further constrain the injection and diffusion properties of positrons.
Vikas Aragam et al JCAP04(2025)031
We study the contribution of large scalar perturbations sourced by a sharp feature during cosmic inflation to the stochastic gravitational wave background (SGWB), extending our previous work to include the SGWB sourced during the inflationary era.
We focus in particular on three-field inflation, since the third dynamical field is the first not privileged by the perturbations' equations of motion and allows a more direct generalization to -field inflation.
For the first time, we study the three-field isocurvature perturbations sourced during the feature and include the effects of isocurvature masses.
In addition to a two-field limit, we find that the third field's dynamics during the feature can source large isocurvature transients which then later decay, leaving an inflationary-era-sourced SGWB as their only observable signature.
We find that the inflationary-era signal shape near the peak is largely independent of the number of dynamical fields and has a greatly enhanced amplitude sourced by the large isocurvature transient, suppressing the radiation-era contribution and opening a new window of detectable parameter space with small adiabatic enhancement. The largest enhancements we study could easily violate backreaction constraints, but much of parameter space remains under perturbative control. These SGWBs could be visible in LISA and other gravitational wave experiments, leaving an almost universal signature of sharp features during multi-field inflation, even when the sourcing isocurvature decays to unobservability shortly afterwards.
Enis Belgacem et al JCAP04(2025)032
We provide a detailed derivation of the spectral density of the stochastic background generated by the superposition of coalescing compact binaries. We show how the expression often used in the literature emerges from an average over the extrinsic parameters of the binaries (times of arrival, polarization angles, orbit inclinations and arrival directions) and how the Stokes parameters related to circular and linear polarization are set to zero by such averaging procedure. We then consider the effect of shot noise, i.e. the fact that for the superposition of a finite number of sources these averages are only approximate, and we show how it generates circular and linear polarizations (even for isotropic backgrounds) as well as spatial anisotropies, and we compute them explicitly for a realistic population of binary black holes and binary neutron stars.
Nicolás Parra et al JCAP04(2025)028
Particle production in de Sitter spacetime arises from the exponential expansion of space, rendering the Bunch-Davies vacuum perceived as a particle-containing state by late-time observers. For states defined as eigenstates of both momentum and the Hamiltonian, the Bunch-Davies vacuum exhibits a constant particle density per physical momentum. We explore particle production beyond this baseline, focusing on deviations from exact de Sitter conditions and non-gravitational interactions, such as slow-roll inflation or interactions arising from the coupling of inflation to other fields. Using Bogoliubov transformations, we calculate the number density of energy/momentum eigenstates. In single-field inflation, this density captures the observed spectral index of the primordial power spectrum, while in two-field models, it reflects the non-gravitational coupling driving background trajectory turning. We present analytical results applicable to various scenarios involving particle production from non-adiabatic processes during inflation.
L. Apolinário et al JCAP04(2025)029
The lower energy thresholds of large wide-field gamma-ray observatories are often determined by their capability to deal with the very low-energy cosmic ray background. In fact, in observatories with areas of tens or hundreds of thousands of square meters, the number of background events generated by the superposition of random, very low energy cosmic rays is huge and may exceed by far the possible signal events. In this article, we argue that a trigger strategy based on pattern recognition of the shower front can significantly reject the background, keeping a good efficiency and a good angular accuracy (few square degrees) for gamma rays with energies as low as tens of GeV. In this way, alerts can be followed or emitted within time lapses of the order of the second, enabling wide-field gamma-ray observatories to better contribute to global multi-messenger networks of astrophysical observatories.
Keiko I. Nagao et al JCAP04(2025)030
This study explores a two-component dark matter model in which one component, heavier dark matter, annihilates into a lighter dark matter. The lighter dark matter is expected to generate detectable signals in detectors due to its enhanced momentum, enabling direct detection even for MeV-scale dark matter. We investigate the effectiveness of directional direct detections, especially the nuclear emulsion detector NEWSdm, in verifying these boosted dark matter particles through nuclear recoil. In particular, we focus on light nuclei, such as protons and carbon, as suitable targets for this detection method due to their high sensitivity to MeV-scale dark matter. By modeling the interactions mediated by a dark photon in a hidden U(1)D gauge symmetry framework, we calculate the expected dark matter flux and scattering rates for various detector configurations. Our results show that nuclear emulsions have the potential to yield distinct, direction-sensitive dark matter signals from the Galactic center, providing a new way to probe low-mass dark matter parameter spaces that evade conventional detection methods.
Enis Belgacem et al JCAP04(2025)032
We provide a detailed derivation of the spectral density of the stochastic background generated by the superposition of coalescing compact binaries. We show how the expression often used in the literature emerges from an average over the extrinsic parameters of the binaries (times of arrival, polarization angles, orbit inclinations and arrival directions) and how the Stokes parameters related to circular and linear polarization are set to zero by such averaging procedure. We then consider the effect of shot noise, i.e. the fact that for the superposition of a finite number of sources these averages are only approximate, and we show how it generates circular and linear polarizations (even for isotropic backgrounds) as well as spatial anisotropies, and we compute them explicitly for a realistic population of binary black holes and binary neutron stars.
L. Apolinário et al JCAP04(2025)029
The lower energy thresholds of large wide-field gamma-ray observatories are often determined by their capability to deal with the very low-energy cosmic ray background. In fact, in observatories with areas of tens or hundreds of thousands of square meters, the number of background events generated by the superposition of random, very low energy cosmic rays is huge and may exceed by far the possible signal events. In this article, we argue that a trigger strategy based on pattern recognition of the shower front can significantly reject the background, keeping a good efficiency and a good angular accuracy (few square degrees) for gamma rays with energies as low as tens of GeV. In this way, alerts can be followed or emitted within time lapses of the order of the second, enabling wide-field gamma-ray observatories to better contribute to global multi-messenger networks of astrophysical observatories.
Francesco Sorrenti et al JCAP04(2025)013
In previous work we have shown that the dipole in the low redshift supernovae of the Pantheon+SH0ES data does not agree with the one inferred from the velocity of the solar system as obtained from CMB data. We interpreted this as the presence of significant bulk velocities, indicating that it could be interesting to look at other large-scale multipoles. In this paper we study the monopole, dipole and quadrupole in the Pantheon+SH0ES data. We find that in addition to the dipole also both the monopole and the quadrupole are detected with high significance. They are of similar amplitudes as the bulk flow. While the monopole is only significant at very low redshift, the quadrupole even increases with redshift.
Beka Modrekiladze et al JCAP04(2025)014
We present a world-line effective field theory of compact objects moving relativistically through a viscous fluid. The theory is valid when velocity gradients are small compared to the inverse size of the object. Working within the EFT eliminates the need to solve a boundary value problem by turning all interactions between the fluid and the object into a source term in the action. We use the EFT to derive the relativistic equations of motion for a compact object immersed in a viscous fluid in a curved background, when the relative velocity of the object and the fluid is small compared to the speed of light.
Andrea Lapi et al JCAP04(2025)015
The ηCDM framework by [1] is a new cosmological model aimed to cure some drawbacks of the standard ΛCDM scenario, such as the origin of the accelerated expansion at late times, the cosmic tensions, and the violation of the cosmological principle due to the progressive development of inhomogeneous/anisotropic conditions in the Universe during structure formation. To this purpose, the model adopts a statistical perspective envisaging a stochastic evolution of large-scale patches in the Universe with typical sizes 10-50h-1 Mpc, which is meant to describe the complex gravitational processes leading to the formation of the cosmic web. The stochasticity among different patches is technically rendered via the diverse realizations of a multiplicative noise term ('a little ado') in the cosmological equations, and the overall background evolution of the Universe is then operationally defined as an average over the patch ensemble. In this paper we show that such an ensemble-averaged evolution in ηCDM can be described in terms of a spatially flat cosmology and of an 'emergent' dark energy with a time-dependent equation of state, able to originate the cosmic acceleration with the right timing and to solve the coincidence problem. Moreover, we provide a cosmographic study of the ηCDM model, suitable for quick implementation in the analysis of future observations. Then we test the ηCDM model against the most recent supernova type-Ia, baryon acoustic oscillations and structure growth rate datasets, finding an excellent agreement. Remarkably, we demonstrate that ηCDM is able to alleviate simultaneously both the H0 and the fσ8 tensions. Finally, we discuss that the Linders' diagnostic test could be helpful to better distinguish ηCDM from the standard scenario in the near future via upcoming galaxy redshift surveys at intermediate redshifts such as those being conducted by the Euclid mission.
Valentina De Romeri et al JCAP04(2025)018
Primordial black holes (PBH), while still constituting a viable dark matter component, are expected to evaporate through Hawking radiation. Assuming the semi-classical approximation holds up to near the Planck scale, PBHs are expected to evaporate by the present time, emitting a significant flux of particles in their final moments, if produced in the early Universe with an initial mass of ∼ 1015 g. These "exploding" black holes will release a burst of Standard Model particles alongside any additional degrees of freedom, should they exist. We explore the possibility that heavy neutral leptons (HNL), mixing with active neutrinos, are emitted in the final evaporation stages. We perform a multimessenger analysis. We calculate the expected number of active neutrinos from such an event, including contributions due to the HNL decay for different assumptions on the mixings, that could be visible in IceCube. We also estimate the number of gamma-ray events expected at HAWC. By combining the two signals, we infer sensitivities on the active-sterile neutrino mixing and on the sterile neutrino mass. We find that, for instance, for the scenario where Uτ 4 ≠ 0, IceCube and HAWC could improve current constraints by a few orders of magnitude, for HNLs masses between 0.1–1 GeV, and a PBH explosion occurring at a distance of ∼ 10-4 pc from Earth.
Daniel Neves and João G. Rosa JCAP04(2025)019
We study the dynamical evolution of superradiant instabilities of rotating black holes for multiple axion fields with comparable masses, motivated by string theory constructions, which typically exhibit a large number of light axions, with a broad range of masses. We show, in particular, that even though superradiant clouds for the heavier axion species grow faster, they are eventually reabsorbed by the black hole as the latter amplifies the lighter axion field(s), analogously to the dynamics of different species competing for the same resources in an ecosystem. We also incorporate in our study the effects of accretion and gravitational wave emission. We further demonstrate that the existence of multiple axion species with comparable masses may have a substantial impact on the stochastic gravitational wave background produced by axion clouds around black hole binary merger remnants, which could be probed with planned detectors.
Alan Kogut et al JCAP04(2025)020
The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission concept to measure the energy spectrum and linear polarization of the cosmic microwave background (CMB). A single cryogenic Fourier transform spectrometer compares the sky to an external blackbody calibration target, measuring the Stokes I, Q, U parameters to levels ∼200 Jy/sr in each 2.65° diameter beam over the full sky, in each of 300 frequency channels from 28 GHz to 6 THz. With sensitivity over 1000 times greater than COBE/FIRAS, PIXIE opens a broad discovery space for the origin, contents, and evolution of the universe. Measurements of small distortions from a CMB blackbody spectrum provide a robust determination of the mean electron pressure and temperature in the universe while constraining processes including dissipation of primordial density perturbations, black holes, and the decay or annihilation of dark matter. Full-sky maps of linear polarization measure the optical depth to reionization at nearly the cosmic variance limit and constrain models of primordial inflation. Spectra with sub-percent absolute calibration spanning microwave to far-IR wavelengths provide a legacy data set for analyses including line intensity mapping of extragalactic emission and the cosmic infrared background amplitude and anisotropy. We describe the PIXIE instrument sensitivity, foreground subtraction, and anticipated science return from both the baseline 2-year mission and a potential extended mission.
Iván Martín Vílchez and Carlos F. Sopuerta JCAP04(2025)022
The inspiral, merger, and ringdown of Massive Black Hole Binaries (MBHBs) is one the main sources of Gravitational Waves (GWs) for the future Laser Interferometer Space Antenna (LISA), an ESA-led mission in the implementation phase. It is expected that LISA will detect these systems throughout the entire observable universe. Robust and efficient data analysis algorithms are necessary to detect and estimate physical parameters for these systems. In this work, we explore the application of Sequential Neural Likelihood, a simulation-based inference algorithm, to detect and characterize MBHB GW signals in synthetic LISA data. We describe in detail the different elements of the method, their performance and possible alternatives that can be used to enhance the performance. Instead of sampling from the conventional likelihood function, which requires a forward simulation for each evaluation, this method constructs a surrogate likelihood that is ultimately described by a neural network trained from a dataset of simulations of the MBHB signals and noise. One important advantage of this method is that, given that the likelihood is independent of the priors, we can iteratively train models that target specific observations in a fraction of the time and computational cost that other traditional and machine learning-based strategies would require. Because of the iterative nature of the method, we are able to train models to obtain qualitatively similar posteriors with less than 2% of the simulator calls that Markov Chain Monte Carlo methods would require. We compare these posteriors with those obtained from Markov Chain Monte Carlo techniques and discuss the differences that appear, in particular in relation with the important role that data compression has in the modular implementation of the method that we present. We also discuss different strategies to improve the performance of the algorithms.
Anne M. Green JCAP04(2025)023
Microlensing surveys of stars in the Large Magellanic Cloud constrain the fraction of the Milky Way halo in Primordial Black Holes (PBHs) with mass 10-9 ≲ M/M⊙ ≲ 104. Various studies have reached different conclusions on the uncertainties in these constraints due to uncertainties in the Dark Matter (DM) distribution. We therefore revisit the dependence of the microlensing differential event rate, and hence exclusion limits, on the DM density and velocity distributions. The constraints on the abundance of low- and high-mass PBHs depend, respectively, on the long- and short-duration tails of the differential event rate distribution. Long-duration events are due to PBHs moving close to the line of sight and their rate (and hence the constraints on low-mass PBHs) has a fairly weak (∼ 10%) dependence on the DM density and velocity distributions. Short-duration events are due to PBHs close to the observer and their rate (and hence the constraints on moderate- and high-mass PBHs) depends much more strongly on the DM velocity distribution. An accurate calculation of the local DM velocity distribution is therefore crucial for accurately calculating PBH stellar microlensing constraints.