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Abstract. We present two different halo-independent methods to assess the compatibility of
several direct dark matter detection data sets for a given dark matter model using a global
likelihood consisting of at least one extended likelihood and an arbitrary number of Gaussian
or Poisson likelihoods. In the first method we find the global best fit halo function (we
prove that it is a unique piecewise constant function with a number of down steps smaller
than or equal to a maximum number that we compute) and construct a two-sided pointwise
confidence band at any desired confidence level, which can then be compared with those
derived from the extended likelihood alone to assess the joint compatibility of the data. In
the second method we define a “constrained parameter goodness-of-fit” test statistic, whose
p-value we then use to define a “plausibility region” (e.g. where p ≥ 10%). For any halo
function not entirely contained within the plausibility region, the level of compatibility of the
data is very low (e.g. p < 10%). We illustrate these methods by applying them to CDMS-II-Si
and SuperCDMS data, assuming dark matter particles with elastic spin-independent isospin-
conserving interactions or exothermic spin-independent isospin-violating interactions.
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1 Introduction

Astrophysical and cosmological evidence indicate that roughly 85% of the matter in the Uni-
verse is in the form of dark matter (DM) most likely composed of yet unknown elementary
particles. Arguably the most extensively studied DM particle candidate is a weakly interact-
ing massive particle (WIMP), which offers both theoretical appeal and hope for near-future
detection. Most of the matter in our own galaxy resides in a spheroidal dark halo that ex-
tends much beyond the visible disk. Direct DM detection experiments represent one of the
primary WIMP search methods currently employed. These experiments attempt to measure
the recoil energy of nuclei after they collide with DM particles bound to the galactic dark
halo passing through Earth. The current status of DM direct detection experiments remain
ambiguous, with three experiments observing a potential DM signal and all others report-
ing upper bounds, some of which appear to be in irreconcilable conflict with the putative
detection claims for most particle candidates [1–18].

Interpreting the results of DM direct detection experiments typically requires assump-
tions on the local DM density, the DM velocity distribution, the DM-nuclei interaction, and
the scattering kinematics. The uncertainties associated with these inputs can significantly
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affect the expected recoil spectrum (both in shape and magnitude) for a particular experi-
ment, as well as the observed compatibility between experimental data. Attempts have been
made to remove the astrophysical uncertainty from direct DM detection calculations, and
compare data in a “halo-independent” manner, by translating measurements and bounds on
the scattering rate into measurements and bounds on a function we will refer to as η̃(vmin, t)
common to all experiments, which contains all of the information on the local DM density
and velocity distribution (see e.g. [19–45]).

The function η̃(vmin, t) depends on the time t and a particular speed vmin. The physical
interpretation of vmin depends on the type of analysis being used. If the nuclear recoil ER

is considered an independent variable, then vmin is understood to be the minimum speed
necessary for the incoming DM particle to impart a nuclear recoil ER to the target nucleus
(and thus it depends on the target nuclide T through its mass mT , vTmin = vmin(ER,mT )).
This has been the more common approach [19, 21, 24]. Alternatively, one can choose vmin as
the independent variable, in which case ETR is understood to be the extremum recoil energy
(maximum for elastic scattering, and either maximum or minimum for inelastic scattering)
that can be imparted by an incoming WIMP traveling with speed v = vmin to a target
nuclide T . Note that for elastic scattering off a single nuclide target the two approaches are
just related by a simple change of variables. We will choose to treat vmin as an independent
variable for the remainder of this paper, as this choice allows us to account for any isotopic
target composition by summing terms dependent on ETR(vmin) over target nuclides T , for any
fixed detected energy E′.

Early halo-independent analyses were limited in the way they handled putative sig-
nals. Only weighted averages on vmin intervals of the unmodulated component of η̃(vmin, t),
η̃0(vmin), and of the amplitude of the annually modulated component, η̃1(vmin), (see eq. (2.15)
below) were plotted against upper bounds in the vmin − η̃ plane (see e.g. [19, 21, 22, 27]).
This type of analysis leads to a poor understanding of the compatibility of various data sets.

Recently, attempts have been made to move beyond this limited approach of taking
averages over vmin intervals by finding a best fit η̃0 function and constructing confidence
bands in the vmin − η̃ plane [31, 46], from unbinned data with an extended likelihood [47].
One can then compare upper bounds at a particular confidence level (CL) with a confidence
band at a particular CL to assess if they are compatible (see [46] for a discussion). From now
on, when an upper index 0 or 1 is not written, η̃(vmin) is understood to be η̃0(vmin).

An alternative approach to analyzing the compatibility of data has been studied in [36]
using the “parameter goodness-of-fit” test statistic [48, 49] derived from a global likelihood
(an alternative approach is taken in [37]). In [36], the compatibility of various experiments
within a particular theoretical framework was determined by obtaining a p-value from Monte
Carlo (MC) simulated data, generated under the assumption that the true halo function is
the global best fit halo function. This approach has an advantage in that one can make quan-
titative statements about the compatibility between the observed data given a dark matter
candidate model. However, this procedure assigns only a single number to the whole halo-
independent parameter space, and we would like to have the ability to assess compatibility
of the data with less restrictive assumptions on the underlying halo function.

In this paper we extend the approaches of [36] and [46] by using the global likelihood
function to assess the compatibility of multiple data sets within a particular theoretical
model across the halo-independent vmin − η̃ parameter space. This is done with two distinct
approaches. First, we extend the construction of the halo-independent pointwise confidence
band presented in [46] to the case of a global likelihood function, consisting of one (or more)
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extended likelihood functions and an arbitrary number of Gaussian or Poisson likelihoods.
The resultant global confidence band can be compared directly with the confidence band
constructed from the extended likelihood alone, to assess the joint compatibility of the data
for any choice of DM-nuclei interaction and scattering kinematics. The drawback of this
method is that it cannot quantitatively address the level of compatibility of the data sets.
To address this concern we also propose an extension of the parameter goodness-of-fit test,
which we will refer to as the “constrained parameter goodness-of-fit” test, that quantifies
the compatibility of various data sets for a given DM particle candidate assuming the halo
function η̃(vmin) passes through a particular point (v∗, η̃∗). By calculating the p-values for
each (v∗, η̃∗) throughout the vmin − η̃ plane, one can construct plausibility regions, such
that for any halo function not entirely contained within the plausibility region the data are
incompatible at the chosen level, e.g. p < 10%.

In section 2 we review the procedure for constructing the best fit halo function η̃BF and
confidence band from an extended likelihood. Readers familiar with [46] may wish to skip this
section and go directly to section 3, which discusses how the construction of the best fit halo
function and confidence band is altered when dealing with a global likelihood function that
is the product of one (or more) extended likelihoods and an arbitrary number of Poisson or
Gaussian likelihoods. In section 4, we use the methods discussed in section 3 to construct the
best fit halo and global pointwise confidence band, for the combined analysis of CDMS-II-Si
and SuperCDMS data assuming elastic isospin-conserving [50–52] and exothermic isospin-
violating spin-independent (SI) interactions [32, 35]. Section 5 introduces the “constrained
parameter goodness-of-fit” test statistic and the construction of the plausibility regions. This
method is illustrated using CDMS-II-Si and SuperCDMS data, assuming elastic isospin-
conserving spin-independent interactions. We conclude in section 6.

2 Review of the Extended Maximum-Likelihood Halo-independent (EHI)
analysis method

2.1 Generalized halo-independent analysis

The differential rate per unit of detector mass as a function of nuclear recoil energy ER for
dark matter particles of mass m scattering off a target nuclide T with mass mT is given by

dRT
dER

=
ρ

m

CT
mT

∫
v>vmin(ER)

d3 v f(v, t) v
dσT
dER

(ER,v) , (2.1)

where ρ is the local dark matter density, CT is the mass fraction of the nuclide T in the
detector, f(v, t) is the dark matter velocity distribution in Earth’s frame, and dσT /dER is
the WIMP-nuclide differential cross section in the lab frame. When multiple target elements
are present in the detector, the differential rate is

dR

dER
=
∑
T

dRT
dER

. (2.2)

To allow for the possibility of inelastic DM-nuclei scattering, we consider a DM particle
scattering to a new state of mass m′ = m + δ, where |δ| � m, and δ > 0 (< 0) describes
endothermic (exothermic) scattering. In the limit µT |δ|/m2 � 1, vmin(ER) is given by

vmin(ER) =
1√

2mTER

∣∣∣∣mTER

µT
+ δ

∣∣∣∣ , (2.3)
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where µT is the reduced mass of the WIMP-nucleus system. Notice eq. (2.3) reduces to the
typical equation for elastic scattering when δ = 0. Eq. (2.3) can be used to obtain the range
of possible recoil energies, [ET,−R (v), ET,+R (v)], that can be imparted to a target nucleus by a
DM particle traveling at speed v in Earth’s frame, given by

ET,±R (v) =
µ2T v

2

2mT

(
1±

√
1− 2δ

µT v2

)2

. (2.4)

Eq. (2.4) shows that for endothermic scattering there exists a nontrivial kinematic endpoint,
given by the DM speed vTδ =

√
2δ/µT , below which incoming DM particles cannot induce

nuclear recoils. When multiple targets are present in a detector, we use vδ to denote the
minimum of all vTδ . For exothermic and elastic scattering vδ = 0.

Experiments do not actually measure the recoil energy of a target nucleus, but rather
a proxy for recoil energy (e.g. the number of photoelectrons detected in a photomultiplier
tube) denoted E′. The differential rate as a function of the detected energy E′ is given by

dR

dE′
=
∑
T

∫ ∞
0

dER ε(ER, E
′)GT (ER, E

′)
dRT
dER

, (2.5)

where the differential rate in eq. (2.1) has been convolved with the efficiency function
ε(ER, E

′) and the energy resolution function GT (ER, E
′), which together give the proba-

bility that a detected recoil energy E′ resulted from a true recoil energy ER.
Upon changing the order of integration, one can express the differential rate in detected

energy as
dR

dE′
=
σrefρ

m

∫
v>vδ

d3v
f(v, t)

v

∑
T

dHT
dE′

(E′,v) , (2.6)

where dHT /dE′ is given by

dHT
dE′

(E′,v) ≡


CT
mT

∫ ET,+R

ET,−R

dERε(ER, E
′)GT (ER, E

′)
v2

σref

dσT
dER

(ER,v) if v > vTδ ,

0 if v < vTδ .

(2.7)

and we define
dH
dE′
≡
∑
T

dHT
dE′

. (2.8)

Here, we only consider differential cross sections that depend on the speed of the WIMP
v = |v|. The cross section depends only on the speed v if the incoming WIMPs and the
target nuclei are unpolarized and the detector response is isotropic, as is most common.
In eqs. (2.6) and (2.7), we have incorporated the parameter σref which denotes the overall
strength of the interaction. For example in the case of the SI interaction, with differential
cross section given by

dσSIT
dER

(ER, v) = σp
µ2T
µ2p

[ZT + (AT − ZT )(fn/fp)]
2 F 2

T (ER)

2µ2T v
2/mT

, (2.9)

where AT and ZT are the atomic and charge numbers of nuclide T , fn and fp are the neutron
and proton couplings, and FT (ER) is the form factor normalized to FT (0) = 1 (taken here
to be Helm form factor), we will choose σref = σp, the WIMP-proton cross section.
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A halo-independent analysis relies on the separation of the astrophysical parameters
from the particle physics and detector-dependent quantities. Here we follow [27]. Let us define

η̃(vmin, t) ≡
ρσref
m

∫ ∞
vmin

dv
F (v, t)

v
, (2.10)

where F (v, t) ≡ v2
∫

dΩvf(v, t). Differentiating both sides of eq. (2.10) gives

σrefρ

m

F (v, t)

v
= −∂η̃(v, t)

∂v
, (2.11)

which upon insertion into eq. (2.6) leads to

dR

dE′
= −

∫ ∞
vδ

dv
∂η̃(v, t)

∂v

dH
dE′

(E′, v) . (2.12)

Using the fact that η̃(∞, t) = 0 and dH/dE′(E′, vδ) = 0, integration by parts of eq. (2.12)
results in the following expression for the differential rate

dR

dE′
=

∫ ∞
vδ

dvminη̃(vmin, t)
dR
dE′

(E′, vmin) , (2.13)

where we have now defined the differential response function dR/dE′ as

dR
dE′

(E′, vmin) ≡ ∂

∂vmin

[
dH
dE′

(E′, vmin)

]
. (2.14)

η̃(vmin, t) is a function of time due to the annual rotation of the Earth around the Sun.
If one now makes the approximation

η̃(vmin, t) ' η̃0(vmin) + η̃1(vmin) cos(2π(t− t0)/year) (2.15)

and integrates the differential rate over the energy range of interest, the unmodulated com-
ponent R0 and annual modulation amplitude R1 of the rate are given by

Rα[E′1,E′2]
≡
∫ ∞
vδ

dvmin η̃
α(vmin)

∫ E′2

E′1

dE′
dR
dE′

(2.16)

=

∫ ∞
vδ

dvmin η̃
α(vmin)R[E′1,E

′
2]

(vmin) , (2.17)

where α = 0 or 1, and the energy-integrated response function R is given by

R[E′1,E
′
2]

(vmin) =

∫ E′2

E′1

dE′
dR
dE′

(E′, vmin) . (2.18)

In the event that R[E′1,E
′
2]

(vmin) is a well-localized function in vmin, measurements on unmod-

ulated and modulated rate can be used to infer the average values of η̃0 and η̃1 over a vmin

interval. This is the case for DM-nuclei differential cross sections proportional to 1/v2 (e.g. the
typical SI and SD contact interactions). Should the differential cross section not be of this
form, one may need to regularize the energy-integrated response function as described in [27].
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2.2 Extended maximum likelihood analysis

It was initially proven in [31], that if there is no uncertainty in the measurement of recoil
energies in a single nuclide target, then the extended likelihood, given by

L[η̃(vmin)] ≡ e−NE [η̃]
NO∏
a=1

MT
dRtot

dE′

∣∣∣∣
E′=E′a

, (2.19)

is maximized by a non-increasing piecewise constant η̃0(vmin) function (which we call simply
η̃(vmin)) with at most NO (the number of observed events) steps. NE [η̃] in eq. (2.19) is the
total number of expected events, and E′a is the observed energy of event a. This proof was
generalized to the case of realistic energy resolution and arbitrary target composition in [46].
The generalized proof presented in [46] applies the Karush-Kuhn-Tucker (KKT) conditions,
which are only valid for systems with an objective function of finite number of variables sub-
ject to a finite number of constraints, to the likelihood functional in eq. (2.19) by discretizing
the variable vmin, applying the KKT conditions, and then taking the continuum limit.

Here, we will briefly review the conclusions presented in [46]. If one defines the quantity

L[η̃] = −2 lnL[η̃] , (2.20)

then instead of maximizing the likelihood, one can equivalently minimize L[η̃]. The KKT
conditions, applied to eq. (2.20) and taken in the continuum limit, lead to the following:

(I) q(vmin) =

∫ vmin

vδ

dv
δL

δη̃(v)
(2.21)

(II) q(vmin) ≥ 0 (2.22)

(III) ∀ε > 0, η̃(vmin + ε) ≤ η̃(vmin) (2.23)

(IV) q(vmin) lim
ε→+0

η̃(vmin + ε)− η̃(vmin)

ε
= 0 . (2.24)

A direct consequence of eq. (2.24) is that η̃(vmin) is a piecewise constant function with the
locations of the steps given by the vmin values which satisfy q(vmin) = 0. For this reason, we
need to analyze the behavior of q(vmin). Eq. (2.19) and (2.21) can be used to show that

q(vmin) = 2ξ(vmin)− 2

NO∑
a=1

Ha(vmin)

γa[η̃]
, (2.25)

where we have defined the following quantities:

ξ(vmin) ≡ MT

∫ E′max

E′min

dE′
dH
dE′

(E′, vmin) , (2.26)

Ha(vmin) ≡ dH
dE′

(E′, vmin)

∣∣∣∣
E′=E′a

, (2.27)

and

γa[η̃] ≡ dRtot

dE′

∣∣∣∣
E′=E′a

. (2.28)
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For the extended likelihood function in eq. (2.19), the behavior of the terms in eq. (2.25)
were studied in [46] to determine how many steps can appear in the best fit η̃ function. We
briefly review their behavior here (see [46] for additional details).

Consider first the vmin-dependence of dH/dE′ (see eq. (2.7)), which appears in both the
integrand of ξ(vmin) and in Ha(vmin). If the differential cross section is proportional to v−2,
as is the case for the standard SI and SD contact interactions, the only velocity dependence of
dH/dE′ is in the integration range [ET,+R (vmin), ET,−R (vmin)]. For these interactions, as vmin

increases, the integration covers a larger portion of the parameter space where the integrand
is non-zero. At large values of vmin, the entire region where the integrand is non-zero is
included in the integration and dH/dE′ becomes constant. For a fixed value of E′, one
would expect the integrand of dH/dE′ to be a well-localized function of ER (i.e. an observed
recoil E′ can only result from a narrow range of ER values). For this reason, the terms
Ha(vmin) appear as step-like functions in vmin.

The term ξ(vmin) contains an additional integration of dH/dE′ over E′. The only
dependence on E′ appears in the factor ε(E′, ER)GT (E′, ER), which describes the probability
a detected recoil energy E′ is the result of some true recoil energy ER. For small values of
vmin, only a narrow range of recoil energies are integrated over and thus ξ will be quite
small (i.e. , for vmin values such that ET,+R (vmin) is below threshold). As vmin increases, the
integration range widens and ξ(vmin) steadily increases. Eventually, the entire region where
the integrand is nonzero is included in the integration, and ξ(vmin) becomes constant.

The only term dependent on the halo function is γa[η̃], which only alters the relative
contribution of each step-like function to q(vmin). The function η̃BF (vmin) can only be dis-
continuous when q(vmin) = 0, which is equivalent to saying the steps of η̃BF occur where the
step-like functions Ha(vmin)/γa[η̃] touch ξ(vmin) from below. Since there is a single term of
the form Ha(vmin)/γa[η̃] for each observed event, the number of steps appearing in η̃BF must
be less than or equal to the number of observed events, NO.

2.3 Construction of the best fit halo function and confidence band from an
extended likelihood

In this section we briefly review the construction of the best fit function η̃BF (vmin) and the
confidence band for an extended likelihood [46]. Let us define the function fNOL of 2NO

variables,
fNOL (~v, ~̃η) ≡ L[η̃NO(vmin;~v, ~̃η)] , (2.29)

where ~v = (v1, . . . , vNO) and ~̃η = (η̃1, . . . , η̃NO), and the various va and η̃a specify the location
and height of each step. Here, we have defined the piecewise constant function η̃NO as

η̃NO(vmin;~v, ~̃η) ≡

{
η̃a va−1 < vmin ≤ va ,
0 vNO < vmin .

Using the result of the previous section, minimizing the functional L[η̃], and thus finding the
best fit η̃(vmin), is now reduced to minimizing fNOL subject to the constraints

v1 > vδ , (2.30)

vb − va ≥ 0 and η̃a − η̃b ≥ 0 for a < b . (2.31)

We can define the confidence band as the region filled by all possible η̃ functions satisi-
fying

∆L[η̃] ≡ L[η̃]− Lmin ≤ ∆L∗ , (2.32)

– 7 –



J
C
A
P
1
0
(
2
0
1
6
)
0
2
9

where Lmin is the minimum of L[η̃], and ∆L∗ corresponds to the desired confidence level.
However, in practice, finding all η̃ functions satisfying eq. (2.32) is not possible. Instead, let
us consider the possible subset of η̃ functions which minimize L[η̃] subject to the constraint

η̃(v∗) = η̃∗ . (2.33)

Now let us define Lcmin(v∗, η̃∗) to be the minimum of L[η̃] subject to the constraint in
eq. (2.33), and

∆Lcmin(v∗, η̃∗) = Lcmin(v∗, η̃∗)− Lmin . (2.34)

If the point (v∗, η̃∗) lies within the confidence band, then there should exist at least one η̃
function passing through this point which satisfies ∆L[η̃] ≤ ∆L∗. Should this be the case,
it follows that ∆Lcmin(v∗, η̃∗) ≤ ∆L∗. Alternatively, if ∆Lcmin(v∗, η̃∗) ≥ ∆L∗, one can state
that there does not exist a single η̃ which satisfies ∆L[η̃] ≤ ∆L∗. Thus the confidence band
can be constructed by finding the values of (v∗, η̃∗) which satisfy ∆Lcmin(v∗, η̃∗) ≤ ∆L∗. This
condition defines a two-sided interval around η̃BF for each vmin value (with vmin = v∗), and
the collection of those intervals forms a pointwise confidence band in vmin–η̃ space, which we
are simply calling the confidence band.

To understand the meaning of ∆Lcmin, let us first discretize the continuous variable vmin

into a collection of K discrete values ~vmin = (v0min, . . . , v
K−1
min ). The likelihood functional in

eq. (2.20) then becomes a function of the K−dimensional vector ~̃η = (η̃0, η̃1, . . . , η̃K−1) which
defines the piecewise constant function η̃(vmin; ~̃η) given by

η̃(vmin; ~̃η) ≡ η̃i if vimin ≤ vmin < vi+1
min . (2.35)

With this discretization, the constraint on (v∗, η̃∗) in eq. (2.33) corresponds to vkmin ≤ v∗ <
vk+1
min and η̃∗ = η̃k for some integer 0 ≤ k ≤ K − 1. ∆Lcmin(v∗, η̃∗) is then replaced by the

function ∆Lk,cmin(η̃∗) with the index k corresponding to v∗, defined by

∆Lk,cmin(η̃∗) = −2 ln

[
L(

ˆ̂
η̃0, . . . ,

ˆ̂
η̃k−1, η̃k = η̃∗,

ˆ̂
η̃k+1, . . . ,

ˆ̂
η̃K−1)

L(ˆ̃η0, . . . , ˆ̃ηk, . . . , ˆ̃ηK−1)

]
, (2.36)

where
ˆ̂
η̃i are the η̃i values which maximize the likelihood function L(η̃0, . . . η̃K−1) ≡

L[η̃(vmin; ~̃η)] subject to the constraint η̃k = η̃∗, and ˆ̃ηi maximize L without the constraint.

∆Lk,cmin(η̃∗) now defines the −2 ln of the profile likelihood ratio with one parameter (η̃k), and

thus by Wilks’ theorem the distribution of ∆Lk,cmin(η̃∗) approaches the chi-square distribution
with one degree of freedom in the limit where the data sample is very large. If we now recover
the continuum limit by taking K → ∞, we see that ∆Lk,cmin(η̃∗) approaches ∆Lcmin(v∗, η̃∗).
Thus the construction of the confidence band is equivalent to finding the collection of con-
fidence intervals in η̃∗ for each v∗ at a given CL for which ∆Lcmin < ∆L∗. Assuming that
∆Lcmin is chi-square distributed, the choices ∆L∗ = 1.0 and ∆L∗ = 2.7 correspond to the
confidence intervals of η̃ at 68% and 90% CL, respectively, for each vmin value. In [46] it was
shown that the constrained best fit halo function η̃cBF defining Lcmin(v∗, η̃∗) is a piecewise
constant function with at most NO + 1 steps, with the additional step potentially appearing
at (v∗, η̃∗). An in-depth discussion of the interpretation of the confidence band constructed
from the profile likelihood ratio is provided in [46].
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3 Extension of EHI analysis to a global maximum likelihood

In this paper we extend the analysis presented in [46] to make statistically meaningful state-
ments about the data of multiple experiments in a halo-independent manner. Specifically, we
(i) extend the formalism of constructing a pointwise confidence band from a profile likelihood
in halo-independent parameter space to a global likelihood function (this section), and (ii)
propose a method for creating plausibility regions, constructed from a new family of test
statistics which can assess the compatibility of multiple data sets under the assumption that
the halo function η̃(vmin) passes through each (v∗, η̃∗) point (see section 5). To accomplish
these tasks one must first understand how to find the best fit halo function and constrained
best fit halo function from a global likelihood.

In this section we extend the procedure of [46] to the global likelihood function, defined
by the product of some number Nexp of individual likelihood functions, α = 1, 2, . . . Nexp,

LG =

Nexp∏
α=1

Lα . (3.1)

The procedure of [46] relies on the fact that an extended likelihood function is maximized
by a non-increasing piecewise constant η̃BF (vmin) function with a finite number of points
of discontinuity. As discussed below, the methods and reasoning of [46] extend to a global
likelihood, if it includes at least one extended likelihood. Thus, the global likelihood function
we will work with for the remainder of the paper is

LG = LEHI

(Nexp−1)∏
α=1

Lα , (3.2)

where LEHI is an extended likelihood (EHI stands for “extended halo-independent” [46]) as
in eq. (2.19) and, for each α, Lα represents Poisson likelihoods,

Lα[η̃] =

N
(α)
bin∏
j=1

(ν
(α)
j [η̃] + b

(α)
j )n

(α)
j e−(ν

(α)
j [η̃]+b

(α)
j )

n
(α)
j !

, (3.3)

or Gaussian likelihoods

Lα[η̃] =

N
(α)
bin∏
j=1

1

σ
(α)
j

√
2π

exp

−(ν(α)j [η̃] + b
(α)
j − n

(α)
j√

2σ
(α)
j

)2
 . (3.4)

Here ν
(α)
j [η̃], b

(α)
j , and n

(α)
j are respectively the expected number of dark matter events,

the expected number of background events, and the number of observed events in bin j of

experiment α. N
(α)
bin is the number of bins used in the Poisson or Gaussian likelihood of

experiment α, and σ
(α)
j is the standard deviation associated with the measurement of n

(α)
j in

an experiment α employing a Gaussian likelihood.
We now prove that global likelihoods of the form eq. (3.2) are maximized by non-

increasing piecewise constant η̃ functions with at most N steps,

N ≡ NEHI +
∑
α

N
(α)
bin , (3.5)

where NEHI = NO in eq. (2.19), i.e. the number of observed events in the extended likelihood.
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The KKT conditions in eq. (2.21)–(2.24) apply equally to any likelihood function L.
The KKT condition in eq. (2.24) implies that η̃BF is constant in an open interval where
q(vmin) 6= 0. Thus if the q(vmin) function given by eq. (2.21) has only a finite number of
isolated zeros within a range, the best fit η̃ in this range should be a piecewise constant
function with steps located at the zeros of q(vmin). Therefore, the problem of determining
the potential number of steps of η̃BF is equivalent to counting the maximum possible number
of isolated zeros of the q(vmin) function.

For the global likelihood in eq. (3.2), q(vmin) is given by

q(vmin) = 2ξEHI(vmin)− 2

NEHI∑
a=1

HEHI
a (vmin)

γEHI
a [η̃]

+
∑
α=1

Q(α)[η̃; vmin] , (3.6)

where Q(α)[η̃; vmin] is defined by either

Q(α)[η̃, vmin] ≡
∫ vmin

vδ

dv
δ(−2 lnLα)

δη̃(v)
= 2

N
(α)
bin∑
j=1

[
ν
(α)
j [η̃] + b

(α)
j − n

(α)
j

ν
(α)
j [η̃] + b

(α)
j

]
ξ
(α)
j (vmin) (3.7)

for Poisson likelihoods of the form in eq. (3.3), and

Q(α)[η̃, vmin] = 2

N
(α)
bin∑
j=1

[
ν
(α)
j [η̃] + b

(α)
j − n

(α)
j

σ2j

]
ξ
(α)
j (vmin) , (3.8)

for Gaussian likelihoods in eq. (3.4). Changing the function η̃(vmin) only alters the sign and

magnitude of the prefactor of ξ
(α)
j (vmin) in each term of Q(α)[η̃, vmin]. The vmin dependence of

Q(α)[η̃, vmin] exclusively appears in the functions ξ
(α)
j (vmin), which is defined as in eq. (2.26),

replacing the integration range [E′min, E
′
max] with the energy range of the bin, and H by

H(α). The function ξ
(α)
j (vmin) has the same generic behavior as ξ(vmin) described at the end

of section 2.2.

In appendix A we prove that above a certain value of vmin, given by the minimum
vµlow (see appendix A.1 for definition), the zeros of q(vmin) in eq. (3.6) are isolated, and the
maximum number of isolated zeros is given by eq. (3.5). However, in practice the number
of steps is smaller than N and can be determined by studying the functional form of the

functions ξEHI(vmin), HEHI
a (vmin), and ξ

(α)
j (vmin) (which are independent of η̃). In appendix

B we prove the uniqueness of the best fit halo function, η̃BF .

An explicit example of the q(vmin) function and its components is shown in figure 1 for
the case of CDMS-II-Si combined with SuperCDMS data. For SuperCDMS we have taken a
one-bin Poisson likelihood, summing over all detectors in table 1 of [18], the contribution from
which to q(vmin) is shown in green. Also included in figure 1 are the contributions to q(vmin)
arising from ξEHI(vmin) (red) and the summation over the Ha(vmin)/γa[η̃] (blue). Figure 1
shows that q(vmin) goes to 0 at vmin ' 510 km/s and 580 km/s, denoting the locations of the
steps of η̃BF (shown later in figure 2).

We would like to emphasize that all of the aforementioned arguments have relied on
having a global likelihood that contains at least one extended likelihood. This likelihood
has the essential feature of contributing an η̃-dependent term and an η̃-independent term to
q(vmin), with different functional dependences on vmin.
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Figure 1. The function q(vmin) (black), and absolute value of each of its three comprising terms in
eq. (3.6) (dashed lines) for the combined analysis of CDMS-II-Si and SuperCDMS, assuming a 9 GeV
DM particle scattering elastically with a SI contact interaction and fn/fp = 1. The vmin values where
q(vmin) = 0 correspond to the locations of the steps in the global η̃BF halo function.
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Figure 2. 68% (dark red region) and 90% (light red region) global confidence bands and η̃BF (dark
red) arising from the combined CDMS-II-Si and SuperCDMS (left) and SuperCDMSLT5 (right) halo-
independent analysis. Results are compared with 90% CL bounds from SuperCDMS (dark yellow
line), 68% (black dashed lines) and 90% (solid black lines) confidence bands and η̃BF for CMDS-II-Si
only analysis (blue line) [46]. The red crosses represent the 68% CL intervals of the averaged η̃ arising
from binning the CDMS-II-Si events into 2 keVnr bins between 7 and 13 keV (see e.g. [25, 28, 34], in
which we take the horizontal bars to be the vmin range where 90% of the area under R[E′

1,E
′
2]

(vmin)
is contained). The results shown assume a 9 GeV DM particle scattering elastically through a SI
isospin-conserving contact interaction (fn/fp = 1).
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In order to construct the two sided confidence band, we compute at each value of
vmin = v∗ the two sided interval defined by

∆LcG,min ≡ −2 ln

[
L̂G(v∗, η̃∗)

L̂G

]
≤ ∆L∗ , (3.9)

where L̂G(v∗, η̃∗) is the maximum of the global likelihood subject to constraint eq. (2.33),
and L̂G is the maximum of the global likelihood. Using the same arguments of section 2.3
and assuming that ∆LcG,min is chi-square distributed, the distribution of ∆LcG,min has one
degree of freedom and ∆L∗ = 1.0 and ∆L∗ = 2.7 for the 68% and 90% CL intervals,
respectively. In section 4.2 of [46] it was shown that if L is maximized by an η̃BF function
with a maximum of N steps, then L(v∗, η̃∗) (i.e. L subject to the constraint that η̃(vmin)
passes through the point (v∗, η̃∗)) is maximized by a halo function, which we call the
constrained best fit η̃cBF , with a maximum of (N + 1) steps, one of which could occur at
vmin = v∗. This proof applies to LG and LG(v∗, η̃∗) as well.

4 Global likelihood analysis of CDMS-II-Si and SuperCDMS data

Here we apply the formalism described in section 3 using the global likelihood function in
eq. (3.2) with an extended likelihood [47] for the three events observed by CDMS-II-Si [7],
and a 1-bin Poisson likelihood for SuperCDMS [18]. To obtain background estimates for
CDMS-II-Si, we take the normalized background distribution functions from [53] and rescale
them such that 0.41, 0.13, and 0.08 events are expected from surface events, neutrons, and
208Pb respectively (see [7]). Since the resolution function for silicon in CDMS-II has not been
measured, we take the energy resolution function for germanium from eq.1 of [54].

In addition to implementing the full SuperCDMS data in table 1 of [18] (11 events
observed, 6.56 expected background events, 577 kg-days of exposure), we also use a subset of
the SuperCDMS data which neglects the observed events (and the exposure) from tower
5 (4 events observed, 5.33 expected background events, 412 kg-days of exposure). The
SuperCDMS collaboration acknowledges that tower 5 had a malfunctioning guard electrode
which resulted in a poor understanding of the background in this tower. We will use the
label “SuperCDMSLT5” for this analysis (where LT5 stands for “Less Tower 5”).

The data analysis used throughout this paper is included in the CoddsDM software [55],
an open-source Python program for the analysis of dark matter direct detection data.

In the left panel of figure 2 we show the 68% (dark red) and 90% (light red) CL confidence
bands, calculated assuming ∆Lcmin(v∗, η̃∗) is χ2 distributed with one degree of freedom, for the
combined analysis of CDMS-II-Si and SuperCDMS, assuming a 9 GeV DM particle scattering
elastically off nuclei with a SI isospin-conserving contact interaction. Also shown in figure 2
is the global η̃BF function (dark red line), the η̃BF function for CDMS-II-Si data alone (blue
line), the SuperCDMS 90% upper limit (dark yellow), and the upper and lower boundaries of
the 68% (black dashed) and 90% (black solid) CL confidence bands obtained using CDMS-
II-Si data alone (these coincide with those presented in figure 3 of [46]). Notice that the
confidence bands are unbounded from above for vmin . 275 km/s and vmin . 400 km/s, for the
global analyses and CDMS-II-Si analyses respectively (the lower boundaries of the confidence
bands are, however, well defined as η̃(vmin) is a non-increasing function). This is because
q(vmin) = 0 in these intervals (i.e. the experiment/experiments are not sensitive to recoils
imparted from DM traveling at these speeds), and thus the η̃BF is actually undetermined.
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Since the purpose of plotting these functions is to compare the compatibility of putative
and null signals, we extend η̃BF in our plots to this region, in the most conservative way
(i.e. constant). The red crosses in figure 2 represent the 68% CL intervals (vertical bars)
of averaged η̃ over corresponding vmin intervals (indicated by horizontal bars) arising from
binning the CDMS-II-Si events into 2 keVnr bins between 7 and 13 keV (see e.g. [25, 28, 34],
except we take the horizontal bars to be defined by the vmin range where 90% of the area
under R[E′1,E

′
2]

(vmin) is contained).

To determine the all upper bounds on η̃0 arising throughout this paper from the Super-
CDMS data, we follow the procedure first outlined in [19, 21]. Using the fact that η̃0(vmin)
is a non-increasing function, this procedure argues the smallest possible function passing
through a point (v0, η̃0) is the downward step-function η̃0Θ(v0 − vmin). With this in mind,
eq. (2.16) can be rewritten such that an upper bound on the observed rate in the energy
range [E′1, E

′
2] can be translated into an upper bound η̃lim(vmin) on η̃0, using

η̃lim(v0) =
Rlim

[E′1,E
′
2]∫ v0

vδ
dvminR[E′1,E

′
2]

(vmin)
. (4.1)

This limit is conservative in that every η̃0 function lying above the bound is excluded by the
data, but not all η̃0 functions lying below the bound are allowed by the data. The values of
Rlim used in this paper are determined using the Feldman-Cousins approach [56]. Assuming
a Poisson distribution for both SuperCDMS (n = 11, b = 6.56) and SuperCDMSLT5 (n = 4,
b = 5.33) and an energy range [E′1, E

′
2] corresponding to the quoted experimental range

(i.e. E′1 = 1.6 keV and E′2 = 10.0 keV), this leads to 90% CL upper limits on the number of
DM events µlim of 11.25 and 3.33 events respectively. The value of Rlim can then be obtained
by dividing µlim by the exposure of the relevant experiment.

The global η̃BF function is shifted to lower values of η̃ by over an order of magnitude
relative to the η̃BF found using CDMS-II-Si data alone, and is outside the 68% and 90% CL
confidence bands of CDMS-II-Si alone. Similarly, the η̃BF for CDMS-II-Si alone (in blue) is
incompatible with the 68% and 90% Cl global confidence bands. Furthermore, in the range
360 km/s . vmin . 480 km/s the 68% CL global confidence band has no overlap with the
68% CL confidence band of CDMS-II-Si.

The right panel of figure 2 is the same as the left panel but using SuperCDMSLT5 instead
of SuperCDMS. The global η̃BF function has shifted to slightly lower values of η̃ (relative
to the SuperCDMS analysis), as have both confidence bands, but the general conclusions
are the same — namely, there appears to be a strong level of incompatibility between the
results arising from the global likelihood and those found using only CDMS-II-Si data. We
also note that the increased conflict between CDMS-II-Si and SuperCDMSLT5 has resulted
in the 90% CL confidence band extending down to η̃ ' 0 (i.e. no DM) at low values of vmin,
as opposed to having a well defined non-zero lower boundary for the case of SuperCDMS.

We present one final illustration of this method in figure 3 for a 3.5 GeV DM particle with
exothermic scattering (δ = −50 keV) and a Ge-phobic SI interaction (fn/fp = −0.8) [32].
This example has been chosen to illustrate how the global η̃BF and confidence bands behave
in the case of non-conflicting data sets. As expected, the results from the global likelihood
analysis of CDMS-II-Si and SuperCDMSLT5 are nearly identical to the results obtained from
CDMS-II-Si alone, with the only significant change occurring at low values of vmin, where the
upper bound of SuperCDMSLT5 is in conflict with the confidence bands of CDMS-II-Si alone.
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Figure 3. Same as the right panel of figure 2 but for a 3.5 GeV DM particle with exothermic scattering
(δ = −50 keV) and a Ge-phobic SI interaction (fn/fp = −0.8) [32].

5 Constrained goodness-of-fit analysis

The global likelihood analysis presented in the previous section always produces a best fit
halo function and confidence band, even when considering conflicting data sets. A particular
goodness-of-fit test has been proposed in [48, 49] to assess the compatibility of different data
sets in the framework of a given theoretical model. This so called “parameter goodness-of-fit”
(PG) test was used in [36] to gauge the compatibility of CDMS-II-Si, SuperCDMS, and LUX
data, in a halo-independent way. It is defined as

qPG ≡ −2

(
ln L̂G −

∑
α

ln L̂α

)
, (5.1)

where L̂G is the maximum of the global likelihood and L̂α is the maximum of the likelihood
of experiment α. If the η̃BF of all individual experiments would coincide, then qPG = 0.
On the other hand a strong disagreement between the η̃BF of individual experiments would
lead to a large value of qPG. Thus qPG quantifies the degree of compatibility of all data
sets under the assumption of a particular DM particle model. To provide a quantitative
statement about the compatibility, the p-value of the observed data was obtained from a
MC simulation, assuming the global η̃BF is the true halo model [36]. This procedure assigns
a single number, a single p-value, to the whole halo-independent parameter space, and we
would like to identify regions of this space where η̃(vmin) functions may lead to better or
worse compatibility among data sets. With this purpose in mind, we define a family of test
statistics similar to qPG, one for each point in parameter space, using the profile likelihood,
defined as the likelihood maximized subject to the constraint in eq. (2.33), i.e. η̃(v∗) = η̃∗

(it is the continuum limit of the numerator inside the square bracket in eq. (2.36)). We will
then define a p-value for every point in the halo independent parameter space. We define the
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Figure 4. Monte Carlo generated distribution for qcPG for v∗ = 400 km/s (left) and 500 km/s (right)
and log(η̃∗) = −26.478. Observed value of qcPG shown with red dashed line.

“constrained parameter goodness-of-fit” test statistic as

qcPG(v∗, η∗) ≡ −2

(
ln L̂cG(v∗, η̃∗)−

∑
α

ln L̂cα(v∗, η̃∗)

)
, (5.2)

where L̂cG(v∗, η̃∗) is the global profile likelihood and L̂cα(v∗, η̃∗) is the profile likelihood of ex-
periment α. qcPG tests the compatibility of the different data sets under the assumption that
η̃(vmin) passes through (v∗, η̃∗). To infer the probability distribution for qcPG(v∗, η̃∗) we use a
Monte Carlo simulation, assuming the true halo model is given by the global best fit halo func-
tion that maximizes LG under the constraint η̃(v∗) = η̃∗. We call “constrained best fit halo
function” η̃cBF the function that maximizes a likelihood subjected to this constraint. There
is a different η̃cBF (vmin) function for each (v∗, η̃∗) point (which certainly fulfills the condition
η̃cBF (v∗) = η̃∗), one for the global likelihood and one for each single experiment extended likeli-
hood. The p-value for a given (v∗, η̃∗) is then obtained by comparing the observed value of qcPG
to the distribution constructed from O(103) simulated data sets (for each choice of (v∗, η̃∗)).

We have only developed a method for maximizing the Poisson and Gaussian likelihoods
subject to the constraint η̃(v∗) = η̃∗ for a single bin Poisson/Gaussian likelihood. In this case,

the likelihood is maximized by an expected number of dark matter events ν̂
(α)
1 , where either

ν̂
(α)
1 = n

(α)
1 −b

(α)
1 if n

(α)
1 ≥ b(α)1 , or ν̂

(α)
1 = 0 if n

(α)
1 ≤ b(α)1 . In order to maximize the constrained

likelihood, one needs to consider whether v∗ lies above or below the experimental threshold. If
v∗ is below threshold, a halo function passing through (v∗, η̃∗) produces a minimum number of
0 observed events (with η̃ = η̃∗Θ(v∗−vmin)), and a maximum number νmax of events given by
the flat halo function η̃(vmin) = η̃∗. If v∗ is above threshold, a halo function passing through
(v∗, η̃∗) produces a minimum number νmin of observed events when η̃ = η̃∗Θ(v∗ − vmin), and
there is no limit on the maximum number of observed events because η̃ can be unbounded

from above for vmin < v∗. If ν̂
(α)
j lies between the minimum and maximum number of

predicted events for η̃(vmin) passing through (v∗, η̃∗) in each case, then the maximum of the
constrained likelihood is the maximum of the likelihood. Otherwise, the maximum of the con-
strained likelihood is calculated using νmax or νmin, depending on the respective case above.

The probability distributions of qcPG are shown in figure 4 for the combination of CDMS-
II-Si and SuperCDMSLT5, for a SI contact interaction with (m, δ, fn/fp) = (9 GeV, 0 keV, 1),
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Figure 5. Plausibility region (light purple) generated from the constrained parameter goodness-
of-fit test statistic for CDMS-II-Si and SuperCDMSLT5 (p-value larger than 10%), compared with
the confidence bands (red shaded) generated for CDMS-II-Si data alone (left) [46] and the global
confidence bands (red shaded) constructed in section 4 (right). The plausibility regions are crossed
over because halo functions entirely contained within these regions are not necessary allowed by our
test, i.e. do not necessarily lead to a compatibility of the data sets at the level of p >10%. However, for
any halo function not entirely contained within the plausibility region the data sets are incompatible
at the chosen level (p <10%). Also shown are η̃BF for CDMS-II-Si alone (blue), the η̃BF resulting
from the global likelihood analysis (dark red), and the vmin-averaged CDMS-II-Si data (crosses) as
described in section 4.

for v∗ = 400 km/s (left) and 500 km/s (right) with η̃∗ chosen on the global η̃BF curve.
The observed value of qcPG in figure 4 are indicated by the dashed red line. The p-values
roughly correspond to 2.8% for v∗ = 400 km/s, and 0.5% for v∗ = 500 km/s. While the
probability distributions shown in figure 4 do not appear to approach 1 in the limit x →
0, there are in fact a large number of simulations which yield extremely small values of
qcPG that are not depicted (the probabilities do in fact equal 1 at x = 0). This happens
because the global best fit halo function predicts less than one observed event in CDMS-II-
Si, which leads to many simulations in which 0 events are observed by CDMS-II-Si. In turn,
this implies the global constrained best fit halo function and the constrained best fit halo
function for CDMS-II-Si are the same, as they can only have a single step at the location
of (v∗, η̃∗). For SuperCDMSLT5, the expected background is larger than the number of
observed events, and thus the profile likelihood of SuperCDMSLT5 is relatively insensitive to
halo functions that predict small numbers of DM events. Consequently, it is not uncommon
to find ln L̂cG(v∗, η̃∗) '

∑
α ln L̂cα(v∗, η̃∗).

Figure 4 already demonstrates a high level of incompatibility between the CDMS-II-
Si and SuperCDMSLT5 data sets for the assumed WIMP candidate, because the global
η̃BF (vmin) cannot produce a large p-value, say larger than 10%. We can construct intervals
at each vmin = v∗ in which the probability of obtaining a qcPG value larger than the one
observed is ≥ 10%. By joining these intervals we build regions in (vmin, η̃) which are referred
to as “plausibility” regions.

Let us now clarify the meaning of the plausibility regions. A halo function η̃(vmin) is a
non-increasing continuous function which must be defined for any value of vmin. Consequently,
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Figure 6. Same as the right panel of figure 5 but for a 3.5 GeV DM particle with exothermic scattering
(δ = −50 keV) and a Ge-phobic SI interaction (fn/fp = −0.8) [32] (as in figure 3). Halo functions
η̃vmin entirely contained within the plausibility region (light purple) lead to a compatibility of the
data sets at the chosen level (p >10%). For those not entirely contained within the plausibility region
the data sets are incompatible at the chosen level (p <10%).

any halo function not entirely contained within the plausibility region passes though points
with p < 10 %, and thus for these functions the data sets are incompatible at the chosen level
(p < 10%). However, halo functions that are entirely contained within a plausibility region
are not necessarily allowed by our test, i.e. do not necessarily lead to compatibility of all
data at the chosen level. The issue is that the true halo model adopted at each point within
a plausibility region, namely the η̃cBF of the profile global likelihood at each point, may also
pass through points outside the plausibility region and be rejected by our test. If so, the
p-value evaluation at the particular point in the plausibility region is inconsistent. This is
the case for all points in the plausibility regions (light purple) shown in figure 5. The regions
are crossed by thin black lines to indicate that halo functions entirely contained within them
are not guaranteed to lead to compatibility of the data sets. However, if the true halo model
adopted at all points within a plausibility region are entirely contained within it, the p-value
calculation is reliable and halo functions entirely contained with this region are allowed by
our test. This is the case of the plausibility region in figure 6 (shown in light purple).

The plausibility region for p ≥ 10% arising from the constrained parameter goodness-of-
fit test for the combination of CDMS-II-Si and SuperCDMSLT5 (light purple region) is com-
pared in figure 5 to the confidence bands (red shaded regions) generated from the global likeli-
hood described in section 4 (right panel) and the confidence bands generated with CDMS-II-Si
data alone (left panel). Also shown are the global best fit halo function η̃BF (dark red) and the
best fit halo function for CDMS-II-Si alone (blue). The left panel of figure 5 shows that there
does not exist a halo function in the CDMS-II-Si confidence bands that can describe the com-
patibility of the observed data sets. Not all halo functions contained within the 90% global
confidence band in the right panel of figure 5 are excluded by the plausibility region, but the
68% region is entirely excluded, as is the global best fit halo function. As explained above the
plausibility regions are crossed over because the functions entirely included within them are
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not allowed by our test (while those passing through points outside them are rejected). By
contrast, we can see in figure 6 how the plausibility region includes the entire global confidence
bands (as well as the bands for CDMS-II-Si alone, which in this case are nearly identical, see
figure 3) in the case of non-conflicting data sets. This is the example of a 3.5 GeV DM particle
with exothermic scattering (δ = −50 keV) and a Ge-phobic SI interaction (fn/fp = −0.8) [32].
The plausibility region provides in this case a further indication of compatibility of the CDMS-
II-Si and SuperCDMSLT5 data sets for this particular DM particle model, besides the near
complete overlap of the global and single experiment confidence bands.

A comment is in order regarding figure 6. While generating the probability distributions
at large values of η̃ and vmin (above the 90% CL band), we found the predicted number
of events in both experiments was too large for our computational methods to work. We
resorted to using a nearest-neighbor extrapolation at fixed vmin to generate the probability
distributions in this region. We found that in this region of the vmin− η̃ plane, the probability
distribution changes slowly with respect to the observed value of qcPG, and thus we believe we
obtained a good estimate of the upper boundary of the plausibility region. This extrapolation
was only used above the 90% CL confidence band boundary.

6 Conclusions

In this paper we have presented two distinct methods to assess the joint compatibility of data
sets for a given DM particle model across halo-independent parameter space, using a global
likelihood consisting of at least one extended likelihood and an arbitrary number of Gaussian
or Poisson likelihoods. We have illustrated these methods by applying them to CDMS-II-Si
and SuperCDMS data, assuming WIMP candidates with SI contact interactions.

The first method is a natural extension of the procedure presented in [46], in which a best
fit halo function and pointwise confidence band are constructed from the profile likelihood
ratio. Here we have proven that the best fit halo function η̃BF for the global likelihood we
studied is a piecewise constant function with the number of steps at most equal to the number
of unbinned data points plus the number of data bins in all the single likelihoods, and argued
why in practice the number of steps is smaller than this maximum number (see section 3
and appendix A). A best fit piecewise constant halo function had already been found in the
literature (see [36]) for a global likelihood of the type we use, but as a curiosity without
any explanation (or proof of uniqueness). In addition to showing how to find the best fit
halo function η̃BF and that this function is unique (see appendix B), here we have shown
for the first time how to construct two-sided confidence bands at any CL for the type of
global likelihood we studied. As an illustration of the method we have found the best fit halo
function and the 68% and 90% CL confidence bands assuming two different choices for the DM
particle model parameters m, δ, and fn/fp. The choice of a 9 GeV DM particle scattering
elastically (δ = 0) with an isospin-conserving coupling (fn/fp = 1) leads to an apparent
incompatibility between the observed CDMS-II-Si events and the SuperCDMS upper limit,
in agreement with previous published results (see e.g. [34, 46]). This incompatibility can
be assessed by comparing the overlap or lack thereof of the global confidence bands with
those of CDMS-II-Si alone. As shown in figure 2, at the 68% CL, it is not possible to
find a halo function passing through both confidence bands. The situation is very different
for a 3.5 GeV DM particle with exothermic scattering (δ = −50 keV) and a Ge-phobic SI
interaction (fn/fp = −0.8) [32], for which the data sets are compatible. As shown in figure 3
the global and CDMS-II-Si alone confidence bands practically coincide.
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The drawback of this method is that it cannot provide a quantitative measurement
of the level of incompatibility of the various data sets that comprise the global likelihood.
To address this concern, we have proposed in section 5 a second method in which we con-
struct a “plausibility region” arising from the global likelihood, using an extension of the
parameter goodness-of-fit test [36, 48, 49], that we refer to as the “constrained parameter
goodness-of-fit” test. By evaluating the ratio of the global profile likelihood and the product
of the individual profile likelihoods (assuming η̃(v∗) = η̃∗), a plausibility region can be con-
structed by grouping together regions of parameter space for which, at each point (v∗, η̃∗),
our observed test statistic has a p-value e.g. ≥ 10%. This p-value was determined using a
probability distribution constructed with Monte Carlo generated data assuming the true halo
function is the constrained best fit η̃cBF of the profile global likelihood, i.e. the halo function
that maximizes the global likelihood subject to the constraint η̃(v∗) = η̃∗. For any halo func-
tion not entirely contained within this plausibility region the data are incompatible for the
assumed DM particle model at the assumed level (e.g. p < 10%). For halo functions entirely
contained within the plausibility region the data sets are compatible at the chosen level only
if the contained best fit at each point within the region are also entirely contained within the
region. We have demonstrated this method for a 9 GeV DM particle scattering elastically
with an isospin conserving coupling and for the aforementioned Ge-phobic particle candidate.
The results are shown in figures 5 and 6 respectively. In the first case the confidence bands
are largely outside the plausibility region, while in the second case the confidence bands are
entirely included in the plausibility region and any halo function entirely contained within
the plausibility region lead to a compatibility of the data sets at the chosen level (p > 10%).

Together these two methods provide complementary assessments of the compatibility of
the data given a particular dark matter model, across the vmin−η̃ halo-independent parameter
space. We expect these tools to prove useful for future direct dark matter searches both to test
compatibility of different data sets as to provide a guidance of which type of halo functions
provide a better or worse compatibility of all the data.
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A The zeros of the q(vmin) function

We are first going to argue that the zeros of q(vmin) are only isolated above a certain vmin

range where all terms in the sum defining q(vmin) are zero. We will then find the maximum
possible number of isolated zeros, although the actual number of zeros can be much smaller
than the maximum.

A.1 The zeros are isolated above a certain vmin value

The terms defining q(vmin) in eq. (3.6) are either positive semidefinite, e.g. ξEHI(vmin) and

some of the terms proportional to ξ
(α)
j (vmin), or negative semidefinite, e.g. the terms pro-

portional to HEHI
a (vmin) and some of the terms proportional to ξ

(α′)
j′ (vmin). To facilitate a
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smooth discussion of the behavior of these functions, let us introduce the label µ, which will
be used to denote either a quantity associated with the EHI experiment or an experiment-bin

pair (α, j). This way, quantities like ξµ(vmin) can either represent ξEHI(vmin) or ξ
(α)
j (vmin).

Each term in the sum in eq. (3.6) has a different vmin-dependence. In particular the

ξµ(vmin) functions (note the general behavior of ξ
(α)
j (vmin) is identical to that of ξ(vmin)

discussed in section 2.2) are zero below certain values of vmin, which we will refer to as vµlow,
strictly increase with vmin (although the second derivative may exhibit sign changes), until
at some value of vmin, call it vµhigh, they plateau and become constant. The vµlow and vµhigh of
each ξµ(vmin) function, as well as the height of the plateau, depend on theoretical framework
and the specifics of the experiments (e.g. the scattering kinematics, the differential cross
section, the energy resolution functions, etc.). The HEHI

a (vmin), also described in section 2.2,
are instead upward step-like functions, starting from zero at low vmin, with the steps
appearing roughly at the vmin values corresponding to the detected energy of the events
observed in the EHI experiment.

In addition to having unique vmin-dependencies, each of the terms in eq. (3.6) has
uniquely defined η̃-dependent coefficient. Thus the terms are all independent of each other
and have very different functional forms.

For values of vmin below the minimum vµlow, i.e. where all the terms in eq. (3.6) are zero,
q(vmin) is zero, which implies η̃BF (vmin) is undetermined. This is not detrimental to the
arguments we have made as it reflects the fact that experiments under consideration do not
probe the halo function at these values of vmin. Notice that in order to have non-negative
q(vmin) values, the vlow of some of the positive terms must be smaller than the smallest vlow
of all negative terms.

For values of vmin larger than the minimum vµlow, zeros of q(vmin) can appear where
the modulus of the sum of all negative terms in eq. (3.6) touches from below the sum of
all positive terms in eq. (3.6) (recall that q(vmin) is a non-negative function). The positive
terms consist of different ξµ(vmin) (most of them multiplied by η̃-dependent coefficients).
Thus, in general, the sum of all positive terms behaves as a monotonically increasing
function starting from zero at the lowest vµlow (lowest of all positive terms) and plateauing
to a constant value at the largest vµhigh (again considering only positive terms). The negative
terms in eq. (3.6) include the step-like Ha(vmin) (multiplied by η̃ dependent coefficients),
which each add a “step-like” feature to the modulus of the sum of negative terms, and

some of the ξ
(α)
j (vmin) dependent terms (multiplied by η̃ dependent negative coefficients).

Depending on the nature of these negative ξ
(α)
j (vmin) terms, they could add “shoulder-like”

features, arising from changes in the sign of the second derivative, to the modulus of the
sum of negative terms. The modulus of the sum of negative terms also plateaus above the
largest vµhigh (largest of all negative terms). The plateau of the sum of positive terms and
the plateau of the modulus of the sum of all negative terms are entirely independent of each
other, and thus the possibility that the two plateaux would coincide to produce q(vmin) = 0
is completely unrealistic since they both depend on entirely different experimental features.
Furthermore, for most realistic cases, the maximum value of vµhigh is larger than the galactic
escape velocity, and thus η̃(vmin) should be zero in this region. Since these plateaus cannot
feasibly coincide, q(vmin) cannot equal 0 above the largest vµhigh.

Typically isolated zeros of q(vmin) would happen when some of the “step-like” or
“shoulder-like” features of the modulus of the sum of negative terms in eq. (3.6) touch from
below the monotonically increasing sum of all positive terms in eq. (3.6). Alternatively, if the
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sum of the positive terms has a region of negative curvature, it may be possible for that this
sum could reach towards and touch the modulus of the sum of negative terms from above.

A practically impossible conspiracy between terms dependent on different experiments,
energy intervals, and η̃ functions would be required for q(vmin) to be zero in an extended
vmin interval above the minimum vµlow, a conspiracy which would not survive infinitesimal
changes in any of the elements defining each term in eq. (3.6). We include in appendix A.3 a
more mathematically rigorous proof illustrating why extended zeros of q(vmin) cannot exist
above the minimum vµlow. In the following we only consider the possibility that q(vmin) has
a finite number of isolated zeros.

A.2 Maximum number of isolated zeros of the function q(vmin) for a global
likelihood

Before counting the number of isolated zeros of q(vmin), let us introduce the notion of a
“generic” solution. We say that a solution is generic if small changes in the quantities that
define it do not affect the existence of the solution. In our context, the quantities defining

the solutions are the input parameters and functions given to fully specify ξEHI, ξ
(α)
j , and

HEHI
a , e.g. the efficiency function ε(E′, ER), the energy resolution function GT (E′, ER), the

differential cross section dσT /dER, and the exposure MT for each experiment and bin.
Let us briefly demonstrate the importance of the concept of generic solutions by consid-

ering the number of isolated zeros that can arise in the linear combination of two functions
f(x) and g(x) which do not have the same functional form, since they are assumed to be de-
rived from two independent experimental setups (i.e. changes in the experimental quantities
of one experiment may affect e.g. f(x), but do not affect g(x) in the same manner). For an
adjustable parameter λ, it is possible for f(x) and λg(x) to have a generic point of osculation,
i.e. a point where f(x) = λg(x) and f ′(x) = λg′(x), at which the Wronskian W [f, g] vanishes

W [f, g](x) ≡ f(x)g′(x)− f ′(x)g(x) = 0 . (A.1)

In fact, W [f, g] could vanish in more than one point, say x1, x2, . . . xn, or in various intervals.
In this case the value of λ can be chosen so that f(x1) = λg(x1) at one of those discrete
points, say x1. This point of osculation defines an isolated zero of the function [f(x)−λg(x)],
with zero slope. Having two points of osculation, say x1 and x2, would require

f(x1)

g(x1)
=
f(x2)

g(x2)
, (A.2)

where W [f, g](x1) = W [f, g](x2) = 0, for points x1 6= x2. Small changes in the defining
experimental functions and parameters would certainly break the equality in eq. (A.2) (or
result in a non-vanishing Wronskian at those points), and thus solutions having more than
one point of osculation are not generic. This same argument can be used to exclude the
possibility of having a generic solution with both an isolated osculation point and an interval
of osculation. Since we are interested in counting the maximum number of isolated points of
osculation, we need not be concerned with the existence of intervals of osculation.

Let us denote with Xm(vmin) either the functions HEHI
a (vmin) or the functions ξ

(α)
j (vmin),

so that eq. (3.6) can be written in the form

1

2
q(vmin) = ξEHI(vmin)−

∑
m

λmXm(vmin) , (A.3)
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except here we will treat the λm as free parameters. The argument above ensures that there
could be at most one generic point of osculation between ξEHI(vmin) and λmXm(vmin), or
between λmXm(vmin) and λkXk(vmin) for k 6= m. Here, the coefficients λm are adjustable
parameters, equivalent to a multidimensional generalization of the parameter λ in the above
example. In the context of eq. (3.6), one can identify the λm with the halo-dependent
quantities, e.g. 1/γ[η̃] and the factors in the square bracket of eq. (3.7) and eq. (3.8).

For fixed (n− 1) coefficients, λ1,. . .λk−1, λk+1,. . .λn, we can consider two functions

fk(vmin) = ξEHI(vmin)−λ1X1(vmin) · · ·−λk−1Xk−1(vmin)−λk+1Xk+1(vmin) · · ·−λnXn(vmin)
(A.4)

and
λkgk(vmin) = λkXk(vmin). (A.5)

Here we choose the parameter λk with 1 ≤ k ≤ n as the only adjustable parameter. Assume
λk can be adjusted freely. Then by adjusting λk, we could find one point of osculation where
fk(vmin) = λgk(vmin), and we can treat such an adjusted value of λk as a function of the rest
of the parameters, λ̂k(λ1, . . . , λk−1, λk+1, . . . , λn).

Now let us consider a n-dimensional manifold Mn of all the λk real parameters, i.e.

M(n) ≡ {(λ1, . . . , λn)|λm ∈ R,m = 1, . . . , n}. (A.6)

Notice that here n is one less than the total number of terms defining q(vmin) in eq. (3.6)

(because ξEHI(vmin) is treated separately), thus n = N = NEHI +
∑

αN
(α)
bin (see eq. (3.5)).

The equation
λk = λ̂k(λ1, . . . , λk−1, λk+1, . . . , λn) (A.7)

defines a (n− 1)-dimensional sub-manifold M
(k)
n−1 in the manifold Mn, for each choice of k.

By construction, at every point in the sub-manifold M(k)
n−1, a point of osculation

v(k)(λ1, . . . , λk−1, λk+1, . . . , λn) (A.8)

is assigned, so, assuming λk can be adjusted freely to be λk = λ̂k, the function

fk(vmin)− λgk(vmin) =
1

2
q(k)(vmin;λ1, . . . , λk−1, λk+1, . . . , λn)

= ξEHI(vmin)−
∑
m 6=k

λmXm(vmin)

−λ̂k(λ1, . . . , λk−1, λk+1, . . . , λn)Xk(vmin), (A.9)

has at least one isolated zero (with zero slope) at

vmin = v(k)(λ1, . . . , λk−1, λk+1, . . . , λn), (A.10)

for any given set of values (λ1, . . . , λk−1, λk+1, . . . , λn).

If we consider two such manifolds,M(k)
n−1 andM(k′)

n−1, the intersection of them,M(k)
n−1 ∩

M(k′)
n−1, is generically a (n − 2)-dimensional sub-manifold. Assuming now that λk and λk′

(k 6= k′) can both be adjusted at will so that λk = λ̂k and λk′ = λ̂k′ at every point in this
sub-manifold, we have two isolated zeros (with zero slope) given by the functions,

v(k)(λ1, . . . , λk−1, λk+1, . . . , λk′−1, λk′+1, . . . , λn)

≡ v(k)(λ1, . . . , λk−1, λk+1, . . . , λn)|λk′=λ̂k′ , (A.11)

– 22 –



J
C
A
P
1
0
(
2
0
1
6
)
0
2
9

and

v(k
′)(λ1, . . . , λk−1, λk+1, . . . , λk′−1, λk′+1, . . . , λn)

≡ v(k′)(λ1, . . . , λk′−1, λk′+1, . . . , λn)|λk=λ̂k , (A.12)

which are respectively induced from the functions defined on M(k)
n−1 and M(k′)

n−1. The values
of these two functions at the same point are in general different.

In a similar way, if all coefficients λk could be freely adjusted the intersection of all
(n− 1)-dimensional sub-manifolds,

∩nk=1M
(k)
n−1 , (A.13)

is generically a zero-dimensional sub-manifold ofMn, i.e. a set of discrete points. For one of
these points, which we call (λ̂1, . . . , λ̂n), we can define the function

1

2
q(vmin; λ̂1, . . . , λ̂n) = ξEHI(vmin)−

n∑
m=1

λ̂mXm(vmin) (A.14)

which has n isolated zeros, with zero slope. Here, n = N ≡ NEHI +
∑

αN
(α)
bin (see eq. (3.5)),

i.e. the number of events observed by the EHI experiment plus the total number of bins em-
ployed by all Poisson and Gaussian experiments. This is what we wanted to prove. However
we have so far assumed the coefficients λm could all be freely adjusted. This is not true,
however, and the actual number of isolated zeros of q(vmin) (with q′(vmin) = 0) will be in
most circumstances much smaller than the maximum N .

In fact, the coefficients λm are quantities derived from a halo function η̃. All points in
Mn that can be actually realized from halo functions η̃ form a continuous subset S of the
manifoldMn. The maximum number of the individual sub-manifoldsMk

n−1 passing through
a point in S gives the maximum number of actual possible steps in the best fit η̃ function.

This number can be determined by carefully considering the functional form of ξEHI, ξ
(α)
j ,

and HEHI
a , and is in general smaller than N .

A.3 Argument against non-isolated zeros of q(vmin)

Here, we provide a more mathematically rigorous proof for why q(vmin) cannot have non-
isolated zeros above the minimum vµlow.

Using eq. (2.21) we can equate the functional derivative of L[η̃] to the derivative of
q(vmin) as

δL

δη̃(vmin)
=

∂

∂vmin
q(vmin) . (A.15)

We will begin by assuming that there exists some interval [v1, v2] above the minimum vµlow
in which q(vmin) = 0, and prove by contradiction that this cannot be the case.

Let us introduce an infinitesimal perturbation δF (v) in the speed distribution F (v),
that is only non-zero in the interval [v1, v2], and define the quantity

∆ ≡ ρσref
m

∫ ∞
vδ

dv
δF (v)

v
q(v) . (A.16)
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Since q(v) = 0 in the interval [v1, v2] and δF (v) = 0 outside of this interval, ∆ is trivially
zero. Since the halo function η̃ linearly depends on F (v), the induced change in the halo
function η̃ is

δη̃(vmin) ≡ ρσref
m

∫ ∞
vmin

dv
δF (v)

v
, (A.17)

and its derivative is given by

∂

∂v
δη̃(v) = −ρσref

m

δF (v)

v
. (A.18)

Performing integration-by-parts on the integral in eq. (A.16) gives

∆ =

∫ ∞
vδ

dv

[
− ∂

∂v
δη̃

]
q(v) (A.19)

= −δη̃(∞)q(∞) + δη̃(vδ)q(vδ) +

∫ ∞
vδ

dvδη̃

[
∂

∂v
q(v)

]
(A.20)

=

∫ ∞
vδ

dvδη̃
δL

δη̃(v)
(A.21)

= L[η̃ + δη̃]− L[η̃] ≡ δL , (A.22)

where the last line is obtained from the definition of the functional derivative.
This expression for ∆ implies that any change of F (v) introduced above the minimum

vµlow in an interval where q(vmin) = 0 would not change the value of the likelihood. However,
by definition, this perturbation necessarily introduces a constant shift in η̃ at all vmin values
below v1. It is inconceivable for a likelihood function to be invariant under such a rigid
shift of η̃. Therefore, our original assumption must have been false, and there cannot exist
intervals above the minimum vµlow in which q(vmin) = 0.

The interested reader might wonder why the proof presented above does not preclude
the existence of isolated zeros. In this case, the modification to the speed distribution δF (v)
must take the form of a constant times a delta function (i.e. nonzero only at the location
of the isolated zero). The resultant speed distribution F (v) + δF (v) would no longer be a
smooth function, and thus cannot possibly be representative of a true speed distribution (no
physical process would produce a component with zero dispersion).

B The uniqueness of the best-fit halo function

Here, we show that the halo function η̃BF (vmin) maximizing a global likelihood functional
having at least one extended likelihood as a factor is unique in the vmin range wherein the
experiments in consideration can probe the value of the halo function. The proof consists in
showing that the second directional derivatives of the functional L ≡ −2 lnL with respect to
variations of the η̃ function are all positive.

B.1 Statement of the proof

We start by stating two properties of the global likelihood (and the individual likelihoods)
considered in this paper. First, the likelihood depends on the halo function only through
physically observable quantities, which are either the scattering rate in a bin

R
(α)
j ≡MT

∫ ∞
vδ

dv R[E′j ,E
′
j+1]

(v)η̃(v), (B.1)
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or the value of the differential rate at a given value of E′,

dR

dE′
≡MT

∫ ∞
vδ

dv
dR
dE′

(v)η̃(v) . (B.2)

Secondly, if we treat these observable quantities (which we call “the rates” in the rest of this
section) as independent parameters without restriction, the global likelihood L is a strictly
concave function of them, or, equivalently, the functional L ≡ −2 lnL is a strictly convex
function. Since the rates depend linearly on the halo function, the functional L is a convex
but not necessarily a strictly convex function of the halo function η̃. The strict convexity
of the functional L as a function of the rates guarantees the uniqueness of the best fit rates
(those which maximize the likelihood L, and thus minimize the functional L), but not of
the best fit halo function η̃BF (vmin), since, in general, the same values of the rates can be
obtained from different halo functions.

While these two properties do not yet prove that the best fit halo function is unique,
we know from the convexity of the functional L that if there are more than one best fit halo
functions, the value of the likelihood is constant along the line of minima between any two
best fit halo functions, and thus, along the direction of the line, the second (and also higher)
order directional (functional) derivatives should vanish. Thus all the best fit halo functions
are connected to each other by a continuous deformation and thus form a connected set.

Using this fact, the global uniqueness of the best fit halo function η̃BF (vmin) can be
asserted by proving that the second order directional derivatives of L around a minimum are
all larger than zero, i.e.∫

dv

∫
dw ∆η̃(v)∆η̃(w)

δ2

δη̃(v)δη̃(w)
L[η̃]

∣∣∣∣
η̃=η̃BF

> 0, (B.3)

for all allowed ∆η̃.

Up to this point, we have not used the fact that the halo function is a non-increasing
function, and that the KKT conditions should be satisfied by the best fit halo function.
Since we have previously proven in appendix A that the halo functions maximizing the global

likelihood are piecewise constant with at most N = NEHI +
∑

αN
(α)
bins points of discontinuity,

we know that deformations of η̃ between two best fit halo functions must also respect this
form. Thus, the positivity condition of the second order directional derivatives of L around
a minimum, eq. (B.3), can be rewritten as

0 <
N∑

a,b=1

[
∆η̃a∆η̃b

δ2

∂η̃a∂η̃b
fL({~v, ~̃η})

+∆va∆vb
δ2

∂va∂vb
fL({~v, ~̃η})

+2∆η̃a∆vb
δ2

∂η̃a∂vb
fL({~v, ~̃η})

]
η̃=η̃BF

, (B.4)

for all allowed infinitesimal variations ∆η̃a and ∆va, where fL({~v, ~̃η}) ≡ L[η̃(vmin; {~v, ~̃η})].
When one finds the best fit halo function, the locations va and heights η̃a of the steps

can be independently varied since the KKT conditions are automatically satisfied for the
resultant best fit halo function. However, in eq. (B.4), if a variation of these parameters,
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∆η̃a and ∆va, truly connects two best fit halo functions (and the ones between them, which
are also best fit halo functions) by a continuous deformation, the KKT conditions should
remain satisfied along the path of the deformation, and thus we only need to consider the
variations respecting the KKT conditions. We will show now that these variations must all
have ∆va = 0, namely the positions of the steps in vmin cannot change.

B.2 Proof that the locations of the steps cannot change

Let us examine how the function q(v) changes under an arbitrary deformation ∆η̃(vmin)
of the halo function η̃(vmin). Using the definition of the function q(v) in eq. (3.6), the
induced variation ∆q(v) of the function q(v), can be compactly written in terms of the
second derivative of the functional L as

∆q(v) ≡
∫ ∞
vδ

dw ∆η̃(w)
δq(v)

δη̃(w)

=

∫ ∞
vδ

dw ∆η̃(w)
δ

δη̃(w)

[∫ v

0
du

δL

δη̃(u)

]
, (B.5)

or

∆q(v) =
∑
α,j

∆R
(α)
j

∫ v

vδ

du
δ

δη̃(u)

(
∂L

∂R
(α)
j

)

+

∫
dE′ ∆

(
dR

dE′

)∫ v

vδ

du
δ

δη̃(u)

(
∂L

∂(dR/dE′)

)
(B.6)

where we have defined the changes ∆R
(α)
j and ∆

(
dR
dE′

)
of the rate R

(α)
j and differential rate

dR/dE′, respectively as

∆R
(α)
j ≡

∫
dv ∆η̃(v)

δR
(α)
j

δη̃(v)
(B.7)

and

∆

(
dR

dE′

)
≡
∫

dv ∆η̃(v)
δ

δη̃(v)

(
dR

dE′

)
. (B.8)

Eq. (B.6) shows that the function q(v) is invariant under a variation ∆η̃ of the best fit halo
function that leaves the rates unchanged (all best fit halo functions should yield the same
unique best fit rates). This implies that all best fit halo functions must have their points
of discontinuity (i.e. the locations of its steps) at the same vmin values. In other words, a
variation having a non-zero ∆va either breaks the KKT condition or changes the observable
rates, and thus such a variation inevitably decreases the value of the likelihood functional.

B.3 Evaluation of the second directional derivatives of L

Since the positions of the steps cannot change, it is enough to evaluate the second derivative
of the functional L with respect to an arbitrary variation of the heights of the steps ∆η̃a.
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Expanding the functional L around the best fit halo up to the second order we get

∆L =
1

2

N∑
i,j=1

∆η̃i∆η̃j

∫ vi

vi−1

dv

∫ vj

vj−1

du
δ2L

δη̃(v)δη̃(u)
(B.9)

=
1

2

N∑
i,j=1

∆η̃i∆η̃j

∫ vi

vi−1

dv
δ

δη̃(v)
(q(vj)− q(vj−1)) (B.10)

= 2
N∑
A=1

( N∑
i=1

KAi∆η̃i

)2

. (B.11)

Here we defined the index A to run over all data points, namely all bins or single events of
all experiments considered, so A runs from 1 to N . Specifically, the summation over A runs
over the observed events in the extended likelihoods and the bins j of all experiments α with
Poisson and Gaussian likelihoods. The index i indicates instead each constant portion of the
best fit halo function, between the steps at vmin values vi−1 and vi. The maximum number
of steps was found in appendix A to be N , so we can take take the number of steps to be
equal to N and consider some of the step heights to be zero. In this way, i also runs from 1
to N . The coefficients KAi are given by

KAi ≡
HA(vi)−HA(vi−1)

γA[η̃]
(B.12)

for extended likelihoods,

KAi ≡
√
n
(α)
j

ξ
(α)
j (vi)− ξ(α)j (vi−1)

ν
(α)
j [η̃] + b

(α)
j

(B.13)

for Poisson likelihoods, and

KAi ≡
ξ
(α)
j (vi)− ξ(α)j (vi−1)

σ
(α)
j

, (B.14)

for Gaussian likelihoods. In the last two equations the index A accounts for the experiment-
bin pairs indexes (α, j).

Notice that the quantities KAi can be interpreted as the components of N non-zero
vectors ~KA in a vector space with dimension N with components denoted by i. We can also
consider ∆η̃i to be the components of a vector ∆~̃η with the same number of dimensions of
the ~KA vectors. Each vector ∆~̃η is a possible infinitesimal variation of the heights of the
steps η̃i around a best fit halo function. Eq. (B.9) is then a sum of the squares of the inner
products of two vectors ~KA and ∆~̃η.

Notice also that the vectors ~KA are generically linearly independent, because there is
no reason that the experiment-specific quantities KAi should be dependent upon information
contained in a different bin or experiment.

Since the vectors ~KA are generically linearly independent there is no non-zero vector
∆~̃η orthogonal to all of them. This implies that there is no infinitesimal variation of the
heights of the steps η̃i around a best fit halo function for which the second order variation
of L vanishes. This proves that the likelihood functional L is not invariant under any
infinitesimal variation around the best fit halo function which would lead to another best
fit halo function. Since all the second directional derivatives of L around a best fit halo
function are positive the best fit halo function must be unique.

– 27 –



J
C
A
P
1
0
(
2
0
1
6
)
0
2
9

References

[1] DAMA and LIBRA collaborations, R. Bernabei et al., New results from DAMA/LIBRA, Eur.
Phys. J. C 67 (2010) 39 [arXiv:1002.1028] [INSPIRE].

[2] CoGeNT collaboration, C.E. Aalseth et al., Results from a search for light-mass dark matter
with a P-type point contact germanium detector, Phys. Rev. Lett. 106 (2011) 131301
[arXiv:1002.4703] [INSPIRE].

[3] CoGeNT collaboration, C.E. Aalseth et al., CoGeNT: a search for low-mass dark matter
using P-type point contact germanium detectors, Phys. Rev. D 88 (2013) 012002
[arXiv:1208.5737] [INSPIRE].

[4] C.E. Aalseth et al., Search for an annual modulation in a P-type point contact germanium dark
matter detector, Phys. Rev. Lett. 107 (2011) 141301 [arXiv:1106.0650] [INSPIRE].

[5] CoGeNT collaboration, C.E. Aalseth et al., Search for an annual modulation in three years of
CoGeNT dark matter detector data, arXiv:1401.3295 [INSPIRE].

[6] C.E. Aalseth et al., Maximum likelihood signal extraction method applied to 3.4 years of
CoGeNT data, arXiv:1401.6234 [INSPIRE].

[7] CDMS collaboration, R. Agnese et al., Silicon detector dark matter results from the final
exposure of CDMS II, Phys. Rev. Lett. 111 (2013) 251301 [arXiv:1304.4279] [INSPIRE].

[8] XENON10 collaboration, J. Angle et al., A search for light dark matter in XENON10 data,
Phys. Rev. Lett. 107 (2011) 051301 [Erratum ibid. 110 (2013) 249901] [arXiv:1104.3088]
[INSPIRE].

[9] XENON100 collaboration, E. Aprile et al., Dark matter results from 100 live days of
XENON100 data, Phys. Rev. Lett. 107 (2011) 131302 [arXiv:1104.2549] [INSPIRE].

[10] XENON100 collaboration, E. Aprile et al., Dark matter results from 225 live days of
XENON100 data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].

[11] M. Felizardo et al., Final analysis and results of the phase II SIMPLE dark matter search,
Phys. Rev. Lett. 108 (2012) 201302 [arXiv:1106.3014] [INSPIRE].

[12] PICASSO collaboration, S. Archambault et al., Constraints on low-mass WIMP interactions
on 19F from PICASSO, Phys. Lett. B 711 (2012) 153 [arXiv:1202.1240] [INSPIRE].

[13] COUPP collaboration, E. Behnke et al., First dark matter search results from a 4 kg CF3I
bubble chamber operated in a deep underground site, Phys. Rev. D 86 (2012) 052001 [Erratum
ibid. D 90 (2014) 079902] [arXiv:1204.3094] [INSPIRE].

[14] CDMS-II collaboration, Z. Ahmed et al., Search for annual modulation in low-energy
CDMS-II data, arXiv:1203.1309 [INSPIRE].

[15] SuperCDMS collaboration, R. Agnese et al., Improved WIMP-search reach of the CDMS II
germanium data, Phys. Rev. D 92 (2015) 072003 [arXiv:1504.05871] [INSPIRE].

[16] LUX collaboration, D.S. Akerib et al., Improved limits on scattering of weakly interacting
massive particles from reanalysis of 2013 LUX data, Phys. Rev. Lett. 116 (2016) 161301
[arXiv:1512.03506] [INSPIRE].

[17] SuperCDMS collaboration, R. Agnese et al., New results from the search for low-mass weakly
interacting massive particles with the CDMS low ionization threshold experiment, Phys. Rev.
Lett. 116 (2016) 071301 [arXiv:1509.02448] [INSPIRE].

[18] SuperCDMS collaboration, R. Agnese et al., Search for low-mass weakly interacting massive
particles with SuperCDMS, Phys. Rev. Lett. 112 (2014) 241302 [arXiv:1402.7137] [INSPIRE].

[19] P.J. Fox, J. Liu and N. Weiner, Integrating out astrophysical uncertainties, Phys. Rev. D 83
(2011) 103514 [arXiv:1011.1915] [INSPIRE].

– 28 –

http://dx.doi.org/10.1140/epjc/s10052-010-1303-9
http://dx.doi.org/10.1140/epjc/s10052-010-1303-9
https://arxiv.org/abs/1002.1028
http://inspirehep.net/search?p=find+EPRINT+arXiv:1002.1028
http://dx.doi.org/10.1103/PhysRevLett.106.131301
https://arxiv.org/abs/1002.4703
http://inspirehep.net/search?p=find+EPRINT+arXiv:1002.4703
http://dx.doi.org/10.1103/PhysRevD.88.012002
https://arxiv.org/abs/1208.5737
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.5737
http://dx.doi.org/10.1103/PhysRevLett.107.141301
https://arxiv.org/abs/1106.0650
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.0650
https://arxiv.org/abs/1401.3295
http://inspirehep.net/search?p=find+EPRINT+arXiv:1401.3295
https://arxiv.org/abs/1401.6234
http://inspirehep.net/search?p=find+EPRINT+arXiv:1401.6234
http://dx.doi.org/10.1103/PhysRevLett.111.251301
https://arxiv.org/abs/1304.4279
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.4279
http://dx.doi.org/10.1103/PhysRevLett.107.051301
http://dx.doi.org/10.1103/PhysRevLett.110.249901
https://arxiv.org/abs/1104.3088
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.3088
http://dx.doi.org/10.1103/PhysRevLett.107.131302
https://arxiv.org/abs/1104.2549
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.2549
http://dx.doi.org/10.1103/PhysRevLett.109.181301
https://arxiv.org/abs/1207.5988
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.5988
http://dx.doi.org/10.1103/PhysRevLett.108.201302
https://arxiv.org/abs/1106.3014
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.3014
http://dx.doi.org/10.1016/j.physletb.2012.03.078
https://arxiv.org/abs/1202.1240
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.1240
http://dx.doi.org/10.1103/PhysRevD.86.052001
https://arxiv.org/abs/1204.3094
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.3094
https://arxiv.org/abs/1203.1309
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.1309
http://dx.doi.org/10.1103/PhysRevD.92.072003
https://arxiv.org/abs/1504.05871
http://inspirehep.net/search?p=find+EPRINT+arXiv:1504.05871
http://dx.doi.org/10.1103/PhysRevLett.116.161301
https://arxiv.org/abs/1512.03506
http://inspirehep.net/search?p=find+EPRINT+arXiv:1512.03506
http://dx.doi.org/10.1103/PhysRevLett.116.071301
http://dx.doi.org/10.1103/PhysRevLett.116.071301
https://arxiv.org/abs/1509.02448
http://inspirehep.net/search?p=find+EPRINT+arXiv:1509.02448
http://dx.doi.org/10.1103/PhysRevLett.112.241302
https://arxiv.org/abs/1402.7137
http://inspirehep.net/search?p=find+EPRINT+arXiv:1402.7137
http://dx.doi.org/10.1103/PhysRevD.83.103514
http://dx.doi.org/10.1103/PhysRevD.83.103514
https://arxiv.org/abs/1011.1915
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.1915


J
C
A
P
1
0
(
2
0
1
6
)
0
2
9

[20] P.J. Fox, G.D. Kribs and T.M.P. Tait, Interpreting dark matter direct detection independently
of the local velocity and density distribution, Phys. Rev. D 83 (2011) 034007
[arXiv:1011.1910] [INSPIRE].

[21] M.T. Frandsen, F. Kahlhoefer, C. McCabe, S. Sarkar and K. Schmidt-Hoberg, Resolving
astrophysical uncertainties in dark matter direct detection, JCAP 01 (2012) 024
[arXiv:1111.0292] [INSPIRE].

[22] P. Gondolo and G.B. Gelmini, Halo independent comparison of direct dark matter detection
data, JCAP 12 (2012) 015 [arXiv:1202.6359] [INSPIRE].

[23] J. Herrero-Garcia, T. Schwetz and J. Zupan, Astrophysics independent bounds on the annual
modulation of dark matter signals, Phys. Rev. Lett. 109 (2012) 141301 [arXiv:1205.0134]
[INSPIRE].

[24] M.T. Frandsen, F. Kahlhoefer, C. McCabe, S. Sarkar and K. Schmidt-Hoberg, The unbearable
lightness of being: CDMS versus XENON, JCAP 07 (2013) 023 [arXiv:1304.6066] [INSPIRE].

[25] E. Del Nobile, G.B. Gelmini, P. Gondolo and J.-H. Huh, Halo-independent analysis of direct
detection data for light WIMPs, JCAP 10 (2013) 026 [arXiv:1304.6183] [INSPIRE].

[26] N. Bozorgnia, J. Herrero-Garcia, T. Schwetz and J. Zupan, Halo-independent methods for
inelastic dark matter scattering, JCAP 07 (2013) 049 [arXiv:1305.3575] [INSPIRE].

[27] E. Del Nobile, G. Gelmini, P. Gondolo and J.-H. Huh, Generalized halo independent comparison
of direct dark matter detection data, JCAP 10 (2013) 048 [arXiv:1306.5273] [INSPIRE].

[28] E. Del Nobile, G.B. Gelmini, P. Gondolo and J.-H. Huh, Update on light WIMP limits: LUX,
lite and light, JCAP 03 (2014) 014 [arXiv:1311.4247] [INSPIRE].

[29] E. Del Nobile, G.B. Gelmini, P. Gondolo and J.-H. Huh, Direct detection of light anapole and
magnetic dipole DM, JCAP 06 (2014) 002 [arXiv:1401.4508] [INSPIRE].

[30] B. Feldstein and F. Kahlhoefer, A new halo-independent approach to dark matter direct
detection analysis, JCAP 08 (2014) 065 [arXiv:1403.4606] [INSPIRE].

[31] P.J. Fox, Y. Kahn and M. McCullough, Taking halo-independent dark matter methods out of
the bin, JCAP 10 (2014) 076 [arXiv:1403.6830] [INSPIRE].

[32] G.B. Gelmini, A. Georgescu and J.-H. Huh, Direct detection of light “Ge-phobic” exothermic
dark matter, JCAP 07 (2014) 028 [arXiv:1404.7484] [INSPIRE].

[33] J.F. Cherry, M.T. Frandsen and I.M. Shoemaker, Halo independent direct detection of
momentum-dependent dark matter, JCAP 10 (2014) 022 [arXiv:1405.1420] [INSPIRE].

[34] E. Del Nobile, G.B. Gelmini, P. Gondolo and J.-H. Huh, Update on the halo-independent
comparison of direct dark matter detection data, Phys. Procedia 61 (2015) 45
[arXiv:1405.5582] [INSPIRE].

[35] S. Scopel and K. Yoon, A systematic halo-independent analysis of direct detection data within
the framework of inelastic dark matter, JCAP 08 (2014) 060 [arXiv:1405.0364] [INSPIRE].

[36] B. Feldstein and F. Kahlhoefer, Quantifying (dis)agreement between direct detection
experiments in a halo-independent way, JCAP 12 (2014) 052 [arXiv:1409.5446] [INSPIRE].

[37] N. Bozorgnia and T. Schwetz, What is the probability that direct detection experiments have
observed dark matter?, JCAP 12 (2014) 015 [arXiv:1410.6160] [INSPIRE].

[38] M. Blennow, J. Herrero-Garcia and T. Schwetz, A halo-independent lower bound on the dark
matter capture rate in the sun from a direct detection signal, JCAP 05 (2015) 036
[arXiv:1502.03342] [INSPIRE].

[39] E. Del Nobile, G.B. Gelmini, A. Georgescu and J.-H. Huh, Reevaluation of spin-dependent
WIMP-proton interactions as an explanation of the DAMA data, JCAP 08 (2015) 046
[arXiv:1502.07682] [INSPIRE].

– 29 –

http://dx.doi.org/10.1103/PhysRevD.83.034007
https://arxiv.org/abs/1011.1910
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.1910
http://dx.doi.org/10.1088/1475-7516/2012/01/024
https://arxiv.org/abs/1111.0292
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.0292
http://dx.doi.org/10.1088/1475-7516/2012/12/015
https://arxiv.org/abs/1202.6359
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.6359
http://dx.doi.org/10.1103/PhysRevLett.109.141301
https://arxiv.org/abs/1205.0134
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.0134
http://dx.doi.org/10.1088/1475-7516/2013/07/023
https://arxiv.org/abs/1304.6066
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.6066
http://dx.doi.org/10.1088/1475-7516/2013/10/026
https://arxiv.org/abs/1304.6183
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.6183
http://dx.doi.org/10.1088/1475-7516/2013/07/049
https://arxiv.org/abs/1305.3575
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.3575
http://dx.doi.org/10.1088/1475-7516/2013/10/048
https://arxiv.org/abs/1306.5273
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.5273
http://dx.doi.org/10.1088/1475-7516/2014/03/014
https://arxiv.org/abs/1311.4247
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.4247
http://dx.doi.org/10.1088/1475-7516/2014/06/002
https://arxiv.org/abs/1401.4508
http://inspirehep.net/search?p=find+EPRINT+arXiv:1401.4508
http://dx.doi.org/10.1088/1475-7516/2014/08/065
https://arxiv.org/abs/1403.4606
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.4606
http://dx.doi.org/10.1088/1475-7516/2014/10/076
https://arxiv.org/abs/1403.6830
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.6830
http://dx.doi.org/10.1088/1475-7516/2014/07/028
https://arxiv.org/abs/1404.7484
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.7484
http://dx.doi.org/10.1088/1475-7516/2014/10/022
https://arxiv.org/abs/1405.1420
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.1420
http://dx.doi.org/10.1016/j.phpro.2014.12.009
https://arxiv.org/abs/1405.5582
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.5582
http://dx.doi.org/10.1088/1475-7516/2014/08/060
https://arxiv.org/abs/1405.0364
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.0364
http://dx.doi.org/10.1088/1475-7516/2014/12/052
https://arxiv.org/abs/1409.5446
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.5446
http://dx.doi.org/10.1088/1475-7516/2014/12/015
https://arxiv.org/abs/1410.6160
http://inspirehep.net/search?p=find+EPRINT+arXiv:1410.6160
http://dx.doi.org/10.1088/1475-7516/2015/05/036
https://arxiv.org/abs/1502.03342
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.03342
http://dx.doi.org/10.1088/1475-7516/2015/08/046
https://arxiv.org/abs/1502.07682
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.07682


J
C
A
P
1
0
(
2
0
1
6
)
0
2
9

[40] A.J. Anderson, P.J. Fox, Y. Kahn and M. McCullough, Halo-independent direct detection
analyses without mass assumptions, JCAP 10 (2015) 012 [arXiv:1504.03333] [INSPIRE].

[41] M. Blennow, J. Herrero-Garcia, T. Schwetz and S. Vogl, Halo-independent tests of dark matter
direct detection signals: local DM density, LHC and thermal freeze-out, JCAP 08 (2015) 039
[arXiv:1505.05710] [INSPIRE].

[42] S. Scopel, K.-H. Yoon and J.-H. Yoon, Generalized spin-dependent WIMP-nucleus interactions
and the DAMA modulation effect, JCAP 07 (2015) 041 [arXiv:1505.01926] [INSPIRE].

[43] F. Ferrer, A. Ibarra and S. Wild, A novel approach to derive halo-independent limits on dark
matter properties, JCAP 09 (2015) 052 [arXiv:1506.03386] [INSPIRE].

[44] S. Wild, F. Ferrer and A. Ibarra, Halo-independent upper limits on the dark matter scattering
cross section with nucleons, J. Phys. Conf. Ser. 718 (2016) 042063 [INSPIRE].

[45] F. Kahlhoefer and S. Wild, Studying generalised dark matter interactions with extended
halo-independent methods, arXiv:1607.04418 [INSPIRE].

[46] G.B. Gelmini, A. Georgescu, P. Gondolo and J.-H. Huh, Extended maximum likelihood
halo-independent analysis of dark matter direct detection data, JCAP 11 (2015) 038
[arXiv:1507.03902] [INSPIRE].

[47] R.J. Barlow, Extended maximum likelihood, Nucl. Instrum. Meth. A 297 (1990) 496 [INSPIRE].

[48] M. Maltoni, T. Schwetz, M.A. Tortola and J.W.F. Valle, Ruling out four neutrino oscillation
interpretations of the LSND anomaly?, Nucl. Phys. B 643 (2002) 321 [hep-ph/0207157]
[INSPIRE].

[49] M. Maltoni and T. Schwetz, Testing the statistical compatibility of independent data sets, Phys.
Rev. D 68 (2003) 033020 [hep-ph/0304176] [INSPIRE].

[50] A. Kurylov and M. Kamionkowski, Generalized analysis of weakly interacting massive particle
searches, Phys. Rev. D 69 (2004) 063503 [hep-ph/0307185] [INSPIRE].

[51] S. Chang, J. Liu, A. Pierce, N. Weiner and I. Yavin, CoGeNT interpretations, JCAP 08 (2010)
018 [arXiv:1004.0697] [INSPIRE].

[52] J.L. Feng, J. Kumar, D. Marfatia and D. Sanford, Isospin-violating dark matter, Phys. Lett. B
703 (2011) 124 [arXiv:1102.4331] [INSPIRE].

[53] K. McCarthy, Dark matter search results from the silicon detectors of the cryogenic dark matter
search experiment, in APS, (2013).

[54] CDMS collaboration, Z. Ahmed et al., Analysis of the low-energy electron-recoil spectrum of
the CDMS experiment, Phys. Rev. D 81 (2010) 042002 [arXiv:0907.1438] [INSPIRE].

[55] A. Georgescu and S. Witte, CoddsDM: comparing data from direct searches for dark matter.
GitHub repository, https://github.com/SamWitte/Codds DarkMatter, (2015)–(2016).

[56] G.J. Feldman and R.D. Cousins, A unified approach to the classical statistical analysis of small
signals, Phys. Rev. D 57 (1998) 3873 [physics/9711021] [INSPIRE].

– 30 –

http://dx.doi.org/10.1088/1475-7516/2015/10/012
https://arxiv.org/abs/1504.03333
http://inspirehep.net/search?p=find+EPRINT+arXiv:1504.03333
http://dx.doi.org/10.1088/1475-7516/2015/08/039
https://arxiv.org/abs/1505.05710
http://inspirehep.net/search?p=find+EPRINT+arXiv:1505.05710
http://dx.doi.org/10.1088/1475-7516/2015/07/041
https://arxiv.org/abs/1505.01926
http://inspirehep.net/search?p=find+EPRINT+arXiv:1505.01926
http://dx.doi.org/10.1088/1475-7516/2015/09/052
https://arxiv.org/abs/1506.03386
http://inspirehep.net/search?p=find+EPRINT+arXiv:1506.03386
http://dx.doi.org/10.1088/1742-6596/718/4/042063
http://inspirehep.net/search?p=find+J+%22J.Phys.Conf.Ser.,718,042063%22
https://arxiv.org/abs/1607.04418
http://inspirehep.net/search?p=find+EPRINT+arXiv:1607.04418
http://dx.doi.org/10.1088/1475-7516/2015/11/038
https://arxiv.org/abs/1507.03902
http://inspirehep.net/search?p=find+EPRINT+arXiv:1507.03902
http://dx.doi.org/10.1016/0168-9002(90)91334-8
http://inspirehep.net/search?p=find+J+%22Nucl.Instrum.Meth.,A297,496%22
http://dx.doi.org/10.1016/S0550-3213(02)00747-2
https://arxiv.org/abs/hep-ph/0207157
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0207157
http://dx.doi.org/10.1103/PhysRevD.68.033020
http://dx.doi.org/10.1103/PhysRevD.68.033020
https://arxiv.org/abs/hep-ph/0304176
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0304176
http://dx.doi.org/10.1103/PhysRevD.69.063503
https://arxiv.org/abs/hep-ph/0307185
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0307185
http://dx.doi.org/10.1088/1475-7516/2010/08/018
http://dx.doi.org/10.1088/1475-7516/2010/08/018
https://arxiv.org/abs/1004.0697
http://inspirehep.net/search?p=find+EPRINT+arXiv:1004.0697
http://dx.doi.org/10.1016/j.physletb.2011.07.083
http://dx.doi.org/10.1016/j.physletb.2011.07.083
https://arxiv.org/abs/1102.4331
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.4331
http://dx.doi.org/10.1103/PhysRevD.81.042002
https://arxiv.org/abs/0907.1438
http://inspirehep.net/search?p=find+EPRINT+arXiv:0907.1438
https://github.com/SamWitte/Codds_DarkMatter
http://dx.doi.org/10.1103/PhysRevD.57.3873
https://arxiv.org/abs/physics/9711021
http://inspirehep.net/search?p=find+EPRINT+physics/9711021

	Introduction
	Review of the Extended Maximum-Likelihood Halo-independent (EHI) analysis method 
	Generalized halo-independent analysis
	Extended maximum likelihood analysis 
	Construction of the best fit halo function and confidence band from an extended likelihood

	Extension of EHI analysis to a global maximum likelihood 
	Global likelihood analysis of CDMS-II-Si and SuperCDMS data 
	Constrained goodness-of-fit analysis 
	Conclusions 
	The zeros of the q(v(min)) function 
	The zeros are isolated above a certain v(min) value
	Maximum number of isolated zeros of the function q(v(min)) for a global likelihood 
	Argument against non-isolated zeros of q(v(min))

	The uniqueness of the best-fit halo function
	Statement of the proof
	Proof that the locations of the steps cannot change
	Evaluation of the second directional derivatives of L 


