Brought to you by:

"Non-cold" dark matter at small scales: a general approach

, , , and

Published 24 November 2017 © 2017 IOP Publishing Ltd and Sissa Medialab
, , Citation R. Murgia et al JCAP11(2017)046 DOI 10.1088/1475-7516/2017/11/046

1475-7516/2017/11/046

Abstract

Structure formation at small cosmological scales provides an important frontier for dark matter (DM) research. Scenarios with small DM particle masses, large momenta or hidden interactions tend to suppress the gravitational clustering at small scales. The details of this suppression depend on the DM particle nature, allowing for a direct link between DM models and astrophysical observations. However, most of the astrophysical constraints obtained so far refer to a very specific shape of the power suppression, corresponding to thermal warm dark matter (WDM), i.e., candidates with a Fermi-Dirac or Bose-Einstein momentum distribution. In this work we introduce a new analytical fitting formula for the power spectrum, which is simple yet flexible enough to reproduce the clustering signal of large classes of non-thermal DM models, which are not at all adequately described by the oversimplified notion of WDM . We show that the formula is able to fully cover the parameter space of sterile neutrinos (whether resonantly produced or from particle decay), mixed cold and warm models, fuzzy dark matter, as well as other models suggested by effective theory of structure formation (ETHOS). Based on this fitting formula, we perform a large suite of N-body simulations and we extract important nonlinear statistics, such as the matter power spectrum and the halo mass function. Finally, we present first preliminary astrophysical constraints, based on linear theory, from both the number of Milky Way satellites and the Lyman-α forest. This paper is a first step towards a general and comprehensive modeling of small-scale departures from the standard cold DM model.

Export citation and abstract BibTeX RIS

Please wait… references are loading.
10.1088/1475-7516/2017/11/046