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Abstract
Evolutionary-rate variation among sites within proteins depends on functional and biophysical
properties that constrain protein evolution. It is generally accepted that proteinsmust be able to fold
stably in order to function.However, the relationship between stability constraints and among-sites
rate variation is not well understood.Here, we present a biophysicalmodel that links the
thermodynamic stability changes due tomutations at sites in proteins (ΔΔG) to the rate at which
mutations accumulate at those sites over evolutionary time.Wefind that such a ‘stabilitymodel’
generally performswell, displaying correlations between predicted and empirically observed rates of
up to 0.75 for some proteins.We further find that ourmodel has comparable predictive power as does
an alternative, recently proposed ‘stressmodel’ that explains evolutionary-rate variation among sites
in terms of the excess energy needed formutants to adopt the correct active structure (ΔΔG*). The
twomodelsmake distinct predictions, though, and for some proteins the stabilitymodel outperforms
the stressmodel and vice versa.We conclude that both stability and stress constrain site-specific
sequence evolution in proteins.

1. Introduction

The evolution of protein-coding genes is shaped by

functional and biophysical constraints on the

expressed proteins (Pal et al 2006, Thorne 2007,

Worth et al 2009, Wilke and Drummond 2010,

Grahnen et al 2011, Liberles et al 2012). These

constraints create patterns of rate variation among and

within proteins. Among proteins, the primary deter-

minant of rate variation is gene expression level

(Drummond and Wilke 2008), though many other

factors have been identified that also contribute to rate

variation (Lemos et al 2005, Xia et al 2009, Liao

et al 2010, Pang et al 2010). Within proteins, the

primary determinants of rate variation seem to be

linked to geometrical properties of the folded protein,

in particular the relative solvent accessibility (RSA)

(Bustamante et al 2000, Dean et al 2002, Franzosa and

Xia 2009, Ramsey et al 2011, Shahmoradi et al 2014)

and the local packing density (LPD) (Liao et al 2005,

Franzosa and Xia 2009, Yeh et al 2014a, 2014b) of sites
in the three-dimensional protein structure.

To develop a mechanistic understanding of the
causes that link geometrical properties, such as RSA
and LPD, with site-specific rates of evolution, we need
to develop explicit models of protein evolution. For
example, recently a mechanistic ‘stress model’ was
proposed to explain the LPD–rate relationship
(Huang et al 2014). According to this stress model,

LPD is a proxy of the stress energy ΔΔG*, a thermo-
dynamic quantity that is a measure of the excess free
energy needed for a foldedmutant protein to adopt the
correct active conformation. The stress model con-
siders the effect of the stress free energy difference

ΔΔG* but not that of possible mutational changes on
global stability ΔΔG. However, most proteins will
function properly if they have folded stably into the
correct conformation. To what extent stability con-
straints shape site-specific sequence evolution is not
known.
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Recent work has shown that describing protein
evolution from the perspective of thermodynamic sta-
bility provides a wealth of insight into important
aspects of protein evolution, such as the evolution of
mutational robustness (Bloom et al 2007), the origin
of epistatic interactions (Bershtein et al 2006, Gong
et al 2013), lethal mutagenesis (Chen and Shakhno-
vich 2009), determinants of evolutionary rate at pro-
tein level (Drummond and Wilke 2008, Serohijos
et al 2012), the evolution of novel function (Bloom
et al 2006, Tokuriki et al 2008), and the expected equi-
librium distributions of stability and the explanation
of marginal stability (Taverna and Goldstein 2002,
Goldstein 2011, Wylie and Shakhnovich 2011). More-
over, some studies suggest that ΔΔG-basedmodels are
useful to study site-specific constraints. For example,
Bloom and Glassman (2009) have shown that changes
in stability upon mutation (ΔΔG values) are inti-
mately linked to the patterns of amino-acid substitu-
tions observed over evolutionary divergence, to the
extent that ΔΔG values can actually be inferred with
accuracy comparable to state-of-the art structure-
based methods solely from an alignment of diverged
protein sequences. More recently, Arenas et al (2013)
have used stability-based models to predict site-spe-
cific amino acid distributions. Despite the recognized
importance of folding stability, stability-based models
have not been used to predict the variation of evolu-
tionary rates among sites.

Here, we investigate the relationship between
mutational changes of stability and the site-depen-
dency of rates of substitution. Following Bloom and
Glassman (2009), we derived a neutral ‘stability
model’ of evolution which relates the ΔΔGs due to
mutations at a site with the site’s rate of substitution.
For a diverse set of more than 200 enzymes, we com-
pare the predicted rates with empirical rates (inferred
from multiple sequence alignments) and with predic-

tions of the stress model. The ΔΔG-based and ΔΔG*
-based predictions have on average similar correla-
tions with empirical rates. However, the two models
make significant independent contributions, which
suggests that both stability and stress mould sequence
divergence.

2. Stabilitymodel: ΔΔG-based rates

Our stability model is based on earlier work by Bloom
and coworkers (Bloom et al 2005, Bloom and Glass-
man 2009). The core idea of Bloom’s model is that

there is a stability threshold ΔGthreshold such that all
proteins more stable than the threshold are neutral
(i.e. have all the same fitness) whereas all proteins less
stable than the threshold are inviable (have

=fitness 0). Thus, if ΔG is the stability of a protein,
then itsfitness Δf G( ) is assumed to be:

Δ Δ Δ
Δ Δ

= ⩽
>

f G
G G

G G
( )

1 if ,

0 if .
(1)

threshold

threshold

⎧⎨⎩
It is convenient to define

Δ Δ Δ= −G G G , (2)extra threshold

so that

Δ Δ
Δ

= ⩽
>

( )f G
G

G

1 if 0,

0 if 0.
(3)extra

extra

extra

⎧⎨⎩
We further assume that the mutational effect on

stability of a mutation →i j at site k is independent of
the sequence background. We refer to this stability
change as ΔΔGij

k. Because of the assumption of
sequence independence, the stability difference
between two sequences can bewritten as

∑Δ Δ ΔΔ− =( ) ( )G j j G i i G, ,... , ,... , (4)
k

i j
k

1 2 1 2 k k

where i i, ,...1 2 and j j, ,...1 2 represent the amino acids
of the two sequences, respectively. While this assump-
tion cannot strictly be true, in practice it has worked
well in several applications (e.g. Bloom et al 2005,
Bloom and Glassman 2009). The assumption is
further supported by the observation that mutational
effects on stability are frequently additive (Wells 1990,
Serrano et al 1993, Zhang et al 1995) and tend to be
conserved during evolution (Ashenberg et al 2013).

Next we describe the evolutionary process.
Throughout this work, we assume that the product of
the protein-wide mutation rate μ and the effective
population size Ne is small, μ ≪N 1e . As a con-
sequence, our populations are monomorphic, and we
only have to track the evolution of a single representa-
tive sequence over time. We further assume that at
most a singlemutation arises at each time step.

The probability that a substitution →i j occurs at
site k in a single time step, Qij

k, can be written as the
product of the probability that the mutation →i j
occurs,Mij, and the probability it goes tofixation

= ×Q M p . (5)ij
k

ij fix

Here, we have assumed that all sites experience the
same mutational process, so thatMij does not depend
on k. Note thatMij scales with the effective population
size Ne, since all sequences in the population may
mutate in one time step, and pfix scales with N1 e ,
because we are modeling the case of neutral evolution
(equation (3)). ThusNe cancels, andwe can set it equal
to 1without loss of generality.

Under the assumption of neutral evolution, the
fixation probability is either one or zero, depending on
whether the mutation keeps the extra stability in the
negative or not. Because we have previously assumed
that stability effects are independent of the sequence
background (equation (4)), they are fully specified by
i, j, and k. (In other words, amutation from i to j at site
k always has the same stability effect ΔΔGij

k.) However,

the extra stability after themutation, Δ ΔΔ+G Gij
kextra ,
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depends on the sequence background through the
value of ΔGextra before the mutation. From
equation (3) we find the conditional fixation prob-
ability

ΔΔ Δ

Δ ΔΔ

Δ ΔΔ
=

+ ⩽

+ >

( )p G G

G G

G G

1 if 0,

0 if 0.
(6)

ij
k

ij
k

ij
k

fix
extra

extra

extra

⎧
⎨⎪
⎩⎪

If Δ ΔΔ+ ⩽G G 0ij
kextra , then the mutated protein is

viable, and hence it fixes with probability 1. (Recall
that we set Ne = 1.) By contrast, if
Δ ΔΔ+ >G G 0ij

kextra , then the mutated protein is not
viable andwill notfix.

To proceed, we could write down a Markov pro-
cess that keeps track of the extra stability at all time
points (Bloom et al 2007, Raval 2007). Instead, here we
employ the ‘mean field’ approximation of Bloom and
Glassman (2009), in which we assume that ΔGextra

before mutation is drawn randomly from the steady-
state distribution of ΔGextra values, Δp G( )0

extra , so that
we canwrite the unconditionalfixation probability as

∫ΔΔ ΔΔ Δ

Δ Δ

=

×

( ) ( )
( )

p G p G G

p G Gd . (7)

ij
k

ij
k

fix fix
extra

0
extra extra

For Δp G( )0
extra , Bloom and Glassman (2009)

make the ansatz that it has an exponential probability-
density function Δp G( )0

extra :

Δ α Δ
Δ

= ⩽
>

αΔ
( )p G G

G

e if 0,

0 if 0,
(8)

G

0
extra

extra

extra

extra
⎪

⎪

⎧
⎨
⎩

where α > 0 is a free parameter. This form cannot be
derived from first principles, but it is justified by visual
inspection of the probability density functions
obtained under simulations (Bloom et al 2007) (but
seeWylie and Shakhnovich 2011).

Inserting equation (6) and equation (8) into
equation (7), we obtain

∫

ΔΔ

ΔΔ

α Δ ΔΔ
=

⩽

>
ΔΔ

αΔ
−∞

−

( )p G

G

G G

1 if 0,

e d if 0.
(9)

ij
k

ij
k

G
G

ij
k

fix

extra
ij
k

extra

⎧
⎨⎪

⎩⎪

After taking the integral, wefind

ΔΔ
ΔΔ

ΔΔ
=

⩽

>αΔΔ−( )p G
G

G

1 if 0,

e if 0.
(10)ij

k ij
k

G
ij
kfix

ij
k

⎧
⎨⎪
⎩⎪

The stability model is completely specified by
equation (5) and equation (10).

Next we consider the calculation of site-specific
substitution rates. The substitution process at site k is
described by a ratematrix Qk with elements

∑
ΔΔ

=
× ≠

− =
≠

( )
Q

M p G i j

Q i j

if ,

if .
(11)ij

k
ij ij

k

j i

ij
k

fix
⎧
⎨⎪

⎩⎪

The stationary distribution πi
k of the substitution

process is given by the left null eigenvector of Qk,
normalized such that π∑ = 1i i

k . The rate of substitu-

tion at site k, K k
stability , follows as

∑∑ ∑π π= = −
≠

K Q Q . (12)k

i j i

i
k

ij
k

i

i
k

ii
k

stability

The subscript ‘stability’ emphasizes that this rate
estimate is calculated using the stabilitymodel.

In the case of symmetric mutations, =M Mji ij,
the equilibrium frequencies can be expressed as

π =
∑

αΔΔ

αΔΔ

−

−

e

e
, (13)i

k
G

j
G

i
k

j
k

0

0

where ΔΔG i
k
0 is the stability change relative to an

arbitrarily chosen reference amino acid at site k. In the
limit of unbiasedmutations, =M constantij for ≠i j ,
the rate can be simplified to

∑π π= − −( )K 2 rank 1 . (14)k

i

i
k

i
k

stability
⎡⎣ ⎤⎦

Here, π−rank( )i
k represents the rank order of πi

k,
from largest to smallest. (The advantage of using
equation (14) instead of equation (12) is that the latter
contains a double-sum and hence is slower to
evaluate.)

3. The stressmodel: ΔΔG*-based rates

The stability model is based on the assumption that
fitness depends on whether the protein is stable
enough to fold, so that the probability of fixation of a
mutation will depend on the difference of folding free
energy between the mutant and the wild-type, each in
their respective equilibrium conformations. A differ-
entmechanistic model, the ‘stressmodel,’was recently
derived based on the idea that, to be viable, a mutant
must not only be stable, it must also be able to adopt a
correct active conformation (Huang et al 2014). Fol-
lowing this idea, the fixation probability of a mutant
was modeled as the mutant’s probability of adopting
the active conformation. According to this model, the
rate of substitution for site k is

ΔΔ= +K a b G* , (15)k
k

stress

where ΔΔ Δ Δ= −G G Gr r* ( ) ( )mutant active wt active is the
free energy difference between mutant and wild-type
when both adopt the active conformation and

ΔΔ〈 〉G* k is its average over randommutations at site k.
Since in general the active conformation will not
necessarily be the relaxed equilibrium conformation,

ΔΔG* represents the energy needed to stress the
protein into adopting the right active conformation.

3
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Further assuming that the active conformation is
the wild type’s equilibrium conformation and approx-
imating the free energy landscape using the para-
meter-free anisotropic network model of Yang et al

(2009), it can be shown that ΔΔ〈 〉 ∝G* WCNk k,

where = ∑ ≠
−dWCNk

j k kj
2 is the weighted contact

number introduced by Lin et al (2008) and found to be
among the best structural predictors of site-dependent
evolutionary rates (Yeh et al 2014a, 2014b). Because of

the proportionality between WCNk and ΔΔ〈 〉G* k, we
can alsowrite equation (15) as

= +K a b̃ WCN . (16)k k
stress

In practice, we obtain rates K k
stress by calculating the

WCNk for each site k in a protein structure, fitting the
linear expression +a b̃ WCNk to a set of empirically
estimated rates, and then using equation (16) to
calculate a predicted rate at each site.

It is worthwhile to keep in mind that while the sta-
bility model takes into account whether the mutant is
able to fold, the stress model takes into account the
probability that the mutant adopts the right con-
formation. In principle both factors can affect fitness
independently and therefore may both have an influ-
ence on substitution rates. If this is the case, bothmod-
els are incomplete: the stability model does not
consider the effect of possible conformational changes
as long as the mutant is stable and the stress model
takes stability for granted and considers only the desta-
bilzation of the active structure.

4. Comparing the theoreticalmodels with
empirical data

4.1.Data set and calculation of empirical and
predicted evolutionary rates
We tested our theory on the data set of Huang et al
(2014), which consists of 213 monomeric enzymes of
known structure covering diverse structural and func-
tional classes. Each structure is accompanied by up to
300 homologous sequences. In our analysis, we
omitted four structures (1bbs, 1bs0, 1din, 1hpl) that
had missing data at insertion sites. We aligned the
homologous sequences for each structure with multi-
ple alignment using fast Fourier transform (Katoh
et al 2005, Katoh and Standley 2013). Using the
resulting alignments as input, we inferred maximum
likelihood phylogenetic trees with randomized axeler-
ated maximum likelihood, using the LG substitution
matrix (named after Le and Gacuel) and the CAT
model of rate heterogeneity (Stamatakis 2014).

For each structure, we then used the respective
sequence alignment and phylogenetic tree to infer site-
specific substitution rates with Rate4Site, using the
empirical Bayesianmethod and the amino-acid Jukes–
Cantormutational model (aaJC) (Mayrose et al 2004).
The aaJC model poses equal probabilities for all
amino-acid mutations, so that it is consistent with the

theory presented in section 2 and with the assumption
of modeling amino-acid mutations as completely ran-
dom perturbations made in the derivation of the stress
model (Huang et al 2014). Site-specific relative rates
were obtained by dividing site-specific rates by their
average over all sites of the protein, so that the mean
relative rate of all sites in a protein was 1. In the follow-
ing, we will refer to the rates inferred by Rate4Site as
empirical rates, and will denote them by KR4S. We will
refer to the rates calculated according to the stability
model (Kstability) or the stress model (Kstress) as pre-
dicted rates. If necessary, we will distinguish between
the predictions of the stability and stress model using

the terms ΔΔG-predicted rates and ΔΔG*-predicted
rates, respectively.

We calculated ΔΔG values with the program
FoldX, following the default protocol (Guerois
et al 2002, Schymkowitz et al 2005). Specifically, we
first optimized the energy for each structure, using the
repair PDBmethod.We then calculated a ΔΔG j

k
0 value

for all possible 19 amino-acid substitutions at all sites
in all proteins, using the PositionScan method, and
considering the amino acid present in the PDB struc-
ture at each site as the reference amino acid at that site.

Rates predicted by the stability model were
obtained using equations (13) and (14) either with
α = 1 or with α chosen specifically for each protein. To
determine the appropriate scale factor α for each pro-
tein, we maximized the correlation coefficient
between the predicted site-specific rates as given by
equations (13) and (14) and the empirical site-specific
rates as calculated by Rate4Site. To calculate the rates
predicted by the stressmodel, we performed a linear fit
between the site-dependent KR4S and WCN for each
protein, and then used equation (16) to calculate
Kstress at each site.

All statistical analysis was carried out with R (R
Core Team2014). To fit the stabilitymodel to the data,
we used the built-in function optimize() with
default parameter settings. To fit the stress model to
the data, we used the built-in function lm(). Correla-
tion coefficients between predicted and empirical rates
were calculated using cor() and partial correlations
were obtained using the function pcor.test() of
packageppcor.

All data and analysis scripts necessary to reproduce
this work are available at: https://github.com/
wilkelab/therm_constraints_rate_variation/.

4.2. Relationship between empirical andpredicted
evolutionary rates
We found that rates predicted by the stability model
correlate significantly with the empirical rates. Corre-
lation coefficients ranged between 0.25 and 0.75, with
a median of 0.57 (figure 1(A)). Scale values α fell
between 0.52 and 2.63, with a median of 1.19. We
further found that correlation coefficients and scale
values were not correlated (r = 0.05, P = 0.47). To
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determine to what extent optimizing α for each
protein affected the resulting correlation coefficients,
we also calculated correlation coefficients with α = 1
for all proteins.We found that adjusting αmade only a
small difference, resulting on average in an increase in
correlation coefficient of 0.007 (figure 1(A)).

We next investigated the functional relationship
between empirical rates and rates predicted by the sta-
bility model. We pooled the data from all sites in all
209 proteins and calculated the joint distribution of
the two rates. We also grouped sites into 20 bins of
similar number of points using quantile breaks along
the predicted rates axis. Figure 2 shows the joint dis-
tribution as well as the mean empirical rates and the
25% and 75% quantiles for each bin. The mean
empirical rates fall nearly on top of the x = y line

(which represents a perfect fit), with only a small
amount of curvature around the mean predicted rate.
The correlation between average empirical and pre-
dicted rates is r = 0.995, consistent with a very good
linear fit. Despite the good fit of avarage rates, there is
significant variation around x = y, as can be seen from
the dispersion of the joint distribution around the
x = y line and the error bars in figure 2. The overall
square correlation between ΔΔG-predicted rates and
empirical rates is =r 0.312 , so that 69% of the var-
iance of empirical rates is not explained by the stability
model.

Next, we compared the predictions of the stability
model with those from the stress model (Huang
et al 2014), which describes site-specific evolutionary
rates in terms of the increased stress that results in the
protein’s active conformation due to mutation

(ΔΔG*). In a protein-by-protein comparison, the sta-
bility model is somewhat better (dots above the x = y
line in figure 3) for 127 of the 209 proteins, a propor-
tion significantly larger than 50% (binomial test: 61%,
P = 0.002). When considering all sites together, the
two models perform comparably. The correlations
between empirical and predicted rates for all sites are

0.56with ΔΔG-based predictions and 0.55with ΔΔG*
-based predictions. However, even though the two
models perform comparably on average, there is sub-
stantial variation around the mean trend (figure 3).
For some proteins, the ΔΔG model clearly outper-
forms the stress model and vice versa. Also, consider-
ing all sites, the partial correlations between empirical
rates and predicted rates for one model controling for
the predictions of the other are 0.33 and 0.31 for the
ΔΔG model and the stress model, respectively. These
values are large and highly significant (P≪ 10−3),
showing that the predictions of the two models are
quite independent and may be accounting for differ-
ent constraints.

The relative independence of stress and stability as
determinants of site-specific evolutionary rates

Figure 1.Correlations between rates predicted from ΔΔG and rates inferred by Rate4Site. (A)Correlation coefficients versus the
fitted, protein-specific scalesα. Each dot represents data for one protein. There is no relationship between the correlation coefficients
andα (r=0.10,P=0.16). (B) Fittedα values provide only a small benefit over α = 1. Fittingα to each protein increases correlation
coefficients, on average, by 0.007 (paired t-test,mean difference =d̄ 0.007, df = 208, < −P 10 10).

Figure 2.The relationship between rates predicted from ΔΔG
and rates inferred by Rate4Site is nearly linear. The joint
distribution of empirical vs. predicted rates is shown using
shaded areas. All sites were grouped into 20 bins of
approximately equal number of sites using quantile breaks on
the predicted rate axis. Yellow dots are themean rates
obtained by averaging over sites within a bin. Yellow error
bars correspond to the 25%and 75%quantiles for each bin.
Average empirical rates (yellow circles) are very close to the
x= y line that corresponds to a perfect empirical-predicted fit
(the correlation coeffient betweenmean empirical and
predicted rates is 0.995). However, there is substantial
variation around themean trend, as can be seen from shaded
areas and yellow error bars (correlation between non-
averaged empirical and predicted rates is 0.558).
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suggests that considering both factors should improve
predictions. To verify this hypothesis, we fit empirical
rates to a linear combination of rates predicted from

ΔΔG* and ΔΔG. Considering all sites of all proteins,
the two-variable model results in a square correlation

=R 0.382 , approximately a 23% improvement over
=R 0.312 of the stability model and =R 0.302 of the

stress model. Both predictors in the two-variable
model are highly significant ( < −P 10 15). These
results further support the idea that stability and stress
provide significant independent constraints to evolu-
tionary divergence at site level.

All ΔΔG-based predictions presented above used
ΔΔG values calculated by FoldX. It is possible that a
different ΔΔG predictor would yield substantially dif-
ferent results. In particular, even though FoldX is a
state-of-the-art ΔΔG predictor its predictions explain
only 25% of the variance in measured ΔΔG values
(Potapov et al 2009, Thiltgen and Goldstein 2012),
indicating a substantial need for improved ΔΔG pre-
diction methods with higher accuracy. Therefore, we
also asked to what extent our results depended on the
method by which we calculated ΔΔG values. We cal-
culated a second set of ΔΔG values, using the
ddg_monomer application in Rosetta (Kellogg
et al 2011). Because this application runs approxi-
mately 500 times slower than FoldX, we could not run
it on all proteins in our data set. Instead, we arbitrarily
selected five proteins (PDB IDs 1bp2, 1lba, 1ljl, 1pyl,
and 2acy) as a test case.We found that FoldX performs
similarly or better than ddg_monomer (figure 4).
Thus, in our application here, we could not identify
any major differences between predictions obtained

from FoldX and those obtained from Rosetta
ddg_monomer.

5. Conclusion

We have developed a biophysical model linking
stability changes ΔΔG due to mutations at individual
sites in proteins to site-specific evolutionary rates. This
stability model predicts site-specific rates in very good
agreement with empirical rates. Indeed, the overall
correlation between empirical rates and ΔΔG-based
predictions is similar to the correlation with the best
structural determinant, the packing density measure
WCN, which, according to a recent mechanistic stress
model, is a measure of the local stress introduced by

mutations into the active protein structure ΔΔG*
(Huang et al 2014, Yeh et al 2014b). However, despite
the similar performance, large partial correlations

show that the two factors ΔΔG and ΔΔG* result in
largely independent predictions. Moreover, there are
proteins for which the stability model performs
significantly better than the stress model, while for
other proteins the reverse is true. Consistently, a two-
variable model that combines stability and stress
significantly improves predictions. Therefore, both

the overall stability ΔΔG and the stress ΔΔG* seem to
capture distinct thermodynamic constraints on pro-
tein evolution.

The stability model presented here is a neutral
model in which mutations are either neutral or com-
pletely deleterius according to whether the mutant’s
stability is above a certain threshold (Taverna and
Goldstein 2002, Bloom et al 2005, Bloom and Glass-
man 2009). A presumablymore sophisticatedmodel is
based on posing a continuous dependence between fit-
ness and ΔG (Chen and Shakhnovich 2009, Tokuriki
and Tawfik 2009, Goldstein 2011, Wylie and

Figure 3.Correlations between rates inferred by Rate4Site
and rates predicted by either the stress ΔΔG*-basedmodel
(shown along the x axis) or the stability ΔΔG-basedmodel
(shown along the y axis). The correlation coefficients from
the twomodels are significantly correlated (r=0.64,

< −P 10 10). Correlations have similarmagnitudes, with the
ΔΔG-basedmodel giving slightly better results on average
(paired t-test,mean difference =d̄ 0.026, df = 208,

<P 0.001). For 127 of the 209 proteins the stabilitymodel
gives better correlations while for 82 of the 207 proteins the
stressmodel gives better results.

Figure 4.Rates predicted using ΔΔG values obtained from
FoldX perform aswell as or better than the ones obtained
from the ddg_monomer protocol in Rosetta. Shown are the
correlation coefficients ofmeasured rateswith rates predicted
using the stabilitymodel with FoldX ΔΔG values (y axis) vs.
Rosetta ΔΔG values (x axis) forfive proteins.
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Shakhnovich 2011). However, even though the con-
tinuous fitnessmodels appear to bemore realistic than
the neutral stability-threshold models, in a recent
study Arenas et al (2013) found that the neutral model
leads to better predictions of site-specific amino-acid
distributions. This finding provides additional sup-
port for our choice of using a neutral ΔΔG-based
model. In future work, it will be worthwhile to explore
the site-dependency of substitution rates using con-
tinuous fitness-stabilitymodels.
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