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Abstract

Detecting transient light curves (e.g., transiting planets) requires high-precision data, and thus it is important to
effectively filter systematic trends affecting ground-based wide-field surveys. We apply an implementation of the
Trend Filtering Algorithm (TFA) to the 2MASS calibration catalog and select Palomar Transient Factory (PTF)
photometric time series data. TFA is successful at reducing the overall dispersion of light curves, however, it may
over-filter intrinsic variables and increase “instantaneous” dispersion when a template set is not judiciously chosen.
In an attempt to rectify these issues we modify the original TFA from the literature by including measurement
uncertainties in its computation, including ancillary data correlated with noise, and algorithmically selecting a
template set using clustering algorithms as suggested by various authors. This approach may be particularly useful
for appropriately accounting for variable photometric precision surveys and/or combined data sets. In summary,
our contributions are to provide a MATLAB software implementation of TFA and a number of modifications
tested on synthetics and real data, summarize the performance of TFA and various modifications on real ground-
based data sets (2MASS and PTF), and assess the efficacy of TFA and modifications using synthetic light curve
tests consisting of transiting and sinusoidal variables. While the transiting variables test indicates that these
modifications confer no advantage to transit detection, the sinusoidal variables test indicates potential
improvements in detection accuracy.
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1. Introduction

Recent technological advancements in astronomy, including
the ability to store massive amounts of observational data, have
allowed astronomers to explore the time domain in detail.
These advancements have allowed for the production of
detailed photometric time series data, or “light curves,” which
monitor the brightness of a stellar object on timescales varying
from minutes to decades. The analysis of light curves has led to
a prodigious number of exoplanet discoveries in recent times;
according to the NASA Exoplanet Archive, to date over 1262
exoplanets have been detected by analyzing photometric time
series data to look for transits.

Photometric time series data obtained from wide-field
surveys are affected by systematic noise from varying

atmospheric conditions or uncorrected instrumental effects.
The ability to intelligently filter out such systematic noise is
crucial to detecting transiting planets or variable stars, as shown
by Hartman et al. (2010), and a number of methods have been
developed to mitigate their spurious effects, including regular-
ized regression, GP-regression, principal components analysis,
and unsupervised learning methods (Kim et al. 2009; Wang
et al. 2015). While these methods have been developed
primarily in the context of Kepler, our focus is on ground-based
wide-field surveys, where atmospheric conditions play a
dominant role in contributing to unwanted systematic noise.
The Trend Filtering Algorithm (TFA; Kovacs et al. 2005)
attempts to detrend systematic noise in light curves, and it
leverages the fact that wide-field surveys generate multiple
light curves that are affected by similar systematics. Our overall
research efforts primarily focused on (1) implementing this
algorithm on existing photometric time series data sets from
ground-based wide-field astronomical surveys, and (2) inves-
tigating methods to improve its performance. We note that TFA
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can also be used in the signal reconstruction phase, as is
investigated by Aigrain et al. (2015) and Foreman-Mackey
et al. (2015), but we do not focus on this version of TFA for the
purposes of our analysis.

In Section 2, we briefly discuss the 2MASS and PTF Orion
pilot data to which we have applied TFA. In Section 3, we
analyze in detail the original version of TFA, as well as various
modifications to TFA that we have implemented. In Section 4,
we discuss the results of performing TFA on simulated data
sets with varying template selection procedures and two types
of light curves, those with uniform errors, and those with
measurement uncertainties that vary nightly, and two types of
signals: transits and sinusoids. We also present the results of
the detrending on the aforementioned data sets. In Section 5 we
discuss these results and present our conclusions.

2. Data Selection

2.1. 2MASS Data

The Two Micron All Sky Survey (2MASS) is a wide-field
survey that captured all portions of the sky in three bands of the
near-infrared spectrum over a period of four years, from 1997
to 2001. For each night of 2MASS operations, all of the survey
telescopes were targeted at 1 of 35 calibration fields every hour
using the scanning strategy used for the main survey (Plavchan
et al. 2008). Over the entirety of the survey, between 562 and
3692 observations were made of each of the calibration fields.
These raw data were preprocessed using the system used to
process the survey observation data (Skrutskie et al. 2006),
which detected and extracted source positions and photometry
for all objects in the images from each scan. The standard stars
in each field were used to determine the nightly photometric
zero-point solutions for each time point, in addition to seasonal
atmospheric parameters. All data extracted from these scans
were stored in the 2MASS Calibration Point Source Working
Database (Cal-PSWDB), which contains more than 191 million
source extractions from 73,230 scans of the 35 calibration
fields (Skrutskie et al. 2006).

2.2. PTF Orion Pilot Data

Data for the Palomar Transient Factory (PTF) Orion project
were obtained from 40 nights of observation in December 2009
to January 2010 using the PTF camera installed at the Palomar
48-inch telescope. The goal of the observations was to study
the young 25 Ori association (van Eyken et al. 2011). For our
analyses, we used preliminary pilot test data taken during
instrument commissioning time in Feb/March 09, with the
purpose of using them to build a differential photometry
pipeline. Two data sets were taken. The first was an overlapped
tiling of the entire Orion region, R-band, 30 s exposures. The
second was a single-field time series data set, R-band, 60 s
exposures, approximately 90 s cadence, over three nights. The

aim of the program was to observe a field where the gas disks
of young stars are actively on the point of dissipating
(approximately 5–10Myr old), leaving behind any newly
formed Jovian planets. The 25 Orion region was chosen for the
time series pilot study.

3. Analysis

In Section 3.1, we begin by briefly summarizing the
methodology of TFA (Kovacs et al. 2005) as well as the
derivation of the matrix formulation of the algorithm. In the
remaining sections, we analyze various methods of modifying
TFA to improve its performance. In Section 3.2 we discuss
how one may include measurement uncertainties and recast this
modification into matrix algebra. In Section 3.3, we review two
clustering-based approaches to optimize the selection of a
template set, the first method from Kim et al. (2009). In the
final section we present a method for including external
parameters correlated with noise that is known as external
parameter decorrelation, as in Bakos et al. (2007).

3.1. Formulation of TFA

We begin with the mathematical formulation of TFA Kovacs
et al. (2005). Let Y(i) be a light curve that is to be detrended,
and assume it is zero-averaged. TFA assumes that a filter
function F(i) may be constructed as a linear combination of
“template” light curves Xj(i), which are selected from the field
surveyed, and are zero-averaged as well. Implicitly, the
template set contains all the information of the systematic
trends that the algorithm is privy to. Assume that there exist m
light curves in the template set, and assume that each light
curve consists of n brightness measurements; to summarize we
have the following relations:

( ) ( ) ( )å=
=

=

F i c X i 1
j

j m

j j
1

( ) ( ) ( ) ( )* = -Y i Y i F i , 2

where Y*(i) is the filtered light curve. Thus the formulation of a
filter function is equivalent to the solution of a particular set of
constants cj. TFA solves for these constants by minimizing the
following sum of squared residuals:
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=

=
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This minimization problem can be recast in terms of matrix
algebra; we may arrange the template set into an m by n matrix
L where each row is a light curve. Furthermore, consider
placing the constants {cj} into a length m row vector. Then we
have the relation:

( )=F cL, 4
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where F is the filter function viewed as a length n row vector.
Using this new notation, our minimization problem now
becomes:

( )- min Y cL , 52

where the  . 2 notation is the familiar notion of Euclidean
distance in n. In other words, a particular choice of c
corresponds to a point in the subspace spanned by the rows of
L, and we seek a choice of c such that the residual distance
Y− cL is minimized. A basic proposition from linear algebra
dictates that this choice of c will cause the vector Y− cL to be
normal to the hyperplane spanned by the rowspace of L. Hence
we seek c such that the vector Y− cL is normal to all the rows
of L. Since normality is defined by a 0 inner product, we get the
following relation:

( ) ( )- =L Y cL 0. 6T

Hence, solving for c,

( ) ( )= -c LL LY . 7T T1

The salient point of this derivation is that a filter function can
be calculated via basic matrix operations, making for a simple
MATLAB implementation.

3.2. Including Measurement Uncertainties

A main drawback of TFA is that is does not rely on
individual measurement uncertainties, and hence a highly
uncertain measurement is treated equally to a very certain
measurement. To rectify this, one may modify the key
minimization problem that TFA employs to weight certain
measurements more than uncertain measurements. Specifically,
we now minimize the following weighted sum of squared
residuals:

( ( ) ( )) ( )å -
=

=

min w Y i F i , 8
i

i n

i
1

2

where s= -wi i
2. As before, we may recast this problem in

terms of matrices. If we define the diagonal matrix S such that
s= -Sii i

2 where σi is the standard error of the ith brightness
measurement, then we are minimizing the following:

( ) ( )- min Y cL S . 92

Since S is a linear map this is equivalent to the problem

( ) ( )- min YS cLS . 102

This is of the same form as the original TFA problem and
hence the solution is given by

( ) ( )= -c GG GH , 11T T1

where

( )=G LS 12

and

( )=H YS. 13

It should be noted that the involvement of measurement
uncertainties is more computationally costly than the unmodi-
fied version of TFA. With the original algorithm, one may form
a template set for an entire field of stars and and use the same
template for each star filtered. However, if one corrects by
measurement uncertainties the template set must be multiplied
by S for each star filtered, where S is dependent on the
particular star. Weighting by measurement uncertainties is
suggested in the thesis of Pal (2009).
Another variation to consider is to choose the weights to be a

function of template measurement uncertainties in addition to
uncertainties of the light curve being filtered. This is a variation
that we do not consider in our current analysis, but that could
be interesting to investigate in future works. Nonetheless, when
the clustering procedure described in the next section is used,
one ultimately averages over light curves in a cluster to produce
an element of the template set. This should reduce the
measurement standard error associated with the template light
curves approximately on the order of square root of NC

(assuming independent and identical measurement uncer-
tainty), where NC is the number of light curves used in a
particular cluster; hence the measurement uncertainty of the
light curve to be filtered will be of more importance when the
clustering procedure is used to produce templates.

3.3. Optimizing the Template Set

A critical component of TFA is the selection of a template
set, since it implicitly contains all information about systematic
noise. Ideally, one would like to minimize the number of
template stars while maximizing information about systematic
noise. While a large number of template stars yields a large
reduction in dispersion, this also yields a greater tendency to
over-filter intrinsic variables. This is because many free
parameters in the minimization problem allow for many
degrees of freedom to fit a particular light curve and potentially
filter intrinsic variations. We investigate two methods of
optimizing the selection of a template set, both based on
clustering algorithms.

3.3.1. Agglomerative Hierarchical Clustering

Kim et al. (2009) propose an algorithm that attempts to select
a small number of template stars that represent systematic
trends. The algorithm is, in essence, an implementation of
agglomerative hierarchical clustering. The algorithm aims to
partition stars into subsets whose light curves correlate highly
with each other. The logic behind this approach is that each
cluster represents a particular sort of systematic trend. Once
partitioning is complete, one may extract a template star from
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each cluster by performing a weighted average, where
weighting is done by the inverse of variance.

There are three main steps involved in this algorithm. First, a
distance matrix is computed for the light curves. Then, one
computes a binary tree using this distance matrix. Finally, one
uses the binary tree to determine clusters via a merging
algorithm. We detail these steps below.

– STEP 1: Compute the Distance Matrix. First, we compute
the Pearson correlation between all light curves. We store
the information in a distance matrix D where = -d c1ij ij,
where cij is the correlation between light curves i and j.

– STEP 2: Compute the Binary Tree.We then compute a
binary tree using the distance matrix. Specifically, the
leaves of the tree are the individual light curves. We then
combine the closest two nodes under one parent, where the
distance between two nodes a and b is the maximum
distance between any two light curves in the nodes. We
iterate this linking procedure until all light curves have
been merged.

– STEP 3: Determine Clusters via Merging.Using the
binary tree, one can determine clusters in the following
manner. Initially we set clusters to be nodes in the tree with
at least two children, and at each step consider merging the
two closest nodes to form a larger cluster. Call this
potential cluster Cmerge; if Cmerge contains light curves
which are correlated (i.e., Cmerge is a good representation
of a particular systematic trend), then the distribution of
distances between any two light curves in Cmerge should
(approximately) follow a normal distribution. Hence, one
applies an Anderson-Darling normality test to the list of
distances. If the test produces a p-level below .10 (i.e., we
have reason to believe the distances do not come from a
normal distribution) then we stop the merging procedure,
as we have evidence that the light curves are not all
correlated with each other. In this fashion, one may
partition all light curves into subsets that are all correlated
with each other. Once the clusters are formed, one takes a
weighted average of light curves in the cluster to produce a
template trend.

3.3.2. KMEANS Clustering

An alternate approach to clustering is the KMEANS
algorithm. If one assumes that all light curves are elements of
n, where n is the number of brightness measurement for each
light curve, then one may formulate a notion of Euclidean
distance between two light curves. Using this notion of
distance, KMEANS partitions a set of light curves into k
subsets where the elements of each subset are close to each
other. One begins the algorithm by assigning k random points
inn as centers. Next, one assigns each light curve to the center
that it is closest to, and in this process we partition the set into k

subsets. Then, we recalculate k centers by choosing the average
of each cluster as its center. We then iterate this process of
reassigning light curves to clusters and recalculating centers
until no new assignments have been made. A subtlety involved
is the initial choice of centers, and a particularly efficient
method for doing so is given by KMEANS++ (Arthur &
Vassilvitskii 2007). Note that one must ensure light curves are
zero-averaged to ensure that Euclidean distance is a feasible
metric. An additional subtlety in KMEANS is that the k must
be chosen beforehand, in contrast to the hierarchical clustering
approach.

3.4. External Parameter Decorrelation

While TFA assumes that one has no a priori information
regarding systematic noise, it is feasible that certain external
parameters, such as seeing or position, correlate with noise.
Bakos et al. (2007) suggest a method to involve external
parameters that correlate with systematics. In essence, the
formulation is the same as TFA, except coefficients are now
chosen for the parameters via the same minimization problem.

( ( ) ( ) ( )) ( )å å å- -
=

=

=

=

= +

=
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where +Pm 1 through Pl contain the external parameters. Again,
we may recast this formulation into matrix algebra; we simply
add additional rows to the template matrix T, where each row
contains the external parameter values for each time index.

4. Results

We have written a package of MATLAB software that
implements the Trend Filtering Algorithm as well as the
aforementioned extensions.8 What follows are a series of
quantitative assessments of the algorithm, using both the
unmodified version and the various modifications previously
reviewed.

4.1. Simulation Studies

Before presenting the results of both the modified and
unmodified versions of TFA applied to the aforementioned data
sets, we discuss two simulation studies conducted to determine
the efficacy of the methodology discussed in the previous
section. The first simulation study included injected transit
signals and the second included injected pulsating signals.

4.1.1. Injected Transit Study

This simulation study consists of two sets of 432 light curves
with faint transit signals of randomly varying period length,
depth, and duration, added to a single sinusoidal systematic.

8 This is freely available at https://github.com/ggopalan/MATLAB-
Detrending-Software.
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The transit period was drawn uniformly within ±10% of 1, 4,
20, and 400 days, the depth was either .005, .01, or .02 mag,
and the transit duration fraction was either .005, .002, or .01.9

Furthermore, each systematic had a period 1, 4, 20, or 400 days
exactly, and 3 possible amplitudes of .005, .01, or .02 mag. The
first of these sets also includes fixed measurement errors and
the second consists of measurement errors that fluctuate on a
nightly basis, but are fixed throughout a given night for all light
curves; the periods of the transit signal and systematic were
selected to be on similar scales to allow for a particularly
challenging recovery scenario. The uniform measurement
standard deviation is .01 mag, and the nightly varying
measurement standard deviation is uniformly sampled from
the range .005 mag to .015 mag for a given night. Ultimately,
the measurement error is drawn from a zero mean Gaussian
distribution with the associated standard deviation. In total
there were 19200 measurements, with 1 measurement per
minute with 8 hours of observations over 40 nights. This
particular cadence was chosen to be representative of a typical

ground-based transit survey strategy. These key parameters are
summarized in Table 1.
We next considered three template sets to filter these same

sets of light curves; the first was a template set generated by
randomly selecting 25% (108) of the 432 light curves for the
analysis, the second was chosen with agglomerative hierarch-
ical clustering (the PDT function of our MATLAB package),
and the third template set was derived by randomly selecting a
set of the same cardinality as that from the agglomerative
hierarchical approach (which were 18 and 15 light curves for
the uniform and nightly error synthetics). We ran the
unmodified and modified TFA (with measurement uncertain-
ties) using these three template sets, which resulted in six total
filtering runs. To detect whether the resultant light curves had a
transit signal we used the BLS periodogram tool (Kovacs
et al. 2002) to determine if the correct transit period was
detected to a statistically significant extent, where statistical
significance is determined by a p-value �.01. To detect a signal
we used the highest peak if it was statistically significant and
considered a maximum of 10 integer multiple subharmonics for
signal detection.

Table 1
Summary of Key Parameters for Synthetic Light Curve Tests

Parameter Value

Systematic period 1, 4, 20 or 400 days
Systematic amplitude Uniformly drawn from .005, .01, or .02 mag
Transit depth Uniformly drawn from .005, .01, or .02 mag
Transit duration fraction Uniformly drawn from 005, .01, or .02
Transit period Uniformly drawn from ±10% of 1, 4, 20, or 400 days
Sinusoid period Uniformly drawn from ±10% of 1, 4, 20, or 400 days
Sinusoid amplitude Uniformly drawn from .005, .01, or .02 mag
Uniform measurement standard deviation .01 mag
Nightly varying measurement standard deviation Uniformly drawn from .005–.015 mag

Note. This table summarizes the key parameters of the synthetic light curve tests that we conducted.

Table 2
Results of Synthetic Transit Tests

Measurement Errors TFA #Template Used Uncertainty Templates Light Curves Detections
Weighting Selection Methodology

Uniform N NA NA NA 432 46
Nightly N NA NA NA 432 36
Uniform Y 108 N Random 432 56
Nightly Y 108 N Random 432 57
Uniform Y 18 N Random 432 45
Nightly Y 15 N Random 432 45
Uniform Y 18 Y Clustering 432 47
Nightly Y 15 Y Clustering 432 50

Note. This table displays the results of the synthetic transit simulation test that we had conducted, where each row lists the results of each of the two original data sets,
in addition to the six combinations we had tried, discussed in fuller detail in the simulation study description of Section 4.

9 The transit duration fraction is how long the transit lasts as a fraction of the
orbital period.
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Table 3
Results of Synthetic Sinusoid Tests

Measurement Errors TFA #Template Used Uncertainty Templates Light Curves Detections
Weighting Selection Methodology

Uniform N NA NA NA 432 8
Nightly N NA NA NA 432 6
Uniform Y 108 N Random 432 1
Nightly Y 108 N Random 432 0
Uniform Y 30 N Random 432 2
Nightly Y 24 N Random 432 6
Uniform Y 30 Y Clustering 432 3
Nightly Y 24 Y Clustering 432 7

Note. This table displays the results of the synthetic sinusoid simulation test that we had conducted, where each row lists the results of each of the two original data
sets, in addition to the six combinations we had tried, discussed in fuller detail in the simulation study description of Section 4.

Figure 1. PTF Orion pilot and 2MASS dispersion using both the original TFA and modifications. The top panel is the unmodified version of TFA and the bottom
panel is the modified version. Black points indicate light curves before detrending, and red points indicate light curves after detrending.

(A color version of this figure is available in the online journal.)
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The details of the transit detection methodology used are as
follows. We search periods between 0.5 and 40 days, with
periods evenly spaced in frequency. We employ the highest
peak + correct frequency criterion and include up to M/N
integer fraction multiples (e.g., harmonics) of the correct
frequency with ( )ÎM N, 1, 2, 3, 4 . For a peak period P1

and the true period Q, we define the correct frequency score
as ( )( ( ( ) ( ) ) )- * * * * -Max 10 M N Log P Log Q M N10000 11

2
for ÎM N,

( )1, 2, 3, 4 . The 10,000*M*N constant determines the width
of the range of acceptable periods about the true period or its
harmonic, with a penalty for higher harmonics. We also assess
the statistical significance of the highest peak, utilizing the log
normal distribution of periodogram power values (Akeson
et al. 2013). Secondary peaks that were statistically significant
were also investigated but not included, since often only the
highest peak is considered in typical ground-based transit
surveys.

The results of this simulation study are summarized in
Table 2. The results of the synthetics test indicate that the TFA
with the largest number of template trends results in the largest

number of detections. However, in both data sets, the TFA with
the agglomerative hierarchical clustering approach detects
more transits than the TFA without clustering. Overall the
detection rate of transits after applying the TFA with a
(relatively) small template set yields a comparable detection
rate to that of the TFA applied with a (relatively) large number
of templates; it must be noted that the detection rate of transits
is strictly smaller for the modified TFA using clustering than
the unmodified TFA with a randomly selected large set of
templates.

4.1.2. Injected Sinusoid Study

We had conducted a second simulation study with sinusoidal
signals instead of transits, using the Lomb-Scargle periodogram
(Scargle 1982; Zechmeister & Kürster 2009) instead of the
BLS algorithm for transits. As in the previous simulation study,
there was an observation every minute for 8 hours over 40
nights. Each systematic had a period of 1, 4, 20, or 400 days
exactly and three possible amplitudes of .005, .01, or .02 mag.
Each true sinusoidal signal had four possible periods selected
uniformly at random within +/−10 percent of 1, 4, 20, or 400
days and exactly three possible amplitudes of .005, .01, or .02
mag. Table 3 displays the results of this test, where, as before,
432 light curves were generated with a single systematic and
signal, and a signal was considered recovered if the period was
correctly recovered with a p-value �.01. In all cases except the
pre-TFA uniform light curve set, the modified version of TFA
using clustering and uncertainty weighting recovers the most
signals, although our conclusions are limited by the generally
small number of recovered signals.

4.2. Assessing the Unmodified Version
of TFA on Real Data

4.2.1. TFA Reduces Dispersion

By visualizing dispersion versus apparent magnitude for
both the 2MASS and PTF Orion pilot data, we have determined
that TFA reduces the overall dispersion of the light curves.
These graphs are depicted below in Figure 1. Specifically, the
algorithm reduced the dispersion most substantially for the PTF
Orion pilot data.

4.2.2. TFA May Filter Intrinsic Variables

Evidence suggests that TFA may over-filter intrinsic variable
signals if many template light curves are chosen. For example,
consider Figure 2, which presents the original and filtered light
curve for a PTF variable candidate with a template set of 50
light curves that are arbitrarily chosen. The amplitude of the
variability of the raw light curve of this source is too large
(>0.15 mag) to be explained by systematic sources of
photometric variability, from the instrument/telescope, and/
or the Earth’s atmosphere. It is also an outlier in its photometric

Figure 2. Detrended PTF Orion pilot variable candidate using the unmodified
version of TFA compared to the modified version, where the original light
curve is in blue and the light curve after filtering is in red. Note that the
unmodified algorithm appears to filter intrinsic variability of the light curve,
which is not desired. Note that TFA is used in the non-reconstructive mode.
(A color version of this figure is available in the online journal.)
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Figure 3. Histograms illustrating the distribution of absolute and relative dispersion improvements using the modified version of TFA. The left side is in units of
magnitudes, and the right side shows fractional improvement in dispersion as measured in magnitudes e.g., s s

s
-old new

old
.
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rms for its apparent magnitude, which also allows us to flag the
variations we see as being intrinsic to the source rather than
systematic. In this example it is clear that any intrinsic
variability has been flattened by the filtering algorithm. This
light curve also demonstrates that TFA may be increasing its
“instantaneous dispersion.” In other words, while the overall
standard deviation may be reduced, the standard deviation for
points taken within a small time frame has increased, which is
not a desired result.

4.3. Assessing the Modified Version of TFA on Real Data

4.3.1. Modified TFA Reduces Dispersion

It is evident that the modifications made to TFA do not
mitigate its ability to reduce the dispersion of light curves; the
dispersion plots presented in Figure 1 are qualitatively similar
to dispersion plots of the unmodified version of TFA. In
addition to these dispersion plots, we have generated
histograms that illustrate the distribution of dispersion reduc-
tions. In particular, Figure 3 presents histograms of dispersion
improvements. These histograms illustrate both absolute and
relative dispersion improvements. Absolute improvement is
defined as the difference between the dispersion of light curves
post-TFA and pre-TFA. Relative dispersion improvement is
defined as the absolute improvement divided by the pre-TFA
dispersion. From these histograms, we can derive quantitative
measure of the modified TFA’s performance. On average,
dispersion was reduced by 30% for the PTF data set and 1.5%
for the 2MASS data set. The lack of significant improvement to
most 2MASS light curves indicates that the data reduction for
2MASS and calibration is thorough in removing most
systematics. However, significant improvements can be obtained
in special cases, such as extended or confused sources.

4.3.2. Modified TFA May Prevent the Over-filtering
of Intrinsic Variables

In some cases, our modified TFA no longer over-filters
intrinsic variables. For example, consider the detrended PTF
Orion pilot light curve in Figure 2, which was previously over-
filtered by the unmodified version of TFA. The intrinsically
variable source is essentially unchanged. In addition, the
problem of increased instantaneous dispersion is also alle-
viated, although it still persists to a slight extent. This success
can most likely be attributed to the prudent selection of a few
template trends. The utilization of many template curves allows
for many free parameters in the key minimization problem that
TFA employs; in turn, this allows intrinsic variations to be
filtered by the template curves.

5. Conclusion

After implementing TFA and applying it to the 2MASS
calibration data and PTF Orion pilot data we conclude that the
algorithm substantially reduces the dispersion of light curves,
most notably for the PTF Orion pilot data set. Based on real
examples from the PTF Orion pilot data and the synthetic
pulsating variables test, it is also apparent that TFA may over-
filter intrinsic variables and increase the instantaneous disper-
sion of light curves when a template set is not carefully chosen.
By modifying TFA to include measurement uncertainties,
include ancillary data correlated with noise, and select a
template set using clustering algorithms, we believe that these
effects can be mitigated. Additionally, we believe our
implementation is equipped to handle night-to-night and
airmass-dependent variable photometric precision for the fixed
integration time ground-based surveys due to the involvement
of measurement uncertainties. Finally, we note that the
MATLAB package and documentation are freely available at
https://github.com/ggopalan/MATLAB-Detrending-
Software.

G.G. would like to acknowledge the gracious support of the
Caltech Summer Undergraduate Research Fellowship program
for supporting this work during the summer of 2009.
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