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Abstract

Turbulent magnetic fields permeate our universe, impacting a wide range of astronomical phenomena across all
cosmic scales. A clear example is the magnetic field that threads the interstellar medium (ISM), which impacts the
motion of cosmic rays through that medium. Understanding the structure of magnetic turbulence within the ISM
and how it relates to the physical quantities that characterize it can thus inform our analysis of particle transport
within these regions. Toward that end, we probe the structure of magentic turbulence through the use of Lyapunov
exponents for a suite of isotropic and nonisotropic Alfvénic turbulence profiles. Our results provide a means of
calculating a “turbulence lengthscale” that can then be connected to how cosmic rays propagate through
magentically turbulent environments, and we perform such an analysis for molecular cloud environments.
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1. Introduction

The propagation of high-energy cosmic rays through the
interstellar medium (ISM) constitutes a fundamental process in
astronomy and astrophysics. While our understanding of this
subject has advanced significantly since the pioneering works
of Jokipii (1966) and Kulsrud & Pearce (1969), the exact nature
of particle transport through the turbulent magnetic fields that
thread the ISM has yet to be determined.

A standard approach to this problem entails obtaining
solutions to the diffusion equation. Although doing so
generally requires numerical techniques, analytic solutions
have been obtained for ideal scenarios (e.g., Atoyan et al. 1995;
Aharonian & Atoyan 1996). Regardless, the complexities of
the particle-field interactions are captured through an energy
dependent diffusion coefficient (or coefficients for a non-
isotropic medium) that are often informed by theoretical
analyses. More recent theoretical treatments of cosmic-ray
diffusion have benefitted from advances in our understanding
of magnetic turbulence. While it is generally understood that
turbulence is driven from a cascade of longer wavelengths to
shorter wavelengths as a result of wave-wave interactions,
obtaining a complete theory of MHD turbulence in the ISM has
proven challenging. Complicating the issue, magnetic fluctua-
tions decorrelate due to nonlinear interactions before they can
propagate over distances of multiple wavelengths (Goldreich &
Sridhar 1995)—an effect that leads to resonance broadening
and as such, influences how thermal particles interact with
turbulence (Lynn et al. 2012, 2013). Nevertheless, both
theoretical investigations (e.g., Goldreich & Sridhar 1995;
Lazarian & Vishniac 1999) and numerical simulations (e.g.,

Cho & Vishniac 2000; Cho & Lazarian 2003) have provided
scaling laws that can then inform cosmic-ray diffusion theory
(Yan & Lazarian 2002, 2004, 2008; Lazarian & Yan 2014).
Alternatively, it is now computationally viable to perform

detailed numerical simulations of the diffusion process.
Specifically, one can numerically integrate the equations of
motion for a large ensemble of particles moving through a
specified turbulent magnetic field in order to build up the
particle distribution function at various times (e.g., Casse
et al. 2002; O’Sullivan et al. 2009; Fatuzzo et al. 2010; Fatuzzo
& Melia 2012). As with most treatments of cosmic-ray
diffusion, the central issue to resolve with this approach is
how to prescribe the magnetic field. Pioneering such efforts,
Giacalone & Jokipii (1994) developed a formalism for
generating a turbulent magnetic field dB as the superposition
of a large number N of randomly polarized transverse static
waves with wavelengths λn=2π/kn, where the corresponding
magnitudes of the wavevectors are logarithmically spaced
between k1=2π/λmax and kN=2π/λmin. Adopting a static
turbulent field removes the necessity of specifying a dispersion
relation between the wavevectors kn and their corresponding
angular frequencies ωn. This approach appears suitable for
considering highly nonlinear turbulence (δ B? B0), and can be
extended to an environment without a background field B0. Of
course, turbulent magnetic fields in cosmic environments are
not static. Nevertheless, a static formalism in spatial diffusion
calculations of relativistic particles seems justified for environ-
ments in which the Alfvén speed (vA) is much smaller than the
speed of light. That is, since relativistic particles have speeds
that are much greater than the Alfvén speeds expected

Publications of the Astronomical Society of the Pacific, 128:104301 (10pp), 2016 October doi:10.1088/1538-3873/128/968/104301
© 2016. The Astronomical Society of the Pacific. All rights reserved. Printed in the U.S.A.

1

http://dx.doi.org/10.1088/1538-3873/128/968/104301
http://crossmark.crossref.org/dialog/?doi=10.1088/1538-3873/128/968/104301&domain=pdf&date_stamp=2016-09-05
http://crossmark.crossref.org/dialog/?doi=10.1088/1538-3873/128/968/104301&domain=pdf&date_stamp=2016-09-05


throughout the ISM, their interaction with the turbulent fields
should not be sensitive to dynamical processes that occur on
MHD timescales.

In contrast, calculating the energy diffusion of particles
through turbulent fields resulting from stochastic acceleration
in the presence of electric field fluctuations does require a self-
consistent way of incorporating Faraday’s law into the
formalism. Toward that end, O’Sullivan et al. (2009) extended
the work of Giacolone & Jokipii to include the presence of
electric fields in a dynamic magenetic field. In so doing, these
authors replaced the waveforms of Giacolone & Jokipii with
Alfénic waves, and used linear MHD theory to obtain
dispersion relations for each wave. It should be noted that
both the Giacolone & Jokipii and the O’Sullivan et al.
treatements of the magnetic field produce the same results for
spatial diffusion in the limit that vA= c (Fatuzzo &
Melia 2012).

The aforementioned formalisms for prescribing magnetic
turbulence are isotropic in that the directions of the
wavevectors kn are randomly selected in a spherically
symmetric way. However, theorertical and numerical investi-
gations in the past two decades indicate that the cascade from
strong MHD turbulence in a uniform medium seemingly
produces eddies on small spatial scales that are elongated in the
direction of the underlying magnetic field, so that the
components of the wave vector along (k ) and across (k⊥) the
underlying field direction are related by the expression

µ ^k k2 3 (Goldreich & Sridhar 1995; Cho & Vishniac
2000). Further, the cascade produces an energy spectrum that
scales as ^

-k 5 3 (Cho & Lazarian 2003). Motivated by this
result, Fatuzzo & Melia (2014) modified the formalism of their
previous works to develop a model for an anisotropic turbulent
field in order to determine how energy diffusion would be
affected, but did not focus on spatial diffusion. Taking a
different approach, Xu & Yan (2013) obtained scattering and
spatial diffusion coefficients by tracing particle trajectories
through isothermal compressible MHD turbulence generated at
5123 resolution via the numerical simulations presented in Cho
& Lazarian (2003).

Clearly, there are now several different prescriptions for how
to model the turbulent fields that appear in the recent literature.
The goal of this paper is to compare several isotropic and
anisotropic analytic turbulent magnetic structures through their
Lyapunov exponents. The motivations for doing so are three-
fold: (1) to determine the number of terms needed to suitably
represent a turbulent field using a discrete methodology; (2) to
gain insight as to how the structure of turbulent magnetic fields
depends on the physical parameters that characterize them; and
(3) to connect measures obtained from our analysis to the
diffusion of particles through turbulent fields with the aim of
informing numerical investigations of diffusion processes.

The paper is organized as follows. We present a standard
analytic model for turbulent magnetic fields in Section 2,
considering both isotropic and anisotropic cases. We char-
acterize the turbulent structure of the magnetic fields for several
turbulent profiles in Section 3, and connect our results to the
diffusion of particles through those fields in Section 4. We
apply our results to the special case of molecular cloud
environments in Section 5, and summarize our results in
Section 6.

2. An Analytic Model for Turbulent Magnetic Fields

To keep the analysis as straight-forward as possible, we treat
the ISM as a nonviscous, perfectly conducting fluid threaded
by a uniform, static magnetic field =B B z0 0 ˆ. Although
turbulence in the ISM is not well-understood, we make use
of the accepted notion that energy is transferred from longer
wavelengths to shorter wavelengths in a cascading fashion
through wave-to-wave interactions, and model the net turbulent
field as the superposition of N randomly polarized transverse
waves. We consider the field structure at some instant in time,
removing the necessity of specifying a dispersion relation
between the wavevectors kn and their corresponding angular
frequencies ωn. The turbulent field is therefore given by the
static expression

åd = b

=

+B A e , 1k r

n

N

n
i

1

n n ( )( · )

where the wavevectors have magnitudes that are logarithmi-
cally spaced between p l=k 21 max and kN=2π/λmin (e.g.,
Giacalone & Jokipii 1994; Casse et al. 2002; Fatuzzo et al.
2010). Suitable values for N are determined in Section 3 by
examining the Lyapunov exponents of the turbulent fields.
For our calculations, we focus primarily on large amplitude

turbulence, which we quantify through the ratio of the energy
density of the magnetic field to that of the background static
field via the parameter
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Specifically, we consider primarily scenarios for which h = 1,
but also present limited results for small amplitude turbulence
(η= 1). We also consider both the isotropic case and the
perhaps more realistic anisotropic scenario in the large
amplitude turbulence limit for Kolmogorov turbulence (as
detailed below).
For the isotropic case, the direction of each propagation

vector kn is set through a random choice of coordinate angles
θn and fn, and the phase of each wave is set through a random
choice of βn. The appropriate choice of Γ in the scaling
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sets the desired spectrum of magnetic turbulence (e.g., Γ=1
for Bohm, 3/2 for Kraichnan and 5/3 for Kolmogorov
turbulence). Note that the value of Δkn/kn is the same for all
n due to our logarithmic binning scheme. The strength of the
turbulent magnetic field, η, sets the value of A1, such that
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For the anisotropic case, the cascade from longer to shorter
wavelenghts is expected to produce eddies on small spatial
scales that are elongated in the direction of the underlying static
magnetic field (Goldreich & Sridhar 1995; Cho & Lazarian
2003). As such, the direction of each perpendicular wavevector
kn⊥ is set through a random choice of azimuthal angle fn, and
the phase of each term is again set through a random choice of
βn. The corresponding parallel component of the wavevector is
given by

=  ^ ^k k k
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Guided by Goldreich & Sridhar (1995), we only consider a
Kolmogorov-like profile for the nonisotropic case, so that
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but we note that the spectrum of fluctuations in the direction
parallel to the local magnetic field is not Kolmogorov but
corresponds to k−2.

Alfvén waves are transverse waves, thus their fluid velocity v
satisfies the condition =k v 0· . In addition, the fluid velocity
is perpendicular to the underlying static magnetic field. The
fluid velocity associated with the nth term in Equation (1) is
then given by

d = 
´
´
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where the sign is chosen randomly for each term in the sum.
Each wave thus has a magnetic field given by the linear form of
Ampère’s Law,
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matching the fields given by O’Sullivan et al. (2009).
We note that the turbulent magnetic fields in our formalism

are functionally described through a particular choice of the
five parameters B0, λmax, λmin, η, and Γ. However, since all
spatial quantities are easily scaled to λmax, and the field strength
is easily scaled to B0, one need only define the following three

parameters in order to specify a turbulent field profile:
d≡ λmax/λmin, η, and Γ. A realization of a given profile is
then generated through the particular choice of the random
variables (e.g., θn, βn). Of course, one must also address the
issue of how many terms per decade in k space must be incuded
in the sum to suitably represent a continuous structure. We will
focus on this issue in the next section.

3. The Structure of Magnetic Turbulence

In order to investigate the structure of the turbulent magnetic
fields, we borrow an idea from chaos theory and compute the
Lyapunov spectrum that characterizes the lengthscale on which
two initially nearby field lines diverge from each other.
Applying this idea to our problem, we imagine an infinitesimal
sphere in space containing “initial conditions” that follow their
respective field lines over some distance s. As a result, this
sphere will deform, evolving into an ellipsoid with principal
axes that rank from most rapidly to least rapidly growing.
Since the structure exists in three spatial dimensions, there

will be three principle axes (but note that they are not “fixed”
along spatial directions), and hence, three Lyapunov exponents.
In addition, the system is conservative, so the volume element
of the phase space will be the same along a trajectory. In turn,
the sum of the Lyapunov exponents must be zero. A turbulent
field structure will therefore be characertized by a Lyapunov
spectrum of the form (λL, 0, λ−L), where λL>0 characterizes
the average rate of divergence of nearby field lines through an
expression of the form

d d= lr rs e0 . 10sL∣ ( )∣ ∣ ( )∣ ( )

In this equation, dr 0( ) represents an initial displacement vector
between two points on nearby field lines, and dr s( ) represents
the ensuing displacement vector as the two points each advance
along their respective field lines a distance s (as illustated in
Figure 1). As elaborated on below, the value of 1/λL represents
the distance along a fieldline that must be traversed before
information regarding an initially neighboring fieldline is lost.
But it is important to note that although Lypunov exponents
measure how two nearby points move apart as a function of
distance as they travel along their respective field line, any
divergence that occurs on small scales will not persist for larger
scales (this is true even for the Lorentz attractor). This point
will be expanded on further at the end of this section.
We begin by exploring the structure of an isotropic turbulent

field defined through the baseline parameters Γ=5/3, η=1,
and d=104 (Profile 1), adopting a value of º =N N dlogd 10( )
20 terms per decade in k space. The Lyapunov spectrum is
calculated using the formalism described in Wolf et al. (1985).
Figure 1 shows how two fieldlines with our baseline profile
diverge from each other from their initial nearby locations.
Figure 2 then shows the Lyapunov spectrum calculated as a
function of s for one of these field lines. Note that the Lyapunov

3
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exponents are calculated as a running sum, and therefore need to
settle to their asymptotic values. Our results indicate that an
asymptotic value is reached for a distance of s 30λmax, for
which the turbulent structure of the field has been sufficiently
sampled (though for certain profiles, the settling distance can be
considerably greater).

For a discrete treatment of a turbulent field, the value oflL is
sensitive to the specific realization of a field profile (that is, on
the specific values of the random variables used to set the
directions of each wavevector kn). As such, the turbulent
structure of a given field profile is characterized by a

distribution of λL values generated by sampling over many
realizations of that profile. Throughout this work, we sample
200 realizations of each turbulent field profile in order to build
up meaningful distributions. The results for our baseline profile
is shown in Figure 3. As can be seen, the distribution is
relatively well-fit by a Gaussian curve, and we therefore use the
mean lá ñL and standard deviation σλ of the distributions
obtained to characterize each profile.
From this baseline case, we explore how the magnetic

structure depends on each of the three turbulent field
parameters (Γ, η, d) through a numerical invesigation of 10

Figure 1. Two field lines, one that crosses the origin (which defines its value of s = 0), and the other that is separated from the first by a displacement
d l= -r x0 10 6

max( ) ˆ at its value of s=0. The two arrows represent the displacement vectors between points on these field lines at two different values of s. The
divergence of these displacement vectors is characterized by the positive Lyapunov exponent.

4
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isotropic profiles and 4 anisotopic profiles, as defined in
Table 1 (with i and a subscripts representing isotropic and
anisotropic cases, respectively). Lyapunov exponents are
calculated for 200 realizations of each profile, and the means
and standard deviations of each resulting distribution are then
tabulated. To justify the use of Nd=20 terms per decade
adopted throughout our analysis as a suitable choice for

modeling a continuous magnetic structure using a discrete sum
of terms, we also perform our analysis for Profiles 1–3 using
the values of Nd=2, 5, 10, 15 and 25. The corresponding
results, presented in Figure 4, indicate that lá ñL does not change
appreciably once Nd 5.
In addition, since the structure of a continuous turbulent field

should yield a unique value of λL, the ratio s lá ñl L of the
distribution obtained using a discrete treatment reflects, to some
extent, how well the discrete formalism mimics a continuous
turbulent profile. Indeed, the results shown in Figure 4 show
that s lá ñl L decreases as Nd increases, and is 0.15 once
Nd 20 for large amplitude turbulence. This result indicates
that a discrete formalism with 20 terms per decade is expected

Figure 2. The running average of the Lyapunov exponents calculated for one
realization of a turbulent magnetic field characterized by Γ=5/3, η=1, and
d=104 (our baseline profile). The value of lL (in units of 1/λmax) settles
down to its asymptotic value once s  30λmax.

Figure 3. The distribution of positive Lyapunov values (in units of 1/λmax) for
200 realizations of our baseline turbulent field profile (Γ=5/3, η=1,
d=104). The solid curve shows a Guassian fit with the same mean and
standard deviation as the distribution shown.

Table 1
Summary of Experiments

Pr. Γ η d lLi s li Li lLa s la La

1 5/3 1 104 46 0.09 22 0.06
2 3/2 1 104 115 0.11 K K
3 1 1 104 1160 0.13 K K
4 5/3 0.3 104 24 0.14 K K
5 5/3 10−1 104 10 0.20 K K
6 5/3 10−2 104 1.1 0.47 K K
7 5/3 10−3 104 0.095 1.0 K K
8 5/3 1 103 19.3 0.10 12 0.06
9 5/3 1 102 7.3 0.10 6.1 0.07
10 5/3 1 10 2.6 0.12 2.5 0.09

Figure 4. Mean values of the distributions of positive Lyapunov exponents
calculated for profiles 1–3, but with different values of Nd (terms per decade).
Open circles—anisotropic turbulence with Γ=5/3, η=1, d=104; solid
circles—isotropic turbulence with Γ=5/3, η=1, d=104; open squares—
isotropic turbulence with Γ=3/2, η=1, d=104; solid sqaures—isotropic
turbulence with Γ=1, η=1, d=104. Error bars represent 1-σλ values.
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to yield a magnetic field structure accurate to 15% of an ideal
“continuous” structure for 67% of profile realizations, which in
turn characterizes how well our choice of Nd describes a
continuous turbulent magnetic field.

We now consider how the structure of an isotropic turbulent
field depends on the type of tubulence profile, as defined by the
index Γ. As can be seen from the results in Table 1, there is a
strong dependence between Γ and lá ñL . This result is not
surprising given that a smaller value of Γ corresponds to
magnetic intensity being spread out more equitably across the
full range of wavelengths, thus increasing the relative
contribution of shorter wavelengths. Recalling that l-L

1

represents the lengthscale over which neighboring fieldlines
diverge, we define the turbulence lengthscale for a given profile
as lº á ñs 1T L , and find sT≈0.02λmax for isotropic Kolmo-
gorov (Γ=5/3) turbulence, sT≈0.05λmax for anisotropic
Kolmogorov turbulence, sT≈0.009λmax for (isotropic)
Kraichnan (Γ=3/2) turbulence, and sT≈0.0009λmax for
(isotropic) Bohm (Γ=1) turbulence.

We next illsutrate in Figure 5 how the field structure depends
on the strength of the turbulent field for Kolmogorov
turbulence (Profiles 1 and 4–7 in Table 1). There is a strong
dependence between lá ñL and the turbulence strength parameter
η, and the curvature exhibited by the data points indicate that
the turbulence lengthscale increases more dramatically as η

decreases. Indeed, the turbulence lengthscale increases from
l l l»  0.1 100max max max as η decreases from
 - - -10 10 101 2 3 for the profiles shown in Figure 5. A

good fit to the data is obtained by a split powerlaw of the form

l
l

h
h

á ñ =
´

+
2.2 10

1 100
, 11L

5

max

2.4

1.85( )
( )

as shown by the solid curve in Figure 5.
Finally, we illustrate in Figure 6 how the dynamic range over

which turbulence acts affects the Lyapunov exponents,
focusing on large amplitude Kolmogorov turbulence as defined
through profiles 1 and 8–10. Our results indicated that there is a
clear dependence between lá ñL and d for both isotropic and
anisotropic turbulence, with the former well represented by the
relation l lá ñ = d1.2L max

0.40, and the latter well represented
by the relation l lá ñ = d1.7L max

0.28, though these fits do not
include the d=10 data points (including these data points
noticably affects the quality of the fits). Our results show that
isotropic profiles are characterized by larger Lyapunov
coefficients and have a greater sensitivity to d than their
anisotropic counterparts. This result is not surprising given that
anisotropic turbulence prescribes the relation between k⊥ and
k , thus effectively reducing turbulence to a two-dimensional
structure.
As noted above, Lypunov exponents measure how two

nearby points move apart as a function of distance as they
travel along their respective field line. But a positive Lyapunov
exponent does not mean that a bundle of initially nearby field
lines will diverge exponentially over large scales. As a way of
illustrating this point, we first quantify the magnetic field
wandering for the isotropic case of profile 1. Specifically, we
follow 1000 fieldlines that cross the z axis at a randomly chosen
point on a ring of radius r0=10−3 λmax centered on the origin

Figure 5. Mean values of the distributions of positive Lyapunov exponents
calculated for profile 1(isotropic case) and profiles 4–7, which illustrate the
dependence of lá ñL on the turbulence strength as defined by the parameter η.
Error bars represent 1-σλ values obtained from the distributions. The solid
curve shows a fit to the data given by a split powerlaw, as given by the
expression in Equation (11).

Figure 6. Mean values of the distributions of positive Lyapunov exponents
calculated for both isotropic and anisotropic cases of profiles 1 and 8–10. The
dashed lines represent fits to the data, but exclude the d=10 data points. Error
bars represent 1-sl values obtained from the distributions.
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(and on the x–y plane). We then calculate the “perpendicular”

distance ( = +r x y2 2 ) that each field line is from the z-axis

at several different values of z, and calculate á ñr2 for each
ensuing distribution (recall that the unperturbed field

=B B z0 0 ˆ). Our results are presented in Figure 7, and are
qualitatively similar to those presented in Beresnyak (2013;
Figure 1). Note, however, that the power-law growth exhibited
in our analysis at small scales goes as á ñ µr z2 2 rather than
á ñ µr z2 3 for the anisotropic field structures considered by
Beresnyak (see also Lazarian & Vishniac 1999; Lazarian &
Yan 2014).

To try and reconcile this global field behavior with the use of
Lyapunov exponents as measures for the turbulent magnetic
fields presented in our work, we next consider how two nearby
points move with respect to each other as they advance along
their respective field lines a distance s. Specifically, we
calculate the magnitude of the displacement vector between
the points as a function of field-length s for three different
realizations of the isotropic case of profile 1. The initial
separation in each case was taken to be d l= -r 0 10 4

max∣ ( )∣ .
Our results are shown in Figure 8. The solid line represents the
expected separation as given by Equation (10), where
λL=46/λmax was used based on the results of our experi-
ments (see Table 1). Although the curves are quite jagged (as
expected), they also follows the expected trendline as found
through our analysis. Our results thus indicate that Lyapunov

exponents do provide a useful measure of the field structure on
small scales.

4. Particle Diffusion

The output measures used to characterize the magnetic
structures in Section 3 should somehow connect to the transport
of charged particles through said structures, and understanding
that connection could be helpful in guiding diffusion calculations.
Toward that end, we note that charged particle diffusion is a
resonance phenomena wherein particles interact with the
turbulent field on the same lengthscale as their radius of gyration,
denoted here as Rg. As such, the diffusion of a particle through a
turbulent magnetic field is only sensitive to the part of the
turbulence spectrum with wavelength Rgλλmax (Fatuzzo
et al. 2010). This result suggests that the field structure for a
profile characterized by a given value of d is “probed” by
particles with a radius of gyration Rg≈λmax/d.
To test the validity of this claim, we perform a suite of

experiments whereby the equations that govern the motion of
relativistic charged particles through a turbulent magnetic field
are numerically integrated for 200 different randomly injected
particles, each sampling their own realization of a given field
profile (see Fatuzzo et al. 2010 for a complete discussion of this
process). The values of Γ and η for the turbulent field through
which the particles diffuse are set according to the profile being
probed, which then leaves for the particle energy to be set so
that the particle radius of gyration through the underlying field
B0 is given by Rg=λmax/d (where d is then the third
parameter that defines a profile). As noted above, these

Figure 7. Magnetic field wandering for a bundle of 1000 field lines that cross
the x–y plane randomly on a ring of radius r0=10−3 λmax, where

= +r x y2 2 for each field line represents the “perpendicular” distance
between that field line and the z-axis along which the unperturbed field B0 is
directed. For reference, the dotted–dashed line scales as á ñ µr z2 2, and the
dashed line scales as á ñ µr z2 .

Figure 8.Magnitude of the displacement vector between initially nearby points
that move along field lines a distance s for three different realizations of the
isotropic case of profile 1. The solid line represents the expected separation as
given by Equation (10), where λL=46/λmax was used based on the results of
our experiments (see Table 1).
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particles thus experience the field turbulence over the range of
wavelengths that spans between λmax and λmax/d. The
distributions of the displacement along the field direction is
obtained at several different times for each profile, and the root
mean square (rms) values (Δzrms) are then determined at
each time.

Results are presented in Figures 9–11. The solid line in each
figure has a slope of 1, and denotes the expected result for
particles streaming along a uniform magnetic field in the
absence of turbulence. The dashed line in each figure has a
slope of 1/2, and denotes the expected result for particles
diffusing through a turbulent medium. The turnover exhibited
by the data away from the solid line represents a transition to
diffusion as the particles start to fully sample the tubulent
structure of the field, for which D µz trms . The dotted
horizontal lines represent the values of the turbulence
lengthscale sT for each corresponding profiles (as noted in the
figures).

We note that there is a good correlation between the
turbulence lengthscale and distance that the ensemble of
particles must traverse before transitioning from a streaming-
like motion to a diffusion-like motion, though the turbulence
lengthscales are somewhat smaller (by about a factor of 2) than
the Δzrms values at which the transition to diffusion occurs.
This result indicates that relativistic particles with a radius of
gyration Rg random walk through a turbulent field with a step-
size that is approximately equal to the turbulence legthscale sT
of the underlying magnetic field (as defined by Γ and η in our

case) for which waves span over the range λmin≈Rg to λmax.
Such information may prove useful to informing investigations
that require a numerical approach to diffusion problems or seek
to model diffusion using a simple random-walk approach.

Figure 9. Root mean square values of the displacement Δz along the
underlying field for an ensemble of particles injected into a turbulent (isotropic)
magnetic field as defined by profiles 1–3 are plotted at the different times for
which the distributions were calculated (with time given in terms of c/λmax).
The solid line has slope 1 and the dashed line has slope 1/2. The dotted
horizontal lines represent the values of sT for profiles with the denoted value
of Γ.

Figure 10. Root mean square values of the displacement Δz along the
underlying field for an ensemble of particles injected into a turbulent (isotropic)
magnetic field as defined by profiles 1 and 8–10 are plotted at the different
times for which the distributions were calculated (with time given in terms of
c/λmax). The solid line has slope 1 and the dashed line has slope 1/2. The
dotted horizontal lines represent the values of sT for profiles with the denoted
value of d.

Figure 11. Root mean square values of the displacement Δz along the
underlying field for an ensemble of particles injected into a turbulent magnetic
field for both isotropic and anisotropic cases of profile 9 are poltted at the
different times for which the distributions were calculated (with time given in
terms of c/λmax). The solid line has slope 1 and the dashed line has slope 1/2.
The dotted horizontal lines represent the values of sT for each case.
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5. Application to Molecular Clouds

Spanning tens of parsecs, giant molecular clouds (GMCs)
contain ∼105Me of molecular gas distributed in a highly
nonuniform, hierarchical structure characterized in terms of
clumps (R∼1 pc, n∼103 cm−3) and dense cores (R∼0.1 pc,
n∼104–105 cm−3) surrounded by an interclump gas of density
n∼5–25 cm−3.

While understanding the exact nature of the magnetic fields
within GMCs remains a work in progress, significant advances
have been made on both theoretical and observational fronts.
With regard to global properties, an analysis of magnetic field
strengths measured in molecular clouds yields a relation
between the magnetic field strength B and particle number
density n of the form

⎜ ⎟⎛
⎝

⎞
⎠m~

-
B

n
10 G

10 cm
, 12

2 3

0.47

( )

athough there is a significant amount of scatter in the data used
to produce this fit (Crutcher 1999; but see also Basu 2000).
This result is consistent with the idea that nonthermal
linewidths, measured to be ∼1 km s−1 throughout the cloud
environment (e.g., Lada et al. 1991), arise from MHD
fluctuations. It is therefore generally believed that the magentic
fields in GMCs are quite turbulent.

Advances in our understanding of turbulence within GMCs
have benefitted greatly from numerical simulations (McKee &
Ostriker 2007 and references therein) as well as new techniques
for analyzing observations of Doppler broadened emission and
absorption lines (Lazarian 2009). For example, a Velocity-
Channel-Analysis applied to the full FCRAO Perseus map found
a near Kolmogorov (β=5/3) power-law turbulent energy
spectrum E(k) ∝ k−β with an exponent β=1.81±0.10
(Padoan et al. 2006). More recently, a Velocity Coordinate
Spectrum technique was applied to NGC 1333, also obtaining a
power-law turbulent energy spectrum with a similar index
β=1.85±0.04 in the range 0.06 pc<l<1.2 pc (Padoan
et al. 2009). The absence of a turnover in the spectrum above the
outflow energy injection lengthscale (≈0.3 pc) seems to favor
the scenario in which turbulence cascades from large-scales over
one in which turbulence is internally driven by stellar outflows.

Such observational studies will be vital for our understanding
of the sinks and sources of astrophysical turbulence, which in
turn will aid in our understanding of MHD processes in such
environments. For example, the smallest lengthscale over which
magnetic fluctuations occur in GMC’s remains poorly con-
strained. However, Alfvén waves can only couple to the neutral
gas if the ion–neutral collision time t s» á ñ -v nni in i

1( ) is shorter
than the MHD time (Mouschovias 1976; Shu 1983, 1992),
where sá ñ » ´ -v 1.7 10in

9 cm−3 s−1 is the average collision
rate between ions and neutrals (Mouschovias 1991), and ni is the
number density of ions. As a result, magnetic disturbances with
wavelengths shorter than λcrit≡πvατni diffuse before collisions

between the neutrals and ions have had time to transmit to the
neutrals the magnetic force associated with the disturbance
(Mouschovias 1991; Balsara 1996). Since Alfvén waves become
completely non-propagating and are quickly damped in this
regime, we infer that λmin=λcrit. We adopt the scaling

⎜ ⎟⎛
⎝

⎞
⎠» ´ - -

-
n

n
1.0 10 cm

10 cm
, 13i

4 3
2 3

1 2

( )

that follows if the ion density is set by the standard balance
between recombination and cosmic-ray ionization at a rate
z = -10CR

17 s−1 (Elmegreen 1979), but note thta this value can
vary significantly (e.g., Fatuzzo et al. 2006). Assuming further
a uniform Alfvén speed of vα=1 km s−1 throughout the GMC
environment, the minimum turbulence wavelengths are found
to be λmin≈1–3 pc for the interclump medium, λmin≈0.2 pc
for clumps, and λmin≈0.02–0.06 pc for cores.
It is reasonable to assume that the longest magnetic fluctuations

correspond to the lengthscale over which they are generated. In
the ISM, turbulence is generated by supernova remnants and
stellar-wind collisions, so one might expect λmax to be on the
order of several parsecs (e.g., Coker & Melia 1997; Melia &
Coker 1999). In this case, the range over which turbulence acts
would vary from d10 in the interclump medium to d∼104 in
dense cores. For the interclump medium, large amplitude (η=1)
Kolmogorov turbulence would have a turbulence lengthscale
sT∼0.4λmax for both isotropic and anisotropic cases. At the other
extreme, the corresponding turbulence lengthscale in dense cores
would be ∼0.02λmax∼0.1 pc. Given that the turbulence
lengthscale in dense cores would then be comparable to the core
radius, it’s possible that turbulence becomes decoupled from
physical processes that act within dense cores. This result may
offer a possible explanation as to why oberved linewidths of dense
cores are thermal (Myers & Fuller 1992).
Alternatively, it seems reasonable to assume that λmax within

a given structure (GMC, clump or core) cannot exceed the
lengthscales that charaterize that structure, in which case one
then finds that the dynamic range of turbulence throughout
GMCs is d∼10. In turn, the turbulence lengthscale for large
amplitude Kolmogorov turbulence would be sT∼0.4λmax.
Regardless of which of the two scenarios for setting λmax holds
for GMC environments, it appears that the turbulence
lengthscale sT is never much smaller than the size of the
region in which that turbulence acts.

6. Conclusion

We have investigated the structure of turbulent magnetic
fields through their Lyapunov coefficients. The turbulent
magnetic field dB is calclauted by summing randomly oriented
Alfvénic waves that logarithmically span wavevector space
from kmin=2π/λmax to kmax=2π/λmin, as developed by
Giacalone & Jokipii (1994). A given profile of magnetic
turbulence is specified through the three paramters Γ (power-
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index), d≡λmax/λmin, and h dº á ñB B2
0
2, where B0 repre-

sents the strength of an assumed uniform and static underlying
magnetic field.

Ten magentic profiles are considered, as defined in Table 1.
For profiles 1–3, Lyapunov exponents are calculated using
several values of magnetic terms per decade as a means of
establishing how many such terms are needed to adequately
describe a continuous turbulent field via a discrete formalism. For
profiles 1 and 8–10, both isotropic and anistotropic turbulence are
considered. In each case, Lyapunov exponents are calculated for
200 realizations of each profile in order to build up meaningful
distributions, and the mean lá ñL and standard deviation σλ of
each distribution is then used as the output measures that
characterize the correspoding magnetic turbulence profile.

Our results indciated for large amplitude turbulence, 20
waves per decade provides a good approximation to the
physical continuous turbulence magnetic field that is being
modeled. Our results also show that there is a strong
dependence between lá ñL and each of the three profile
parameters. Specifically, Lyapunov coefficients are larger for:
(1) magnetic profiles whose wavelengths span a greater
dynamic range as defined by d; (2) magnetic profiles for which
magnetic intensity is spread out more equitably across the full
range of wavelengths as specified by Γ, and (3) magnetic
profiles with larger amplitude turbulence as defined by η.

Motivated by the fact that l-L
1 represents the lengthscale over

which neighboring fieldlines diverge, we define the turbulence
lengthscale for a given profile as lº á ñs 1T L , and show that this
lengthscale correlates well to the distance cosmic rays must travel
before transitioning from a streaming-like motion to a diffusion-
like motion. The turbulence lengthscale can therefore be used to
estimate the random-walk stepsize for diffusion problems, thereby
informing numerical treatments of diffusion processes.

Finally, we apply our results to GMC environments, and find
that the turbulence lengthscale sT is never much smaller than
the size of the region in which turbulence acts, and may offer a
possible explanation as to why observed linewidths in dense
cores are thermal.
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improved the manuscript. We also thank Dr. Fred Adams for

useful discussions. M.F. is supported at Xavier University
through the Hauck Foundation. Holden, Grayson and Wallace
were supported by a 2012 Center for Integrative Natural
Science and Mathematics (CINSAM) summer research grant.
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