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Abstract

We present ANNz2, a new implementation of the public software for photometric redshift (photo-z) estimation of
Collister & Lahav, which now includes generation of full probability distribution functions (PDFs). ANNz2 utilizes
multiple machine learning methods, such as artificial neural networks and boosted decision/regression trees. The
objective of the algorithm is to optimize the performance of the photo-z estimation, to properly derive the
associated uncertainties, and to produce both single-value solutions and PDFs. In addition, estimators are made
available, which mitigate possible problems of non-representative or incomplete spectroscopic training samples.
ANNz2 has already been used as part of the first weak lensing analysis of the Dark Energy Survey, and is included
in the experimentʼs first public data release. Here we illustrate the functionality of the code using data from the
tenth data release of the Sloan Digital Sky Survey and the Baryon Oscillation Spectroscopic Survey. The code is
available for download at https://github.com/IftachSadeh/ANNZ.
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1. Introduction

1.1. Photometric Redshifts

Redshifts, usually denoted byz, effectively provide a third,
radial dimension to Cosmological analyses. They allow the
study of phenomena as a function of distance and time, as well
as enable the identification of large structures, such as galaxy
clusters. The current and next generations of dark energy
experiments, such as the Dark Energy Survey (DES),3 the
Large Synoptic Survey Telescope (LSST),4 and the Euclid
experiment5 will collectively observe a few billion galaxies.
Ideally, redshifts may be measured with great precision using
spectroscopy. However, it is infeasible to obtain spectra for
such large galaxy samples. The success of these imaging
surveys is therefore critically dependent on the measurement of
high-quality photometric redshifts (photo-zs). For instance, a
benchmark of LSST is to measure the dark energy equation of
state parameter, w, with per-cent level uncertainty. This is
expected to be achievable with weak lensing tomogra-
phy(Hu 1999; Zhan & Knox 2006). However, it will require
a precision of~ + z0.002 1· ( ) in determination of the
systematic bias in the redshift.

This paper presents ANNz2. The latter is a new implementa-
tion of the code of Collister & Lahav (2004), denoted hereafter
as ANNz1, which used artificial neural networks (ANNs) to
estimate photometric redshifts. ANNz2 is free and publicly
available.6 The code has already been incorporated as part of
the analysis chain of DES(Sánchez et al. 2014). It has been
shown to provide reliable photo-z estimates and to reduce
systematic uncertainties and outlier contamination(Leistedt
et al. 2015). ANNz2 photo-zs were part of the first DES weak
lensing analysis(Bonnett et al. 2015; Abbott et al. 2016), are
included in the first public data release of the project,7 and are
being used for upcoming analyses.
The extensive work in the community on photo-zs usually

falls into two categories, papers on particular methods (see
below) and studies comparing existing methods(Abdalla
et al. 2011; Sánchez et al. 2014). The new ingredient of the
present paper is a new approach to contrast and combine
different machine learning techniques, and to yield self-
consistently a photo-z probability distribution function (PDF).
The introduction of PDFs has been shown to improve the
accuracy of Cosmological measurements(Mandelbaum
et al. 2008; Myers et al. 2009), and is an important new
feature compared to the previous version of the code. In
addition to photo-z inference, it is also possible to run ANNz2
in classification mode. The latter is useful for analyses such as
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star/galaxy separation and morphological classification of
galaxies. An example is provided as part of the software
package, but is not discussed in the following.

In the next section we present a short overview of the current
methodology for deriving photometric redshifts, focusing on
machine learning, and on the techniques available through
ANNz2. We then describe the main methods implemented in
the code for estimating photo-zs and PDFs, and illustrate the
performance using a toy analysis. A short quick-start guide for
using the code is presented in the Appendix.

1.2. Methodology for Photo-z Estimation

The different approaches to calculate photo-zs can generally
be divided into two categories, template fitting methods and
training based machine learning. Both types depend heavily on
photometric information, such as the integrated flux of photons
in medium- or broad-band filters, which are usually converted
into magnitudes or colors. The magnitudes serve as a rough
measurement of the underlying spectral energy distribution
(SED) of a target object, from which the redshift may be
inferred. A review of current photo-z methods can be found in
Abdalla et al. (2011) and Hildebrandt et al. (2010). All methods
require a spectroscopic data set for training and/or calibration,
the requirements for which are discussed by Newman
et al. (2015).

Template fitting methods involve fitting empirical or
synthetic galaxy spectra with the photometric observables of
an imaging survey, accounting for the response of the telescope
and the properties of the filters(Mobasher et al. 2007; Benítez
et al. 2009). The template spectra are generally derived from a
small set of SEDs, representing different classes of galaxies at
zero redshift. They also incorporate astrophysical effects, such
as dust extinction in the Milky Way or in the observed galaxy.
Common template libraries are the Coleman et al. (1980) SEDs
(derived observationally), or those of Bruzual & Charlot (1993)
(based on synthetic models).

Template methods rely on the assumption that the SED
templates are a true representation of the observed SEDs. They
depend, e.g., on proper calibration of the rest-frame spectra of
galaxies, commonly performed using spectroscopic data. In
addition, the composition of the template library should
correspond to the population of galaxies which are fitted (for
instance, in terms of galaxy types and luminosities). Photo-zs
may be estimated by choosing the best-fitted SED from
the template library, usually derived using c2-minimization
(Bolzonella et al. 2000), where more advanced Bayesian priors
can also be incorporated(Benitez 2000).

On the other hand, empirical methods do not directly use
physically motivated models. Instead, they involve deriving the
relationship between the photometric observables and the
redshift using a so-called training data set, which includes both
the observables and precise redshift information. The mapping

between observables and the output redshift can be as simple as
a polynomial fit(Connolly et al. 1995). However, supervised
machine learning methods (MLMs; defined below)8 have been
shown to produce much more accurate and robust results,
taking into account complicated correlations between the input
parameters and the output value.
MLMs have several advantages over template fitters. For

instance, it is trivial to incorporate additional observables into
the inference, a common example being the surface brightness
of galaxies, which has a + -z1 4( ) redshift dependence(Firth
et al. 2003). In addition, the use of a training sample alleviates
systematic side-effects associated with the photometry, such as
errors in the zero-point corrections of the magnitudes. On the
other hand, the size and composition of the training sample
become important factors in the performance. The phase space
of input parameters and the spectral types of galaxies must
correspond to the respective parameters of the survey. If this is
not the case, the photo-zs of certain galaxy populations may
become biased (Hoyle et al. 2015a). Another important point, is
that the true redshift distribution in the spectroscopic training
set must also be representative of the survey. In particular,
MLMs are only reliable within the redshift range of the
galaxies used for the training. Consequently, they should not be
used to infer the photo-zs of very high-redshift sources, for
which there are no spectroscopic training data. In order to
resolve these problems, it is possible to generate synthetic
training galaxies within the required parameter space, using
template-SED libraries. However, this introduces some of the
systematic biases associated with template fitting methods.
An important element of any photo-z algorithm is calculation

of the associated uncertainty. Accurate photo-z uncertainties
help to identify catastrophic outliers, the removal of which may
improve the quality of Cosmological analyses(Abdalla
et al. 2008; Banerji et al. 2008). For the previous version of
the code, ANNz1, uncertainties were derived using a chain rule,
propagating the uncertainties on the algorithm-inputs (e.g.,
magnitudes) to an uncertainty on the final value of the photo-z.
Other methods exist(Oyaizu et al. 2008), which use the
training data and the photo-zs themselves for uncertainty
estimation. In these cases, the uncertainty is parametrized as a
function of the inputs to the algorithm, requiring no measure-
ment of the uncertainties on the individual inputs. We use such
a scheme in ANNz2 (see Section 4.2).
The common method for deriving the uncertainties for

template fitting methods is by combining the likelihoods
estimated for the various templates. The benefit of performing
the combination is that it naturally leads to the definition of a
photo-z PDF, as, for instance, is the case in LePHARE (Arnouts
et al. 1999; Ilbert et al. 2006), BPZ(Benítez 2000) and

8 Unsupervised learning techniques have been used to derive photometric
redshifts as well (see, e.g., Geach 2012; Way & Klose 2012; Carrasco Kind &
Brunner 2014), but are not discussed here.
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ZEBRA(Feldmann et al. 2006). As for MLMs, there is a variety
of codes on the market. These use different methods besides
ANNs, such as boosted decision trees (BDTs). While most
algorithms produce only single-value photo-zs, several also
generate photo-z PDFs, such as ArborZ(Gerdes et al. 2010),
TPZ(Carrasco Kind & Brunner 2013), SkyNet (Bonnett 2015)
and the algorithm of Rau et al. (2015). In ANNz2, two primary
types of PDF are derived, one of which represents a new
technique, while the other is similar in nature to the PDFs
generated by ArborZ, TPZ and SkyNet.

In the following, we describe in more detail the general
workings of machine learning, focusing on the primary
algorithms used in ANNz2.

1.3. MLMs

1.3.1. Basics of Machine Learning

MLMs use supervised learning, a machine learning task of
inferring a function from a set of training examples. Each
example consists of an input object, described by a collection
of input parameters, as well as a desired output value for the
MLM. The training examples are used to determine the
mapping for either classification or regression problems. The
former describes a decision boundary between signal and
background entries; the latter refers to an approximation of the
underlying functional behavior defining the output.

For the purpose of creating an MLM estimator for either
classification or regression, one generally splits the available
data set of examples into three parts, designated as the training,
validation and testing samples. The training data set is used for
deriving the desired mapping between the input and the output.
During each step of the training, the validation sample is used
to estimate the convergence of the solution, by comparing the
result of the estimator with the value of the output. The testing
data set is not used during the training process; rather, it is
utilized as an independent test of the performance of the
trained MLM.

The MLMs utilized in ANNz2 are implemented in the TMVA
package9(Hoecker et al. 2007), which is part of the ROOT C++
software framework10(Brun & Rademakers 1997). TMVA
includes multiple MLM methods, all of which are available
through ANNz2, using a common Python interface with
simple control-options (see theAppendix). The two TMVA
MLMs which we found to be most appropriate for the problem
of photo-z estimation, are ANNs and boosted decision/
regression trees. For completeness, these are outlined concisely
in the following. Detailed descriptions of the implementation
may be found in the TMVA manual. For a comprehensive
theoretical overview, see MacKay (2003) and Hastie
et al. (2001).

1.3.2. Available Methods in TMVA

Artificial neural networks (ANNs). One may consider an
ANN as a mapping between a set of input variables, such as
magnitudes or colors, and one or more output variables. For
regression problems, the output is, e.g., the numerical value of
a photometric redshift. For classification, the output is a
variable (usually between0 and1), which may be used to
discriminate between signal and background examples. The
mapping is performed by computing the weighted sum of a
collection of response functions. The input variables, response
functions and output variables are collectively called neurons.
The response may be represented by various activation
functions, such as sigmoid or tanh functions.
In ANNz2, the TMVA method for ANNs called a multi-layer

perceptron is implemented. In this case, ANN neurons are
organized into at least three layers, the input layer; a hidden
layer; and the output layer, where more complicated structures
may include multiple hidden layers. A schematic illustration is
shown in Figure 1.
In the perceptron, the response of a neuron is fed into the

next layer (up to the output), using a series of relative weights.

Figure 1. Schematic representation of an artificial neural network, with
individual neurons marked by circles, squares and a triangle. The input
variables to the ANN are five magnitudes, mu, mg, mr, mi and mz (red circles).
These are fed into the first hidden layer (blue squares), and further propagated
into a second hidden layer (yellow squares). Finally, the sum of the second
hidden layer is combined into the output of the ANN, the photo-z, zphot (red
triangle). In each stage, the response of the various neurons is summed using
relative weights, which are represented by the thickness of the interconnecting
lines. The result of training an ANN is an optimized set of weights; for these,
the response of the ANN recovers the desired mapping between the input
variables and the target value or type, respectively for regression or
classification.
(A color version of this figure is available in the online journal.)

9 See http://tmva.sourceforge.net.
10 See http://root.cern.ch.
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Learning occurs by changing the inter-neuron weights after
each element of the data set is processed, using the so-called
back propagation algorithm. This is carried out through a
generalization of the least mean squares algorithm, using the
ANN error function. The latter characterizes the amount of
error in the output compared to the predicted result in the
validation data set. In practice, the weights are varied using the
gradient of the error function, though optionally, the second
derivatives of the error may also be used.

Using ANNs, it is important to avoid over-training. The
latter occurs when an ANN becomes sensitive to the
fluctuations in a data set, instead of to the coherent features
of the observables which should be mapped to the output.
Over-training leads to a seeming increase in the performance, if
measured on the training sample. Conversely, it also results in
an effective performance decrease, when measured from the
independent validation sample. Over-training may therefore be
detected by comparing the value of the error estimator between
the training and the validation sample. In addition to testing for
over-training, convergence tests may also be performed. The
latter refer to checking whether the estimator has ceased to
improve over the course of several training cycles; they are
used in order to determine when to stop training.

An additional feature available in TMVA is Bayesian
regularization. Regularization adds a term to the error function
of the ANN, which is equivalent to the negative value of the
log-likelihood of the training data, given the network model.
Regularization reduces the risk of over-training, by penalizing
ANNs with over-complicated architectures (too many degrees
of freedom).

Boosted decision trees (BDTs). A decision or regression
tree11 is a binary tree, in which decisions are taken on one
single variable at a time, until a stop criterion is fulfilled. The
decision tree splits the parameter space into a large number of
hypercubes. Each of these is attributed a constant target value
for regression, or identified as either “signal-like” or “back-
ground-like” for classification. The various output nodes are
referred to as leafs. The path down the tree to each leaf
represents an individual cut sequence that narrows down the
value of the regression target, or the identification as signal or
as background. A schematic representation of a decision tree is
shown in Figure 2.

The training, or growing, of a decision tree is the process that
defines the splitting criteria for each node, the purpose of which
is to achieve the best estimation of the regression target, or the
best separation between signal and background objects. The
training starts with the root node, which is split into two subsets
of training objects. In each subsequent step, further splitting
occurs. At each node, the split is determined by finding the
variable and corresponding cut value that provide the best
discriminatory power. Training stops when the minimum

number of training examples in a single leaf is reached,
according to a predefined threshold value. For regression, each
leaf corresponds to the value of the regression target of the
associated training examples. For classification, a leaf is
interpreted as signal or as background, based on the type of
the majority of corresponding examples. Different splitting
criteria can be selected by the user in ANNz2, among other
algorithm parameters.
Decision trees are sensitive to statistical fluctuations in the

training sample. This comes about, as a small change in a
single node may affect all subsequent nodes, and the entire
structure of the tree thereafter. It is therefore beneficial to use
not a single tree classifier, but a forest of trees, by using a
boosting algorithm. The process of boosting involves training
multiple classifiers using the same data sample, where the data
are reweighted differently for each tree. The combined
estimator is then derived from the weighted majority vote of
trees in the forest. Alternatively, it is also possible to use
bagging instead of boosting. In the bagging approach, a re-
sampling technique is used; a classifier is repeatedly trained
using re-sampled training objects such that the combined
classifier represents an average of the individual classifiers.
Several boosting/bagging algorithms are implemented in
TMVA, all available through ANNz2.
Other methods. The TMVA package includes several other

MLMs which are not discussed here, such as k-nearest

Figure 2. Schematic representation of a decision tree, with the initial root node
marked by a star, internal nodes marked by empty circles, and output nodes
(leafs) marked by full circles. A sequence of binary splits using magnitudes,
mu, mg, mi and mz, as input variables, is applied to each element of the training
data set. Each split uses the variable that, at that particular node, results in the
best discrimination when being cut on. The leafs represent a division of the data
set into sub-samples in the target variable. In the case of regression, as in this
example, these are associated with different values of the photo-z, zphot,
denoted here byc1,2,3,4. For classification, each leaf represents a sub-set of
signal- or of background-enriched examples.
(A color version of this figure is available in the online journal.)

11 We use here the terms decision- and regression-trees interchangeably.
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neighbors, support vector machines, multidimensional like-
lihood estimators and function discriminant analysis. All of
these are interchangeable in ANNz2; the user may choose any
type or combination of types of MLM, in order to derive
single-value solutions and PDFs.

1.3.3. Method Selection and Parameter Tuning

Different MLMs have their own strengths and weaknesses.
For instance, the training of a BTD is generally much faster
than, e.g., that of an ANN; conversely, the evaluation time of
ANNs is generally shorter than that for large random forests. In
order to select the best estimator for a given problem, it is
recommended to derive solutions using multiple methods,
using various choices of algorithm parameters. This is done in
an automated fashion in ANNz2.

2. Example Analysis

The ANNz2 package is provided with a small data set, used
as a toy analysis. The data consist of observations of galaxies
and stars, included in the tenth data release (DR10) of the Sloan
Digital Sky Survey (SDSS;Ahn et al. 2014), including
measurements taken with the Baryon Oscillation Spectroscopic
Survey(Dawson et al. 2013).
The galaxy sample used for the photo-z analysis is derived

from a publicly available catalog.12 The inputs for the photo-z
inference are Pogson galaxy magnitudes in five bands
(ugriz). The magnitudes, m, were calculated from the
provided flux measurements, f, using the relation,
m f= 22.5 2.5 log .10– ( ) The general properties of the data

Figure 3. Properties of galaxies in the data set used for the toy photo-z analysis. (a) Differential distribution of the spectroscopic redshift, zspec. (b) Differential
distributions of the magnitudes in five bands, mu, mg, mr, mi and mz, as indicated. (c)–(e) Correlation between different color combinations, as indicated, where the size
of a box represents the relative number-density of entries within the respective histogram bin, compared to the entire distribution.
(A color version of this figure is available in the online journal.)

12 See http://www.sdss3.org/dr10/spectro.
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set, comprised of roughly 180 k objects, are shown in
Figure 3.

3. Definition of Metrics and Notation

In order to quantify the performance of the different
configurations of ANNz2, several metrics are used. The metrics
serve both as part of the dynamic optimization procedure of
ANNz2, and as a means of assessing the quality of the results.
All calculations take into account per-object weights. Weights
may be defined by the user, or derived on the fly based on the
type of analysis. For instance, the user may choose to down-
weight certain galaxies based on an associated degree of
confidence. Such a sub-sample would then have lower relative
significance during training and optimization. Weights are also
used in order to account for unrepresentative training samples,
as described in Section 4.4.

The following metrics are used. The photometric bias of a
single galaxy is defined as d = -z zgal phot spec, where zphot and
zspec are respectively the photometric and spectroscopic
redshifts of the galaxy. The photometric scatter represents
the standard deviation of dgal for a collection of galaxies.
Similarly, s68 denotes the half-width of the area enclosing the
peak 68th percentile of the distribution of dgal. Another useful
qualifier is the outlier fraction of the bias distribution, asf ( ),
defined as the percentage of objects which have a bias
larger than some factor, α, of either σ or s68. In addition,
we also define the combined outlier fraction for2
and s3 68, s s s= +f f f2, 3 2 368

1

2 68 68( ) ( ( ) ( )).
The various metrics are calculated for galaxies in bins of

either zphot or zspec, and are denoted in the following by a
subscript, b, as db, sb, s b68, and asfb ( ). The average values of
the metrics over all redshift bins are denoted by dá ñ, sá ñ, sá ñ68

and asá ñf ( ) , and serve as single-value qualifiers of the entire
sample of galaxies.

The purpose of the bias, scatter and outlier fractions is to
qualify the galaxy-by-galaxy photo-z estimation. Addition-
ally, the overall fit of the photometric redshift distribution,
N zphot( ), to the true redshift distribution, N zspec( ), is assessed
using two metrics. The first is denoted by Npois, and stands for
the sum of the bin-wise difference between the two
distributions, normalized by the Poissonian fluctuations.
The second measure is the value of the Kolmogorov–
Smirnov (KS) test of N zphot( ) and N zspec( ), which stands
for the maximal distance between the cumulative distribution
functions (CDFs) of the two distributions. The KS-test has
the advantage that, unlike Npois, it does not depend on the
choice of binning of the redshift distributions. The absolute
value of the Npois and KS-test statistics is not necessarily
significant. Rather, these serve to compare the compatibility
of the zphot and zspec distributions, between different photo-z
estimators.

4. The ANNz2 Algorithm

4.1. Photo-z PDF Derivation

The primary configurations of ANNz2 are referred to as
single regression and randomized regression. These are
respectively used to derive single-value solutions and PDFs.
The PDFs provided by ANNz2 are intended to provide a
description of our knowledge of the photo-z solution.
Assuming one could reconstruct a perfect photometric redshift,
the corresponding PDF would be given by a delta function.
However, the redshift inference has intrinsic uncertainties. A
photo-z PDF can thus be thought of as a way to parametrize the
uncertainty on the solution.
The main contributing factors to the uncertainty on photo-zs

are the following:

1. 1( ) Uncertainty on inputs to training: magnitudes are not
sufficient to derive the redshift, as they only provide a
rough sampling of the underlying SED. Furthermore, one
also needs to consider the uncertainties on the values of
the magnitudes. The latter are usually derived from the
Poissonian noise on the corresponding photon-count, and
so are under-estimated. These uncertainties are therefore
difficult to take into account in the photo-z derivation in a
direct way.

2. 2( ) Uncertainty on MLMs: there is an inherent
uncertainty on the solution of a given MLM. For
example, different initial random seeds for training, or
the choice of different MLM algorithms, may result in
variation in the performance.

3. 3( ) Unrepresentative training data sets: the training data
may not be representative of the evaluated photometric
sample. In this case, the results are influenced by the
composition of the training data set (the relative
proportion of training galaxies with different combina-
tions of magnitudes).

4. 4( ) Incomplete training data sets: the training data may
not be complete. This may occur if some regions of
magnitude-space, which exist in the evaluated sample,
have no corresponding galaxies for training. The photo-z
predictions for such evaluated galaxies are unreliable.

Of these sources of uncertainty, the first three may be
incorporated into a meaningful PDF. The dominant effect of
the latter is the degenerate mapping between magnitudes and
redshift 1( ). As an example, one may consider the small gap
between the response curves of the SDSSg- andr-band filters.
The latter results in an ambiguity in the location of the 4000Å
Balmer break between the two bands, for galaxies with
~z 0.35 (Schmidt 2007). The degeneracy manifests itself as

large photo-z uncertainties for this redshift region, as, e.g.,
evident from Figure 4(a) below.
Glossing for the moment over the the technical details, the

procedure for deriving our PDF is as follows. We start by
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producing a single-value photo-z solution. We then combine
this solution with the corresponding photo-z uncertainty due to
the training inputs 1( ), which is derived as explained in
Section 4.2. The procedure is repeated for an ensemble of
MLM estimators. The MLMs differ from each other in the
choice of algorithm and of algorithm settings, e.g., numbers of
neurons in an ANN, number of trees in a BDT and so
forth 2( ). The various estimators and their corresponding
uncertainties are then combined into a PDF, as detailed in
Section 4.3.

In general, the variance between different estimators is sub-
dominant compared to the photo-z uncertainty on a single
MLM. However, the combination of different estimators allows
for the reconstruction of multi-peak PDFs, exposing degen-
eracies. This comes about, as each MLM is sensitive to
different statistical fluctuations. Subsequently, each MLM has a
slightly different response in cases where the photo-z/redshift
relation is ambiguous. Using multiple MLMs also has the
advantage of exposing configurations which perform badly due
to a poor choice of algorithm parameters, or to a statistical
fluctuation in the training. Conversely, consider an example
where, e.g., a pair of ANNs with different numbers of neurons
exhibit slightly different performance. Combining several
solutions takes away some of the arbitrariness of selecting
one specific model.

The uncertainties on the make-up of the training data
set  ,3 4( ) can only partially be addressed. To deal with
unrepresentative training samples, we employ training weights.
The latter are used to match the distribution of the inputs (e.g.,
magnitudes) from the training sample, to those from the
evaluated data(Lima et al. 2008). The calculation of the
weights is performed as part of the internal pipeline of the code.
The issue of incomplete training samples can not be taken into
account without the use of additional data (such as those
derived from simulations or from template libraries). ANNz2
therefore provides a quality flag, which indicates when
unrepresented data are being evaluated. A short discussion is
given in Section 4.4.
An alternative type of PDF is also generated by ANNz2,

using the binned classification configuration. This approach has
been used in the past, following the methodology of Gerdes
et al. (2010). In binned classification, we build up a PDF by
estimating the local photo-z probability in narrow redshift
regions, implementing classification MLMs instead of regres-
sion. We have found that this method tends to under-perform
compared to randomized regression. Binned classification is
therefore not discussed here further, though an example
analysis is provided with the software package.
In the next sections, we describe in detail the ANNz2 algorithm.

All figures in the following are based on testing data (galaxies
which were not used as part of the training/validation phase).

Figure 4. Comparison between the photo-z solutions of ANNz2 and the original version of the code, derived using a single ANN, as described in the text. (a)
Differential distributions of the spectroscopic and the photometric redshift, respectively zspec and zphot, of ANNz1 and ANNz2, as indicated. (b) Correlation between the
photo-z solutions of ANNz1 and ANNz2. Around =z 0.35, We observe a mismatch between the two estimators and zspec, as well as an increase in the scatter between
the two. This indicates that the uncertainty on the photo-zs in this region is large. The latter is difficult to reconcile using single-value estimators, but is alleviated using
a PDF, as discussed in the text (also see Figure 9).
(A color version of this figure is available in the online journal.)
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4.2. Single Regression and Uncertainty Estimation

In the simplest configuration of ANNz2, a single regression
is performed. This is similar to the nominal product of the
original version of the code, ANNz1.

We compare the output of ANNz2 with that of ANNz1 in
Figure 4. In both cases, a single ANN with architecture

+ + +N N N N, 1, 9, 4, 1{ } was used; this corresponds to
N=5 input parameters (five magnitudes) in the first layer,

three hidden layers with various numbers of neurons, and one
output neuron in the final layer.13 A sample of 30 k objects was
used for the training. Comparable results were also achieved,
using as many as 200 k, and as few as 5 k objects.
The redshift distributions derived by the two versions of the

code are similar, with somewhat better performance of ANNz2

Figure 5. Properties of the photo-z solution of ANNz2, derived using a single ANN, as described in the text. (a) Correlation between the spectroscopic and the
photometric redshift, respectively zspec and zphot. (b) The photo-z bias, db, calculated in bins of either zspec or zphot, as indicated. (c) The photo-z scatter, calculated as
either the standard deviation or as the 68th percentile of the distribution of the bias, respectively sb and s b68, , calculated in bins of either zspec or zphot, as indicated. (d)
The photo-z outlier fraction, asfb 68( ), usinga = 2 or 3, calculated in bins of either zspec or zphot, as indicated. The lines in(b)–(d) are meant to guide the eye.

(A color version of this figure is available in the online journal.)

13 This network architecture was found to produce optimal performance for
our particular data set, and is denoted below as zbest. However, for a different
analysis, another architecture might be preferred.
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over the original version. One may notice the large uncertainty
on the photo-zs around =z 0.35 for both estimators, as
mentioned above. Such discrepancies between the derived
photo-zs and the true redshift are difficult to reconcile using a
single-value MLM. However, a PDF solution helps to alleviate
the problem (see Figure 9 below). In order to understand how
to derive a PDF, we must first qualify the performance of a
single MLM.

The relation between the spectroscopic redshift and the
photo-z estimator of ANNz2 is shown in Figure 5(a). We
observe a strong correlation between zspec and zphot.
Figures 5(b)–(d), show the photo-z bias, scatter and outlier
fractions as a function of the true and of the derived redshift
values of ANNz2. All metrics exhibit worse performance at the
edges of the redshift range, due in part to the relatively small
number of respective training objects.

An additional important quantity which characterizes the
performance of the code is the associated photo-z uncertainty.
For ANNz1, uncertainties were derived using a chain rule,
propagating the uncertainties on the algorithm-inputs, to an
uncertainty on the value of the final photo-z. The disadvantage
of such a scheme is that the uncertainty on photometric inputs,
such as magnitudes, is not always precise in itself. This is due
to the fact that in most cases, the available uncertainty
estimation only represents the Poissonian noise on the
corresponding photon-count. It therefore does not take into
account other systematic uncertainties or correlations between
observables.

In order to compute the uncertainty associated with our
photo-z estimator, denoted hereafter as sgal, a data-driven
method is employed. This is done by assuming that objects
with similar combinations of photometric properties should
also have similar photo-z uncertainties. We derive the
uncertainty using the K-nearest neighbors (KNN) method.
We would emphasize that the latter should not be confused
with KNN machine learning. For the calculation of sgal, no
additional training of an MLM is required. Rather, a simple
search in parameter-space is performed.

For example, let us assume that magnitudes are used as
inputs for training. In this case, the distance in parameter-space
between a pair of galaxies, x and y, can be defined as

å= -R x y m m, , 1
j

j
x

j
y

NN
2( ) ( ) ( )

where the mj
x y, symbols stand for the five magnitudes, mu, mg,

mr, mi and mz, for the two galaxies. The first step in the
calculation is to find the nNN nearest neighbors to our target
object, defined as those with the smallest value of RNN from the
entire training sample. For each of the neighbors, we calculate
the photo-z bias. For neighbori, the latter is defined as
d = -z zi i i

NN phot spec, where z i
phot is the estimated photo-z of the

objects, and z i
spec is the respective spectroscopic redshift. The

68th percentile width of the distribution of di
NN values is then

taken as the uncertainty on the photo-z of the target
object, sgal.

14

This technique has been shown to produce realistic
photometric uncertainties, as, e.g., in Oyaizu et al. (2008), so
long as the training data set is representative of the evaluated
photometric sample. Additionally, the authors there discussed
the optimal value for nNN. It was explained that on the one
hand, nNN should be large enough that the uncertainty
estimation is not limited by shot noise; on the other hand,
nNN should not be set too high, so that the estimate remains
relatively local in the input parameter space. For the current
study, a nominal value, =n 100NN , was selected.
We would like to assert that the uncertainty estimator

represents the correct underlying photo-z scatter in our analysis.
For this purpose, we define the metric

r
d
s

= , 2NN
gal

gal
( )

the ratio between the photo-z bias and the associated
uncertainty. The distribution of the values of rNN for the
entire sample is expected to be centered close to zero, and to
have a width close to unity.
The distributions of rNN for our ANNz1 and ANNz2

solutions are shown in Figure 6. We proceed by fitting a
Gaussian function to each data set. We find that both
distributions have a mean value which is consistent with zero
to a precision better than3%. In addition, the distribution of
rNN for ANNz1 has a width of0.27, while the corresponding
value for ANNz2 is1.04. This indicates that the uncertainty
estimation for the ANNz2 photo-zs is significantly more reliable
in comparison.

4.3. Randomized Regression PDF

As mentioned above, we construct our PDF by combining
multiple MLM estimators, each folded with their respective
single-value uncertainty estimator. The steps of the algorithm
may be summarized as follows:

1. A collection of MLMs is trained.
2. The ensemble of estimators goes through pre-selection,

which includes ranking the solutions by their perfor-
mance. The MLM which performs best is chosen as the
single-value estimator.

3. The MLMs are folded with their corresponding intrinsic
uncertainty, sgal. They are then combined in different
ways into a set of candidate-PDFs. The MLM combina-
tions are chosen randomly, taking into account the
ranking in performance.

14 In practice, we calculate the photo-z uncertainty separately for shifts to
lower or to higher values of redshift. However, for the sake of brevity, we refer
to sgal as symmetric in the following.
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4. The performance of the candidates is compared, using the
parameter  , defined below. The solution which best
describes the true redshift distribution is selected as the
final PDF.

The first step in the calculation is the training of a set of
randomized MLMs. These differ from each other in several
ways. The latter includes setting unique random seed
initializations, as well as changing the configuration parameters
of a given algorithm.15 For instance, this may refer to using
various types and numbers of neurons in an ANN, or to
arranging neurons in different layouts of hidden layers; for
BDTs, the number of trees and the type of boosting/bagging
algorithm may be changed, etc.

In general, the choice of input parameters also has an effect
on the performance(Hoyle et al. 2015b). A randomized MLM
therefore has the option to only use a subset of the given input
parameters, or to train with predefined functional combinations
of parameters. These combinations may also incorporate
complicated scenarios. For instance, missing inputs for a
specific object may be mapped to predefined numerical values,
such as the magnitude limits of the survey.

Additionally, TMVA provides the option to perform trans-
formations on the input parameters, including normalization

and principal component decomposition. The transformations
are done prior to training, as part of the internal pipeline of the
code. Applying transformations on inputs has the potential to
improve the performance of machine learning. For instance,
Soumagnac et al. (2015) used principal component analysis to
augment their algorithm, by reducing the dimensionality of a
classification task. For photo-z inference, transformation are
most useful when combining input observables of different
types, such as magnitudes and surface brightness.
Finally, the user may define training weights using

functional expressions of both input parameters and observer
parameters (parameters not used directly for the training). The
weights are applied during the training; they may, e.g., be used
to reduce the impact of noisy data on the result. These may
come in addition to the weights meant to account for
unrepresentative training data sets, which are discussed in the
next section.
Once a set of randomized MLMs is initialized, the various

methods are each trained. Subsequently, a distribution of
photo-z solutions for each galaxy is generated. A selection
procedure is applied to the ensemble of answers, discarding
outlier solutions which have very large values of dá ñ, sá ñ68 and

sá ñf 2, 3 68( ) , compared to the entire ensemble. The selected
MLMs are then used to identify a single photo-z estimator,
based on the method with the best performance. The latter is
denoted in the following as zbest.
In the next step, the various MLMs are folded with their

respective single-value uncertainty. They are then used in
concert in order to derive a complete PDF. The most trivial
combination, is one in which we accept all MLMs with equal
weights. This, however, does not necessarily result in the best
outcome, as the inclusion of estimators with, e.g., large scatter,
degrades the performance. We therefore derive a dynamic
weighting scheme for the combination of MLMs. The weights
are determined, using the CDF of a candidate-PDF,

 ò=
=

z p z dz. 3
z

z

spec
0

reg
0

spec

( ) ( ) ( )

The latter is defined as the integrated PDF for redshifts smaller
than some reference value, taken here as the true redshift, zspec.
Here the differential PDF for a given redshift is denoted by
p zreg ( ), and z0 corresponds to the lower bound of the PDF.
Let us consider a photo-z PDF which correctly describes the

underlying redshift distribution. In this case, one may think of
zspec as a random variable which is distributed according to the
PDF. It then follows that  would be a flat distribution. As
further illustration, one may imagine the inverse problem.
Supposing we generate a collection of random numbers,
uniformly distributed between0 and1. We then use these to
calculate -1, the inverse of the CDF (the quantile function). In
this case, the distribution of -1 values would correspond to
redshifts; it should then recover our PDF, assuming the PDF

Figure 6. Differential distributions of rNN, the ratio between the photo-z bias
and the associated uncertainty (see Equation (2)), for the photo-z solutions
derived using either ANNz1 or ANNz2, as indicated. The markers represent the
data and the lines represent fits to Gaussian functions. The fitted Gaussian
width parameters are, respectively,0.27 and1.04 for ANNz1 and ANNz2,
where for well-representative uncertainty estimates, the expected value for the
width is1.
(A color version of this figure is available in the online journal.)

15 See Section 5.1 and the Appendix for details.

10

Publications of the Astronomical Society of the Pacific, 128:104502 (18pp), 2016 October Sadeh, Abdalla, & Lahav



correctly represents the underlying uncertainty on our photo-z
inference.

The CDF of redshifts has previously been used to constrain
photo-z PDFs, as, e.g., in Bordoloi et al. (2010). There it was
the basis for modifying PDFs which were constructed from
likelihood functions, as part of a template fitting algorithm. In
ANNz2,  is used for the initial derivation procedure of the
PDF. This is done by selecting from the collection of
candidate-PDFs, the solution for which  is as close as
possible to a uniform distribution.

4.4. Representativeness and Completeness
of the Training Sample

Up to this point, we have discussed how the uncertainty on
input parameters and the differences between specific MLMs
are treated in ANNz2. However, MLMs based on training are
susceptible to additional systematic effects. Two possible
sources of major bias come about for training data sets which
are not representative or are not complete.

One possible source of bias is the exact composition of the
training data set. Let us consider an evaluated object from a
photometric data set, for which we have comparable training
objects. It is then important that the relative fraction of these
training objects within the training sample be the same as in the
photometric data set. If this is not the case, the training sample
is usually referred to as unrepresentative.

In order to illustrate the point, a simple example is shown in
Figure 7. The figure includes the distributions of the r-band
magnitude, mr, of objects in hypothetical training and reference
samples. The latter represents a complete and unbiased
representation of the mr of galaxies for some survey. In this
case, the distribution of mr in the training data set is quite
different from that in the reference sample. An MLM trained
using this training data set will, e.g., give too high significance
to training examples with mr values close to19.

The problem may be alleviated by reweighting the training
sample. The purpose of the weights is to assign a correction
factor to galaxies as a function of the input parameters. The
weighted distribution of galaxies should be such, that the
relative fraction of objects in each region in the parameter space
is the same as in the reference sample. These weights are then
used as part of the training; they are also further propagated to
the metric calculations, to be used during the PDF optimization
phase. The reweighting procedure is implemented as part of the
internal pipeline of ANNz2, requiring only the definition of the
reference data set by the user of the code.

The weights are derived by matching the density of objects
in the input parameter space to that in the reference
sample(Lima et al. 2008). This way, all inputs are reweighted
simultaneously, accounting for any intrinsic correlations. We
derive the weights using a kd-tree, calculating the number of
neighbors of an object in the training sample within some

distance (see Equation (1)). We then find the number of
neighbors of the same object within the same distance, but in
the reference sample. The weight is finally taken as the ratio of
these two numbers.
One may notice in Figure 7 that for mr  18.5, the weighted

training data set does not match the reference sample. The
reason for this, is that the original training sample does not
have any corresponding objects. In this case, we usually refer
to the training data set as incomplete. In general, an MLM
should only be used on objects which have features that are
represented in the training data set. In cases where no training
examples exist, both the photo-z and the corresponding photo-z
uncertainty are equally unreliable.
ANNz2 has a validation mechanism to check whether an

evaluated object falls under an incomplete region of the
training sample. Unfortunately, there is no systematic way to
correct the photo-z of objects which do not have comparable
training examples. These can instead be flagged as unreliable.
The algorithm uses a kd-tree to derive the density of objects

from the training sample, which have similar properties as the
evaluated object. We begin by computing RNN

y x, the distance in
parameter-space between the evaluated object, x, and the
closest corresponding object from the training sample, y (see
Equation (1)). We then derive RNN

y n, the distance from y, within

which nNN
min objects from the training sample are found. Finally,

Figure 7. Differential distributions of the r-band magnitude, mr, of objects in
three samples, as indicated; the reference sample, which corresponds to a
hypothetical survey; the original training sample, which is some spectroscopic
data set which is available for training an MLM; the weighted training sample,
which corresponds to the original training sample, after weights have been
applied, as described in the text.
(A color version of this figure is available in the online journal.)
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we define our quality criteria as

⎧⎨⎩
⎫⎬⎭=

-
Q

R R

R
max 0, . 4NN

NN
y n

NN
y x

NN
y n

( )

The parameter QNN represents a typical distance-ratio
between the evaluated object, and similar training objects.
For dense regions of the training sample, R RNN

y x
NN
y n, which

corresponds to ~Q 1NN . Conversely, for sparse regions, one
would have to search far away in order to find object-y,
resulting in low values of QNN. The steepness of the
distribution of QNN depends on the choice of nNN

min , and on
the properties of the data set. We nominally use =n 100NN

min ,
though this parameter may be changed by the user of the code.

The parameter QNN can be used to reject low-fidelity photo-
zs. The exact cut on QNN should be determined on a case-by-
case basis. It should take into account the fraction of excluded
objects, and the relative improvement in performance. To
illustrate the properties ofQNN, we use the hypothetical training
and reference samples defined for Figure 7. For the purpose of
the example, we take the reference sample as the evaluated data
set. The corresponding distribution of QNN values is presented
in Figure 8(a). We quantify our results in Figure 8(b). Here, we
present the dependence on QNN of the photo-z bias, db, and of
the 68th percentile scatter, s b68, . As desired, the performance
improves as the value of QNN increases. For this example, a
conservative cut would be to reject galaxies with <Q 0.8NN .

5. Performance of the Estimators of ANNz2

5.1. Toy Analysis

Figure 9 shows the distribution of the nominal photo-z
estimators of ANNz2 for our SDSS data set. These include the
single-value photo-z estimator, zbest, the single-value average of
the randomized regression PDF, á ñPDF , and the full PDF
solution, PDF. The corresponding performance metrics are
presented in Figure 10; the bias, dá ñ; the 68th percentile scatter,
sá ñ;68 and the outlier fractions, sá ñf 2 68( ) and sá ñf 3 68( ) . In
addition, we include the metric s rNN( ), defined as the 68th
percentile width of the distribution of rNN (see Equation (2)).
Finally, the Npois and KS-test statistics of the various N zphot( )
distributions are shown as well.

The zbest solution is the same one shown inFigure 5,
and corresponds to an ANN with architecture +N N,{

+ +N N1, 9, 4, 1}, where N corresponds to the number of
input parameters (in this case, five magnitudes). The ensemble
of MLMs used for the PDF is composed of 50ANNs and
50BDTs, with specific MLM options chosen at random as
described next. In addition, for both the ANNs and the BDTs,
the input parameters for the training were chosen as either the
five magnitudes, combinations of magnitude and colors, or
subsets of the latter. Furthermore, variable transformations on

the input parameters (normalization, principal component
analysis, decorrelation) were switched on or off at random.
The ANNs were configured with variations of the following

parameters:16 the numbers of hidden layers was varied

Figure 8. Properties of the quality criteria, QNN (see Equation (4)), for the
hypothetical training and reference samples used for Figure 7, where the
reference sample is taken as the evaluated data set. (a) Differential distribution
of QNN. (b) Dependence of the photo-z bias, db, and of the 68th percentile
scatter, s b68, , on QNN.

(A color version of this figure is available in the online journal.)

16 See the Appendix for details on the configuration options.
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between2 and4; the number of neurons in a hidden layer was
varied betweenN and +N 10 ;( ) the neuron activation function
was chosen as either a sigmoid or a tanh function; use of a
regulator was switched on or off; the number of steps between
convergence tests was randomized between100 and 500steps;
the MLMs were trained using back-propagation, with or
without the use of second derivatives of the ANN error
function.

The BDTs were defined using the following settings: the
number of trees was randomized between300 and 1200; the
boosting algorithm was changed between the available options
in TMVA; the threshold criteria for splitting nodes was varied
between0.1% and1% of the number of training objects per
node; the separation criteria for testing node-splitting was
chosen at random.

We observe that the three photo-z estimators, zbest, á ñPDF
and PDF, all have an average bias which is consistent with
zero. Comparing the scatter, the full PDF has a larger scatter
relative to the single-value estimators. This is expected, as the
calculation for PDFs is performed bin-by-bin, taking into
account the tails of the PDF. For approximately symmetric
PDFs, the tails cancel out. They therefore do not affect the bias
or scatter of the average of the PDF. However, for the full
solution, the negative and positive contributions from the tails

increase sá ñ68 . The scatter for the full PDF is therefore larger by
construction. The increased value of the PDF scatter is not a
disadvantage. Rather, it represents a more realistic estimation
of the underlying uncertainty on the photo-zs. This is reflected
by the value of s rNN( ), which is much better (closer to1) for
the PDF estimator, than for its average.
Finally, the shape of the full PDF provides a better

description of the underlying redshift distribution, as expressed
by the low values of the Npois and KS-test statistics. The
difference in the performance may even be appreciated by eye
from Figure 9. Specifically, the stacked PDF provides a better
estimation of the true redshift for ~z 0.35spec and for

>z 0.7spec , where the single-value solutions are less precise.

5.2. Other Applications of ANNz2

We have only commented here on performance metrics for
ANNz2, such as photo-z bias, and compatibility with the
underlying redshift distribution. However, to fully qualify the
algorithm, one would need to perform a Cosmological analysis
involving photometric redshifts(Rau et al. 2015). Such a study
is beyond the scope of the current work. However, ANNz2 has
already been used for several DES analyses, and is included in
the first public data release of the experiment.
In Bonnett et al. (2015), the performance of ANNz2 was

compared with that of three other codes, SkyNet, TPZ and
BPZ. The first two are machine-learning codes which employ a
similar algorithm using different MLM types, while BPZ is a
template-fitting code. The comparison was done in the context
of the first DES Cosmology results(Abbott et al. 2016), where
the difference between the photo-zs were propagated to the
systematic uncertainty on a weak lensing analysis. One should
notice that Bonnett et al. (2015) performed the comparison
between the different estimators by first assigning galaxies to
one set of redshift bins. The latter were determined by the
nominal code in the study, SkyNet. The photo-zs of the
various codes for a given galaxy sub-sample (SkyNet photo-z
bin) were then compared. This may produce a selection bias;
effectively, the PDF for each code is constrained by the results
of SkyNet. However, even given this possible bias, ANNz2
was found to be compatible with the other codes.
In another study(Leistedt et al. 2015), a systematic test of

variations in the observing conditions in DES was performed,
comparing ANNz2, TPZ and BPZ. In this case, it was shown
that ANNz2 minimizes the variations in the photo-z distribution
due to degraded input data, and that it reduces the amount of
outliers.

6. Summary

ANNz2 is a new major version of the public photometric
redshift estimation software, first developed by Collister &
Lahav (2004). It has already been used as part of the first weak

Figure 9. Differential distributions of the spectroscopic redshift, zspec, and of
the respective photometric redshift, zphot, where zbest is the single-value MLM
solution with the best performance, á ñPDF is the single-value average of the
PDF solution, and PDF is the full stacked PDF, as indicated. The overall fit of
the stacked PDF to the true redshift distribution is better than that of the single-
value solutions.
(A color version of this figure is available in the online journal.)
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lensing analysis of the DES, and is included in the first data
release of the experiment. The code is also planned to be
incorporated in the software pipelines of future projects. In this
paper we have introduced the algorithm available in the new
implementation, and have illustrated the performance of the
code using spectroscopic data.

ANNz2 incorporates several MLMs, such as ANNs and
boosted decision/regression trees. The different algorithms are
used in concert in order to optimize the photo-z reconstruction,
and to estimate the associated uncertainties. This is done by
generating a wide selection of MLMs, utilizing, e.g., different
ANN architectures and BDT algorithms. The final product of
ANNz2 is either a single-value photo-z estimator, or a full
photo-z PDF. PDF derivation is an important new feature of
ANNz2, not available in the previous version of the code.

PDFs are calculated by ANNz2 using two different
approaches. The nominal approach is a new technique, called
randomized regression. In this mode, optimization is performed
by ranking the different solutions according to their perfor-
mance, which is determined by the respective photo-z bias,
scatter and outlier fraction parameters. The single solution with
the best performance is chosen as the nominal photo-z
estimator of ANNz2. In addition, the entire collection of
solutions is used in order to derive a photo-z PDF. The PDF is
constructed in two phases. In the first phase, each solution is
folded with a distribution of uncertainty values, which is
derived using the KNN uncertainty estimation method. In the
second phase, the ensemble of solutions is combined. This is
done using dynamically determined weighting schemes,

intended to optimize the final PDF. Additionally, we have
implemented in ANNz2 a second approach for PDF-derivation,
called binned classification. The latter has been used in the past,
and is not discussed in the current paper.
ANNz2 also includes an implementation of a method to

correct for training samples which are not representative of the
features of the evaluated data set. In addition, we introduce a
new method to account for samples which are not complete.
The former is performed by applying weights to training
objects during training and during photo-z optimization, in
order to match the properties of the evaluated data set. For the
latter, a quality flag is generated for each evaluated object. The
flag indicates whether the derived photo-z solution is reliable,
based on the completeness of the sample.
We would like to thank Manda Banerji, Christopher Bonnett,

Antonella Palmese and Maayane Soumagnac for the useful
discussions regarding the nature of photometric redshifts and
machine learning. We would also like to thank the photo-z
working groups of DES and of the Euclid experiment for
giving feedback on the code.
OL acknowledges an European Research Council Advanced

Grant FP7/291329, which also supported IS. FBA acknowl-
edges the Royal Society for a Royal Society University
Research Fellowship.
This work uses publicly available data from the SDSS.

Funding for SDSS-III has been provided by the Alfred P.Sloan
Foundation, the Participating Institutions, the National Science
Foundation, and the U.S. Department of Energy Office of
Science. The SDSS-III website is http://www.sdss3.org/.

Figure 10. Photo-z metrics, averaged over the entire redshift range, for the nominal solutions of ANNz2, where zbest is the single-value MLM solution with the best
performance, á ñPDF is the single-value average of the PDF solution, and PDF is the full stacked PDF, as indicated. The metrics are the bias, dá ñ; the 68th percentile
scatter, sá ñ;68 the outlier fractions, asf 68( ), fora = 2 or 3; the Npois and KS-test statistics; and s rNN( ), the 68th percentile width of the distribution of rNN (see
Equation (2)). The lines are meant to guide the eye. All three solutions have comparable values of photo-z bias. The stacked PDF solution exhibits a relatively larger
scatter, due to the inclusion of the tails the distribution in the calculation. However, the overall fit of the full PDF to the true redshift distribution, indicated by Npois and
the KS-test, is better in comparison.

(A color version of this figure is available in the online journal.)
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Appendix
Quick-start Guide

To illustrate the use of ANNz2, we provide a short guide for running the code. The following is limited to describing the
randomized regression mode, corresponding to version2 1 2. . of the code. Please see the on-line documentation17 for further details,
as well as up to date instructions.

A.1. Workflow

Randomized regression is run using the following consecutive shell commands. In this example, the commands employ the
Python control script, annz rndReg quick py_ _ . , which is provided with the code:

python scripts/annz_rndReg_quick.py —randomRegression —genInputTrees
python scripts/annz_rndReg_quick.py —randomRegression —train
python scripts/annz_rndReg_quick.py —randomRegression —optimize
python scripts/annz_rndReg_quick.py —randomRegression —evaluate

These correspond to the four stages of the pipeline: data processing, training, optimization, and evaluation.
In the following, we describe each of these stages. We use Python pseudo-code to represent the content of the example script.

The dictionary syntax, ANNz["XXX"], stands for a job-option parameter labelled XXX, which is exposed to ANNz2. All other
variables are internal to the control script.

A.2. Data Processing

In the initial stage, the training and validation samples defined by the user are ingested. If the user does not explicitly define
separate input files for training and for validation, the complete sample is randomly split.

The user also has the option to define a reference sample, which represents the data set which is eventually evaluated. If this
reference is provided, training weights are calculated, as described in Section 4.4.

For example, the user may define,

ANNz["inAsciiFiles"]  = "trainingTestingSample.csv"
ANNz["inAsciiVars"]  = "F:m_u ; F:e_u ; F:m_g ; F:e_g ; D:z_spec ; C:survey"

ANNz["useWgtKNN"]  = True
ANNz["inAsciiFiles_wgtKNN"]  = "referenceSample.csv"
ANNz["inAsciiVars_wgtKNN"]  = "F:m_u ; F:e_u ; F:m_g ; F:e_g"
ANNz["weightVarNames_wgtKNN"]= "m_u ; m_g ; e_u; e_g ; (m_u-m_g)"

Here inAsciiFiles defines the input file containing the data set for training and validation. The corresponding list of variables
in this file is defined in inAsciiVars. For brevity, we define only a few inputs here; these are formatted as a semicolon-separated
list of variable type and name. The former are, e.g., F, standing for floating precision, D, standing for double precision, and C,
standing for a string variable. The variable names, m_u, e_u, m_g and e_g stand in this example for a pair of magnitudes and their
corresponding errors; the variable z_spec stands for the spectroscopic redshift; the variable survey stands for the name of the
spectroscopic survey. We note that our use of magnitudes, while useful for photo-z estimation, has no particular significance. The
user may assign any type of input (with any assigned name) as part of the input data set.

Setting the variable useWgtKNN to True activates the calculation of training weights. The associated parameters are
inAsciiFiles_wgtKNN and inAsciiVars_wgtKNN, respectively used to define the file-name of the reference sample, and
the corresponding list of variables it contains. The parameter, weightVarNames_wgtKNN defines the variables which are used for
the KNN search. In this example, distance between neighbors is defined in magnitude (m_u, m_g), in magnitude-error (e_u, e_g)
and in color (m_u-m_g). Any functional combination of input parameters may be used for the KNN search, for any variable which is
defined in both inAsciiVars and inAsciiVars_wgtKNN.

Once training weights are calculated, they are propagated automatically to all calculations in the following stages. This includes
the training of MLMs, the optimization process and the performance plots generated as part of the output of the code. The training
weights themselves are also included as part of the output of ANNz2, for every object from the training and validation samples.
ANNz2 may thus also be used to calculate representativeness weights for use by other codes.

17 See https://github.com/IftachSadeh/ANNZ.
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A.3. Training

In the second stage of the pipeline, a collection of MLMs is trained. The MLMs may be trained consecutively, or in parallel (e.g.,
using a batch-system).

For example, the user may set the following options:

ANNz["zTrg"] = "z_spec"
ANNz["minValZ"]= 0.0
ANNz["maxValZ"]= 0.8
ANNz["nMLMs"]= 20

for id in range(ANNz["nMLMs"]):
 if (id % 3) == 0: vars = "m_u ; m_g"
 elif(id % 3) == 1:vars = "m_u ; m_g ; (m_u-m_g) ; e_u ; e_g"
 else: vars = "(m_u∗(m_u <25) + 25∗(m_u >= 25))
 ; (m_g∗(m_g <23.5) + 23.5∗(m_g >= 23.5))"
 ANNz["inputVariables"] = vars

 if id == 0:opt = "ANNZ_MLM=ANN : HiddenLayers=N,N+5 : NeuronType=sigmoid
 : UseRegulator=True : TrainingMethod=BFGS : NCycles=500"
 elif id == 1: opt = "ANNZ_MLM=BDT : NTrees=600 : MinNodeSize=2%
 : BoostType=AdaBoost : VarTransform=N,D,P"
 elif id == 2: opt = "ANNZ_MLM=KNN : nkNN=90"
 else:  opt = ""
 ANNz["userMLMopts"] = opt

 ANNz["userCuts_train"] = "(e_u <5) && (survey == ⧹ "SDSS⧹")"
 ANNz["userCuts_valid"] = "e_u <10"
 ANNz["userWeights_train"] = "1/((1+e_u)∗(1+e_g))"
 ANNz["userWeights_valid"] = ""

The target of the regression (the spectroscopic redshift) is defined in zTrg, with the allowed limits for the latter set in minValZ and
maxValZ. In this case, 20 randomized MLMs will be trained (specified by nMLMs). The variables used as input for the training are
defined in inputVariables. One can select any functional combination of the available parameters which have previously been
defined in inAsciiVars, including logical expressions. An example for the latter is the choice made for the third option. Here
magnitudes are mapped to some effective magnitude-limit, which may prevent training with noisy data.

The type of MLM for each of the randomized ensemble is defined in the userMLMopts parameter. The current example shows
configurations of an ANN, a BDT and a KNN. Here, the ANN is defined as having two hidden layers, the first with N and the second
with N+5 neurons, where N is the number of input parameters; the selected type of neuron is a sigmoid function; a regulator is used
for the training; the training method is chosen as BFGS (using second derivatives of the error function); a maximum of 500 training
cycles are allowed. The BDT is defined as being composed of 600 trees (NTrees); a minimum of 2% of training objects is included
in each tree-node (MinNodeSize); training employs the AdaBoost boosting algorithm (BoostType). The KNN in this example
is defined simply as using 90 near-neighbors.

Of the key-words defined for userMLMopts, the only pattern unique to ANNz2 is (ANNZ_MLM = XXX), here with XXX being
ANN, BDT or KNN. This tag defines for ANNz2 which MLM type to use. All other job-options are native to TMVA. For instance, an
ANN may be trained with TrainingMethod = BP, GA, or BFGS; a BDT may use boosting (BoostType = AdaBoost,
RealAdaBoost, AdaBoostR2, or Grad), or it may use bagging (ABaggingNN), etc. The various possible settings are defined in
the TMVAmanual,18 along with overviews of the corresponding algorithms. All MLMs available through TMVA may be used in
ANNz2. However, in our experience, ANNs and BDTs perform best for the task of photo-z inference.

In the current example, the user has also requested that the variables used for training the BDT will have gone through
transformations prior to training. The latter are defined using the VarTransform parameter, with N representing normalization, D,
decorrelation, and P standing for principle-component decomposition. The VarTransform flag may be added to any
userMLMopts option string, for any type of MLM. The transformations are performed as part of the internal pipeline of the code,
and are automatically applied to evaluated objects.

18 See http://tmva.sourceforge.net/optionRef.html.
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The empty selection for userMLMopts indicates for ANNz2 that MLM configuration parameters should be chosen on the fly.
This is done as part of the internal pipeline of the code, and results in randomized configurations of ANNs and BDTs.

In the example, we also show how the user may define cuts for the training and validation samples (userCuts_train,
userCuts_valid). For instance, assuming we have spectroscopic data from several surveys, the user has chosen to only train with
galaxies from the "SDSS" survey. In addition, a cut is set to only use objects with e_u below certain limits. Such choices are useful
for comparing the performance for different training sub-samples. Additionally, weights may be defined for the training and
validation samples using userWeights_train and userWeights_valid. These take effect in addition to the
representativeness weights, provided the latter were calculated in the previous stage. We note that the various cut and weight
expressions can be set to different values for each of the randomized MLMs. For instance, the user may choose to impose a cut on
magnitude errors for half of the randomized MLMs, to asses if such a constraint improves the performance or not.

A.4. Optimization

In the optimization stage, the performance of the ensemble of trained MLMs is derived. The optimal solution is chosen as zbest, and
a PDF is derived.

There are several control options which the user may set,

pdfBinsType = 0
if pdfBinsType == 0: ANNz["userPdfBins"] = "0.0 ; 0.2 ; 0.3 ; 0.4 ; 0.5 ; 0.6 ; 0.8"
elif pdfBinsType == 1: ANNz["nPDFbins"] = 90
elif pdfBinsType == 2: ANNz["pdfBinWidth"] = 0.01

ANNz["max_bias_PDF"] = 0.01
ANNz["max_sigma68_PDF"] = 0.044
ANNz["max_frac68_PDF"] = 0.10
ANNz["MLMsToStore"] = "LIST ; 0 ; 1 ; 3"

The first block shows how the user may define the binning-scheme for the PDFs. One may set one of the following:
userPdfBins can be used to define a specific set of bins; nPDFbins can be used to divide the allowed range of the regression
target into (in this case) 90 bins of equal width; pdfBinWidth can be used to divide the allowed range into a dynamically
determined number of bins, which all have a width of (in this case) 0.01.

In general, all derived MLMs are combined to form the PDF. However, it is possible to set exclusion criteria, and reject those
which perform badly. The parameters max_bias_PDF, max_sigma68_PDF and max_frac68_PDF represent these criteria;
these respectively define upper limits on the values of the bias, the 68th percentile scatter, and corresponding combined outlier
fraction. Individual MLMs with metric values higher than the upper limits, are not incorporated into the PDF.

By default, only zbest and the PDF are included in the output of ANNz2. However, it is possible for the user to define additional
MLM estimators to be written out. This is done using the MLMsToStore parameter, which may include any MLM-id in the
range, id nMLMs <0 .

A.5. Evaluation

In the final stage of the pipeline, the user defines a data set, for which the photo-z estimators are calculated. Additionally, the
quality parameter for incomplete training, QNN, can be calculated on request.

For example, it is possible to choose the following configuration:

ANNz["inAsciiFiles"] = "evaluatedSample.csv"
ANNz["inAsciiVars"] = "F:m_g ; F:e_u ; F:m_u ; F:e_g"

ANNz["addInTrainFlag"] = True
ANNz["weightVarNames_inTrain"] = "m_u ; m_g ; (m_u-m_g)"
ANNz["minNobjInVol_inTrain"] = 150

where the inAsciiFiles and inAsciiVars variables are set as for the initial data processing stage. We note that
inAsciiVars does not need to exactly correspond to the same structure as for the previous stages. However, it must include all
variables which were used for training MLMs (see inputVariables).

If the addInTrainFlag parameter is set to True, the QNN estimator is added to the output. For the calculation of QNN, the user
needs to define weightVarNames_inTrain, the list of variables to be used for the KNN search. The user also has the option to
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set the value of nNN
min (see Section 4.4), using the parameter, minNobjInVol_inTrain.
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