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Abstract

The growth of computational astrophysics and the complexity of multi-dimensional data sets evidences the need
for new versatile visualization tools for both the analysis and presentation of the data. In this work, we show how to
use the open-source software Blender as a three-dimensional (3D) visualization tool to study and visualize
numerical simulation results, focusing on astrophysical hydrodynamic experiments. With a datacube as input, the
software can generate a volume rendering of the 3D data, show the evolution of a simulation in time, and do a fly-
around camera animation to highlight the points of interest. We explain the process to import simulation outputs
into Blender using the voxel data format, and how to set up a visualization scene in the software interface. This
method allows scientists to perform a complementary visual analysis of their data and display their results in an
appealing way, both for outreach and science presentations.
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1. Introduction

The amount of data available in astronomy grows con-
tinuously in size and complexity. This creates the need to
develop more effective visualization techniques to analyze and
present the data.

Typically, astronomers analyze datacubes, which are simply
multi-dimensional arrays of values such as the physical fields
of hydrodynamic simulations or integral field spectroscopy
data. It is easy to display the complete information of one-
dimensional (1D) arrays or two-dimensional (2D) matrices
using lineplots and colormaps. However, a problem appears for
3D datacubes when only a single projection or a sequence of
layers are displayed to visualize the data set. This procedure
comes with a reduction of the dimensionality of the data and
can cause astronomers to miss part of the information in the
visual analysis.

Three-dimensional visualization and volume rendering are
now alternatives for astronomers to display 3D data (Barnes &
Fluke 2008). Current software and libraries allow the user to
display 3D data in real time with different levels of
interactivity. Viewers like FRELLED3 (Taylor 2015) allow
the loading of FITS datacubes and the interactive manipulation
of them through rotations, scaling, and mask selection.
Alternatives like virtual reality immersions go one step forward
and let the user get inside the data to observe its features
(Ferrand et al. 2016). Using these novel techniques not only
allows us to produce attractive outreach material, but also

provides an additional perspective of the complete data set
while doing scientific analysis along with the traditional
methods (Goodman 2012).
In this work, we provide a procedure to generate a volume

rendering from astronomical data (in particular from numerical
simulations) in Blender, the 3D graphics software4, that can be
used to perform a qualitative visual analysis and create
presentation material. Blender is free and open-source, and in
recent years has shown potential as an astronomy visualization
tool. Kent (2013) presents a series of tutorials5 showing the
software features and possible applications: loading as halo
points a galaxy catalog or a particle simulation, using the mesh
modeling tools to recreate an asteroid, and also as a
demonstration of volume rendering using an image sequence.
The library AstroBlend6, developed by Naiman (2016),
provides further tools to import and display different types of
astronomical data in the interactive 3D environment of Blender,
such as 3D contours and also particle simulations using halos
with a colorscale.
A datacube can be imported into Blender through the voxel

data format, which is the file used to generate volumetric
renderings. By importing a simulation, for example, the
software can display in a 3D space one of the physical
properties of interest (density, temperature, etc) using a
colorscale, and show its evolution in time. Using the Blender
functions it is possible adjust the colorscale interactively to
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3 www.rhysy.net/frelled-archive.html

4 www.blender.org
5 www.cv.nrao.edu/~bkent/blender/
6 www.astroblend.com/
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highlight different features, incorporate a fly-around camera
animation to zoom in through the relevant regions of the
datacube, and finally produce an animation to use as outreach
material.

The use of volume rendering provides a smooth and
continuous display of the whole data set, in contrast with
visualizations using particles or contours. Because Blender
colorscale also provides control over the transparency, it is also
possible to explore the different depths of the volume without
reloading additional data.

This article is meant to serve as a guideline for users to
convert their own data into the voxel data format, learn the
steps to set up a Blender scene, and how to render an image or a
movie. Section 2 explains the format of the voxel data files that
can be used as an input to Blender. Section 3 provides simple
algorithms to convert some common simulation data formats
into voxel data. Section 4 describes the setup process in
Blender from the initial scene through the loading of the voxel
data, and finally the rendering process. Section 5 displays
examples using Gadget2 (Springel 2005) and FARGO3D
(Benítez-Llambay & Masset 2016) simulations rendered in
Blender.

To complement this article, the reader can watch the tutorial
series “Blender & Astronomy: Using Voxel Data for 3D
Visualization”7, which covers the whole process described
above with real-time demonstrations in Blender. In this article,
these videos will be referred as TUT:#. All the material used
for this work is available in the github repository “Blender
Bvoxer”8, which includes the Blender scenes, the scripts to
generate voxel data files, and simulation data provided by J.
Cuadra and S. Perez to test this visualization technique. In this
article, these codes will be referred as GIT:FolderName.

2. Understanding Voxel Data in Blender

This section will explain the key concepts related to the
voxel data, which is the link between the astrophysical data and
the 3D visualization in the Blender scene. The voxel data is a
binary datacube file that will serve as input for the visualiza-
tion. Although the voxel data can be generated from a sequence
of images (as we will discuss later in this section), we prefer
(and recommend) to use a single binary file to store the
information. This approach allows the user to represent the
datacube as a single array (which is convenient when
performing operations over the data), it easier and faster to
write a single binary file than multiple images, and finally, it
allows the user to store all of the information in a compact
format rather than in a directory. To complement this section,
the reader can refer to the tutorial series TUT:1 and github

repository GIT:Example, where there are demonstrations for
generating a simple voxel data file from a function f (x, y, z).
To visualize 3D data, it is necessary to define a finite volume

within the Blender scene; this is done by creating a cube object
that will be the domain for the visualization. Once the voxel
data file is assigned to this domain, the 3D information stored
in the file will be rendered in the Blender scene within the
boundaries of the cube. Further technical details of the setup,
such as the material and texture settings, will be addressed later
in Section 4.
The voxel file represents a datacube subdivided in the three

cartesian axes (x, y, z). For each discrete cartesian coordinate (i,
j, k ) inside the volume, there is one voxel value V(i, j, k ).
Additionally, it is possible to include multiple snapshots
(frames) in the same file. This allows showing the evolution of
the datacube in time. Therefore, the voxel data is defined by

• The resolution numbers (nx, ny, nz), which indicate the
number of subdivisions of the domain in each axis;

• The frame number nf, which indicates the total number of
frames contained in the file; and

• (nx×ny×nz)×nf values, which describe the astrophy-
sical data that will be visualized inside the domain.

At the time of writing of this article, Blender can receive the
voxel data as an input in three different file formats: Blender
Voxel, 8bit Raw, and Image Sequence. The following
subsections will describe each format and point their
advantages (+) and disadvantages (–).
The guidelines and notation provided in this article to write

both Blender Voxel and 8bit Raw file formats are based on the
description and examples available at Pythology Blogspot.9

Also, Kent (2013) (see Section 4.1) provides a brief description
about how to use the Image Sequence format and a complete
example on his website.10

2.1. Blender Voxel Format

The Blender Voxel format consists in a binary file that has
4×32bit integers in the header, corresponding to (nx, ny, nz,
nf ), followed by the (nx×ny×nz×nf)×32bit floating point
values that represent the actual data. For this format, the values
must be normalized to a [0, 1] interval. The order to write the
full datacube after the header is

1. Frame by frame, where each frame has nz layers.
2. Layer by layer, where each layer has ny lines.
3. Line by line, where each line has nx values.
4. Value by value, until completing the nx values.

7 www.youtube.com/watch?v=zmY_
mn6Ue2g&list=PLjFmkbKBKd0WuhhbR2MGPXZyWW7TPcNSw
8 github.com/matgarate/Blender_Bvoxer

9 pythology.blogspot.cl/2014/08/you-can-do-cool-stuff-with-manual.html
10 www.cv.nrao.edu/~bkent/blender/tutorials.html
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The following example pseudo-code illustrates the order in
which the file is written:

, , ,
:

:
:
:

, , ,

write nx ny nz nf
for t from 0 to nf
for k from 0 to nz
for j from 0 to ny
for i from 0 to nx
write Data i j k t

([ ])

( [ ])

• (+) Allows high dynamic range for the data values by
using 32bit floats.

• (+) Includes a header. It only requires to input the file into
Blender.

• (+) Allows multiple frames.
• (–) High memory usage because of using 32bit float.

We want to remark that the high memory usage may be
specially troublesome when multiple frames are stored in the
voxel data file, as it is not possible create arbitrarily large files.
For large number of frames, it may be more convenient to store
each one in a separate voxel file and then use the Python API of
Blender to switch between frames. This will be discussed again
in Section 4.3.

2.2. 8bit Raw Format

This format is a binary file of (nx×ny×nz×nf)×8bit
integer values. The values for this format should normalized to
a [0, 255] interval. The order to write the file is the same as the
used for the Blender Voxel format; the only difference is the
absence of the header and the size of the values. For this
format, the (nx, ny, nz) values must be written as an input in the
Blender interface. The value of nf is calculated internally by
Blender based on the file size and the previous three values.

• (–) Low dynamic range for the data values.
• (–) Does not include a header. It is necessary to input the
resolution manually in Blender.

• (+) Allows multiple frames.
• (+) Memory efficient because of using 8bit integers.

2.3. Image Sequence

The Image Sequence format allows the construction of a
datacube using multiple images as layers. The format consists
in a directory that contains nz image files (png, for example) of
nx×ny pixels. If the user already has the tools to save his data
as a set of images, this would be the most straightforward
method to construct the voxel data.

The total number of images must be specified in the interface
along with the image #1. The (nx, ny) values are obtained from
the files. Those files must be numerated to guarantee that the

datacube will be built in the correct order. For example, if there
are 100 images a valid numeration would be name001.png, K,
name100.png.

• (+) Convenient if the images can be easily generated in
order to build the datacube. This would save extra coding.

• (+) Does not need a header. Blender computes the
resolution automatically from the number of images and
their dimensions.

• (–) Only supports a single frame.
• (–) Requires multiple files.

The memory usage of this method will depend on the image
number of channels and their dynamic range. However, notice
that Blender will interpret all images as monochromatic, so
using anything but a grayscale is unnecessary. The dynamic
range of the grayscale will determine the level of detail. For
example, an 8bit image will provide greater detail than a 1bit
image at the cost of memory usage. We tested this method with
both 1bit and 8bit grayscale images, and also with 24bit (RGB)
and 32bit (RGBA) images. Further information can be found in
Kent (2013).

3. Create Voxel Data from Simulation Outputs

As mentioned in the previous section, the Blender Voxel and
8bit Raw inputs take the form of datacubes. By the time of
writing this article, Blender can only subdivide the visualiza-
tion domain in the cartesian axes (x, y, z). Therefore, the
algorithm to construct the voxel file needs to fill each grid cell
of this datacube from the simulation data.
For a simulation that uses an evenly spaced cartesian grid,

writing the voxel data is quite straightforward, as the only thing
required is to match (nx, ny, nz) with the resolution of the
simulation, and scale the data values to the appropriate range
before writing the file in the Blender Voxel or 8bit Raw format.
However, if the simulation is done using a cylindrical or
spherical grid, a logarithmic scale, or if it is a particle
simulation (like N-Body or SPH), it is necessary to transform
the space of the original data into a cartesian datacube.
In this section, we propose methods to generate a cartesian

datacube from a grid simulation in spherical coordinates, and
also from a particle simulation. As it is impossible to address
all the possible data formats and methods, we expect that these
two should serve as good examples that the user can adjust to
his/her own needs.
The tutorial video TUT:3 (and the second half of TUT:4)

also explain these methods by going through the example
scripts; however, the aim of these videos is to assist people with
little or no programming skills. An experienced programmer
will find it more convenient to read the following subsections
and look the at the referenced codes straightaway.
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3.1. Spherical Grid-based Simulation

Converting an spherical grid into a cartesian datacube
requires to fill each voxel (i, j, k ) (where i n0, 1xÎ -[ ],
j n0, 1yÎ -[ ], k n0, 1zÎ -[ ]) using the spherical coordi-
nates (r, f, θ), which are the radial, azimuthal, and co-latitude
directions in the simulation, and the physical properties F of
each grid cell, such as density, energy, temperature, etc. Notice
that the spherical coordinates should indicate the middle of the
grid cell and not the borders.

We propose the following algorithm to perform the
transformation:

1. First, transform the (r, f, θ) coordinates into their
cartesian equivalents (x, y, z).

2. Define the cartesian boundaries of the datacube using the
minimum and maximum (x, y, z) values from the
previous step.

3. Define a resolution (nx, ny, nz) for the voxel datacube.
4. For each voxel position (i, j, k), obtain its cartesian

equivalent (xi, yj, zk) using the following transformation
i x x i x x n 1i xmin max min = + - -· ( ) ( ). Repeat this
for j yj and k zk .

5. Check if the values (xi, yj, zk) are within the spherical
boundaries of the simulation. If they are, proceed to the
next step. If they are not, assign the voxel V(i, j, k )=0.0.
This is expected to happen, as a spherical grid cannot fill
completely the borders of a cartesian grid or the regions
inside the inner radial boundary of the simulation.

6. The value of each voxel V(i, j, k ) in the datacube with
position (xi, yj, zk) will be defined by the N closest grid
cells of the simulation and their physical properties
F (Ca), with Ca the a th closest cell neighbor. We present
two alternatives for determining V(i, j, k ).
6.1. For N=1, use the closest neighbor as the only

contribution to the voxel value. Then, V(i,
j, k )=F (C1).

6.2. For N=8, it is possible to use a trilinear interpola-
tion if the 8 positions (x, y, z) of the neighbors form a
box that contains the (xi, yj, zk) coordinate of the
voxel. Then,

V i j k w C F C, , , 1
a

N

a a
0

8

å=
=

=

( ) ( ) · ( ) ( )

where w(Ca) is the weight for the trilinear interpola-
tion of the grid cell Ca (this is the method used in the
example shown in Figure 4).

7. After having all the voxel values, rescale them to be in
the interval [0, 1] or [0, 255], depending if the voxel
format is Blender Voxel or 8bit Raw, respectively. Notice
that in the step 5, a value of 0.0 was assigned to the
voxels outside the simulation boundaries, so it may be

necessary to force them again back to 0.0 for the
visualization if the property F allowed negative values.

An implementation of this algorithm is available in the github
repository GIT:Fargo3DVoxelizer, where FARGO3D outputs are
converted from an spherical grid to Blender Voxel format. Both
alternatives for steps 6.1 and 6.2 are available in the repository.
While the former is enough for the visualization, it may cause
discontinuities in the sampling. On the other hand, the latter solves
this problem and samples the cartesian datacube smoothly.

3.2. Particle-based Simulation

The process to generate a datacube from a particle simulation
can be divided in two steps: first, define a cartesian grid and
find the position of the particles on it, and second, use the
particles in each grid cell to compute its voxel value V(i, j, k ).
For a simulation with N particles, we have their position,

velocities, and physical properties F. The latter can be masses
and sizes for N-Body simulations, or density, thermal energy,
and other fluid properties for hydrodynamic simulations like
SPH (Monaghan 1992).
We propose the following algorithm to convert an array of

particles into an evenly spaced datacube:

1. Define the boundaries of the simulation using the
minimum and maximum values of the particles positions
in each axis (x, y, z).

2. Define a resolution (nx, ny, nz) that is convenient for the
particle count and available memory.

3. Transform the x positions of the particles from the range
[xmin, xmax] to the range [0, nx] using the linear
transformation x x nv

x x

x x x
min

max min
 = -

-
. Repeat for the y

and z coordinates.
4. Identify if a particle P is inside (or should influence) a

certain grid cell (i, j, k ), and its contribution to the voxel
value V(i, j, k ). For this step, we propose the following
alternatives:
4.1. Simple average estimation. Truncate the transformed

positions to their integer forms. A particle P is inside
a certain grid cell if the coordinates (int(xv), int(yv),
int(zv)) match the (i, j, k ) indexes of the cell in the
datacube. The value of each voxel will be given by

V i j k
N

F P, ,
1

, 2
a

N

ijk
a

0

ijk

å=
=

( ) · ( ) ( )

where Pa are the Nijk particles inside a grid cell (i, j,
k ), and F (Pa) is the physical property chosen for
visualization of the Pa particle (this is the method
used in the example shown in Figure 5).

4.2. SPH interpolation. Using the interpolation method
implemented in SPLASH11 (Price 2007, Sections 4.1

11 users.monash.edu.au/~dprice/splash/
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and 4.2), the value of each voxel is given by

V i j k
m

F P W r h, , , , 3
a

N
a

a
a

0
å r

=
=

( ) · ( ) ( ) ( )

where W is the SPH kernel function, r is the distance
between the particle Pa and the center of the grid cell
(i, j, k ), ma and ρa are the mass and density of the
particle, and h hmax , 2a= D( ) is the maximum
between the smoothing length of the particle and the
half width of the grid cell.

4.3. Other possible methods could include using the
N-nearest particles to influence a grid cell and use a
customized weight functions instead the SPH kernel,
such as power laws of the distance. The value of the
voxel can be computed in an analogous way as in the
previous methods.

These procedures can be optimized by iterating
over the particles and adding their contribution to the
voxels that are within their range of influence, rather
than by iterating over all the voxels and looking for
the contribution of all the N particles (Price 2007).

5. The last step is to rescale the whole voxel datacube to
have values in the interval [0, 1] or [0, 255], depending
on if the voxel format is Blender Voxel or 8bit Raw,
respectively.

An implementation of this algorithm is available in the github
repository GIT:SPH. The example code reads a particle list and
generates a Blender Voxel file using the density field of the
particles. The approach of step 4.1 is used for simplicity, but
the interpolation recipe described by Price (2007) should be
implemented for a more accurate result, especially if the size of
the grid cells is smaller than the relevant smoothing lengths of
the simulation.

4. Blender Setup for Visualization

To produce a volume rendering, the light needs to pass
through the defined volume, be absorbed, scattered, and then
transmitted by interacting with the voxels according to their
properties (density, emission, etc), until it reaches the camera.
The concept is similar to the radiative transfer process in
astrophysics, although interactions are computed in the color
space rather than in wavelength.

This section will cover the overall steps required to load a
Voxel Data file into Blender, set up the material, render an
image, and also create a fly-around camera animation. This
procedure is also demonstrated in our tutorial series TUT:2 in
real time. Kent (2013) also covered the setup of a Blender
scene, going through the steps of a standard workflow.

Before starting, it is advised to take a look at the basic
Blender commands, just to be able to navigate quickly through

the interface. Some pages that cover the basics are Blender 3D
Design Course—Lesson 0112 by Neal Hirsig, and also the
Blender Basics course13 from CG Cookie. To learn about any
specific feature of the software, the reader can refer to the
online manual.14

After opening Blender, the default scene will be displayed as
shown in Figure 1.

4.1. Set Up the 3D Texture

Here we list the steps to set up the 3D material, starting
from the default scene. The default cube object will act as
domain for the Voxel Data as mentioned in Section 2. For the
complete procedure, we will use the default internal engine
Blender Render, which allows to use customized voxel files as
input:

1. Right-clicking on the default cube gives access to the
object properties, including Material and Texture. Select
the Material property, set the type to Volume and
Density = 0.0 (see Figure 2(a)). The integration of the
light rays through the volume can be customized in the
Integration panel through the step size and the depth
cutoff; both parameters can be adjusted to improve the
accuracy at the cost of rendering time. More details about
the other volume rendering settings can be found in their
respective sections in the manual.15

2. Select the Texture property and set the type to Voxel Data
(see Figure 2(b)). In the Voxel Data panel select the file
format to one of the discussed in the Section 2 (see
Figure 2(c)). If the datacube used contains only a single
frame (nf = 1), then check the Still Frame Only, and set
the Still Frame Number = 1 to display the frame. For
nf>1, leave Still Frame Only unchecked. In this case the
Current Frame value of the Blender Timeline will
determine which frame of the datacube should be
displayed.

3. In the Influence panel, check the Density, Emission, and
Emission Color fields, and set them all to 1.0 (see
Figure 2(c)). The Influence panel determines which
parameters of the volume will be defined from the Voxel
Data input. The Density field defines the opacity of the
volume, the Emission defines its brightness, and Emis-
sion Color allows to use a colorscale that can be
customized in the Color panel, instead of a grayscale.

4. In the Color panel, check the Ramp option (see
Figure 2(d)). The ramp is a function that receives the
values of the Voxel Data file as a position between 0.0

12 gryllus.net/Blender/Lessons/Lesson01.html
13 cgcookie.com/course/blender-basics/
14 www.blender.org/manual/
15 www.blender.org/manual/render/blender_render/materials/special_
effects/volume.html
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and 1.0, and returns the color specified at that position
(notice that it is also possible to control the transparency
with the α channel, allowing see through or completely
hide a range of values). Selecting the sliders allows to
control their position in the ramp and the color output.
For the interpolation, we suggest to start using the RGB
color mode, and select the Linear method for the
transition between consecutive sliders. The reader is
encouraged to experiment with the other non-linear
interpolation methods available in order to find the
colorscale that best suits the data. Finally, adjusting the
Brightness and Contrast helps to highlight the features
of the volume and to expose its internal structure. This
last part is mostly a process of trial and error, and may
depend on the resolution of the Voxel Data file.

4.2. World, Camera, and Render

The following steps consist in the scene adjustments,
positioning of the camera, correct the cube scaling, and other
tweaks to improve the quality of the visualization.

1. Start by deleting the default Lamp object, as the datacube
will illuminate by itself.

2. It is recommended to scale up the Cube object to better
resolve the volume (see Figure 3(a)). It is advised to use a
scale consistent with the geometry of the simulation; for
example, the scale of a disk simulation in the z axis
should be smaller than the scale of the x and y axes.

3. In the World properties, it is convenient to set the
Horizon color to black to increase the contrast between
the Voxel Data and the background (see Figure 3(b)).

4. To have a preliminary visualization of the Voxel Data,
switch the Viewport Shading to Rendered. The viewport
should look like Figure 3(c). This mode can be used to
explore the data interactively and to adjust the color,
brightness, and contrast in the Texture property in
real time.

5. To render a quick image, orient the Camera looking
toward the Cube object, and position it at a distance such
that the volume is contained inside the Camera field of
view. There are many ways to do this which can be
learned from every basic tutorial, but for now it is advised
to use the command Align Camera to View. Then, select
the resolution of the image in the Render properties and
press Render (see Figure 3(d)).

6. If the datacube contains multiple frames to generate an
animation (nf>1), select the Start Frame and End Frame
to go from 1 to nf; remember to leave the Still Frame
Only option unchecked in the Texture properties. Then,
go to the Output panel in the Render properties, choose a
destination and format for the movie file, and press the
Animation button.

4.3. Other Setup Tools

Different setup tools can help produce more appealing
results. Here, we list some of them, but because illustrating
each step would greatly extend the length of this section, they

Figure 1. Default Blender scene which includes a default cube, a camera, and a lamp. With the cube selected, it is possible to access to the material and texture
properties in the right panel of the interface. Image reproduced from Blender.

(A color version of this figure is available in the online journal.)
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Figure 2. Steps to import the Voxel Data and set up the 3D texture. (a) Set the Material to Volume and Density to 0.0. (b) Set the Texture Type to Voxel Data. (c) In
the Voxel Data panel, set file format to Blender Voxel or 8bit Raw (this last one requires the user to specify the dimensions of the datacube) and load the datacube file.
In the Influence panel, set the Density, Emission, and Emission Color to 1.0. (d) In the Color panel, activate the Color Ramp and then adjust the sliders to customize
your colorscale; adjusting the Brightness and Contrast may help to highlight the features of the datacube. Image reproduced from Blender.
(A color version of this figure is available in the online journal.)
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Figure 3. Steps to generate a quick render. (a) Rescale the Cube object in the Object properties. (b) In World properties, set the Horizon color to black. (c) In the 3D
viewport, set the Viewport Shading to Rendered to previsualize the datacube. (d) In the Render properties, select the image dimensions. Press Render to generate a
single image, or Animation to render a movie in the defined Output location. Image reproduced from Blender.
(A color version of this figure is available in the online journal.)
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will only be explained briefly. These are standard methods in
Blender which can be found in many video tutorials, including
tutorials TUT:2 and TUT:4.

• Camera fly-around. The Camera can be constrained to
move in time through a customized path and kept pointing
toward the object of interest. This allows the camera to
focus on the different regions of the simulation as it
evolves in time, or simply go around all the details of a
single frame of the datacube.

The overall procedure is:
– Create a Bezier curve or Bezier circle and go to Edit
Mode to customize the animation path.

– In the Curve properties check the Path Animation and
set the number of frames needed to go through the
whole path.

– To animate the Evaluation Time, set it to 0.0 at the
starting frame, right click of the value slider, and select
Insert Keyframe. Repeat this last step at the final frame
with a different value for the Evaluation Time. This
will cause the Evaluation Time to change between the
selected values during the animation.

– Reset all the position and rotation values of the Camera
object to 0.0.

– Then, in the Constraints properties, add the Follow Path
constraint. Set the Bezier curve as the Target object, the
Y axis to point forward, the Z axis to point upwards.

– Add the Track To constraint, and set the Cube as the
target object, the −Z axis to point towards the Cube,
and the Y axis to point upwards.

– By pressing Play, you should see the camera following
the specified path.

– An optional method is to create an Empty Object and
use it as the focus of the Camera in the Track To
constraint. Animating the position of this object allows
to move the camera focus point through the animation.

• Adding halo points. As the data is related to astronomical
subjects, it may be appealing to include a nice background
if the audience is non-scientific. The Halo Points are ideal
to simulate stars in the background of the scene.
– Add any Mesh object and switch from Object Mode to
Edit Mode.

– Select all the vertices and use the Merge at Center
command to collapse them into a single vertex.

– In the Material property, switch the type to Halo. Use
Size and Hardness values to control the appearance of
the halo.

– To add multiple halo points at once, create an object
like a Sphere, and in Edit Mode use the command
Delete Edges and Faces. Repeat the material setup to
produce as many halo points as vertices had the object.

• Compositor post-processing. The previous sections showed
how to set up a Color Ramp for the datacube. However,

while the Brightness and Contrast values help to highlight
the features of the data, these do not always produce a
colorscale that favors the image as a whole. By switching
from the 3D View to the Node Editor it is possible to post-
process the rendered image for more appealing results. One
useful node is the Color Balance, which corrects the image
Shadows, Midtones and Highlights through the Lift,
Gamma and Gain colors respectively.

• Switch Voxel Data files with Python. It is also possible to
automatize some of the tasks done in the interface using the
Blender API for Python scripting. As was noted in
Section 2, storing a whole simulation in a single Voxel
Data file can be inconvenient for long (or even moderate)
simulations. In this case, it is easier to have one voxel file
for each snapshot and perform the switch every frame
through a script.

In the Python script, import the bpy library (Blender internal
library), and iterate over the frame count. Then, in each frame
assign the corresponding voxel file to the texture, render the
image, and save it. The individual images can be joined in a
single video with the Blender Movie Editor or with an external
program. An example script for this process is available in the
github repository GIT:VoxelAnimation.

5. Examples

The Voxel Data visualization described in this work was
tested for Gadget2 and FARGO3D simulation outputs. The
Gadget2 code uses the lagrangian formalism with the
Smoothed Particle Hydrodynamics (SPH) method, while
FARGO3D uses the eulerian formalism and support cartesian,
cylindrical, and spherical grids.
The image shown in Figure 4 was rendered using

FARGO3D outputs provided by S. Perez. The figure shows a
protoplanetary disk with a giant planet embedded, and the
between the planet and the gas. The planet gravity opens a gap
along its orbit and excites the spiral wakes that propagate
through the disk. Central and surrounding stars were included
for aesthetic reasons. The available video animation16 shows
the gap opening process and the circumplanetary disk that
surrounds the planet.
The image shown in Figure 5 was rendered using Gadget2

outputs provided by J. Cuadra. The figure shows the stellar
winds emitted by a Wolf-Rayet star as it moves through the
galactic center and how the ejected material form clumps by
cooling in the interstellar medium. The available turn-around
animation17 also shows that the clumps are distributed in a
“parabolic shell” rather than through all of the space (as could
be misinterpreted by using a projection view).

16 www.youtube.com/watch?v=ahf3J_6iv3s
17 www.youtube.com/watch?v=IQh-rvOLtdQ
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In both examples (images and videos) we illustrate different
animation techniques that help to highlight the particular
features of each simulation, such as the circumplanetary region
or the clump distribution. We also encourage readers to
explore more features of the software to find the most effective
way to present their own work and guide their audience
through the data visualization.

6. Summary

We discussed how to use the Volumetric Rendering features
of the software Blender to display the results of astrophysical
simulations. We described the Voxel Data formats, which are
binary files (or image sequences) used to import a datacube into
the Blender interface, and discussed the advantages and
disadvantages of each one in terms of flexibility and memory
usage. In this context, we proposed algorithms to convert
simulation outputs (either grid or particle-based) into a voxel
datacube, and provided examples using stellar winds Gadget2
simulations, and protoplanetary disks FARGO3D simulations.

In the Blender interface, we showed the process of setting up
a scene, loading the Voxel Data file, and adjusting the
colorscale to render an image. We also presented some basic
tools, such as color balance corrections and camera fly-around
animation that may help to create appealing outreach material.

The whole process is available in our Youtube tutorial series
“Blender & Astronomy Tutorial. Using Voxel Data for 3D
Visualization”. We want to mention that though this article was
focused on representing numerical simulations, the overall
procedure is the same if the information can be stored in a
datacube.
The use of Volume Rendering and 3D visualization offers a

whole new range of possibilities to perform complementary
data analysis and to display our results for the public. Softwares
like Blender present many useful tools to accomplish this task.
Furthermore, along with the evolution of computer graphics
more alternatives will be available, allowing astronomers to
create more detailed and effective visualizations.

We thank Jorge Cuadra and Sebastián Perez for providing
their simulation data to test this visualization procedure, and
Pablo Benítez-Llambay for his collaboration in the develop-
ment of the FARGO3D to Voxel Data converter. We thank S.
Perez, P. Benítez-Llambay, and D. Calderón for their
comments in the early version of this paper, and also thank
the anonymous referee for the comments and suggestions to
improve this article. The author acknowledges financial
support from the Millennium Nucleus RC130007 (Chilean
Ministry of Economy) and the associated PME project,

Figure 4. Protoplanetary disk with a massive planet carving a gap (S. Perez
et al. 2017, in preparation). Simulation data provided by S.Perez using
FARGO3D. The output was converted from an spherical grid as described in
the Section 3.1. The image was post-processed to brighten the colors, and the
halo points were added to emulate surrounding stars.
(A color version of this figure is available in the online journal.)

Figure 5. Stellar winds from a Wolf-Rayet star moving through the galactic
center (Cuadra et al. 2008). Simulation data provided by J. Cuadra. The output
was converted from an SPH simulation as described in Section 3.2. The image
was post-processed to brighten the colors, and also the Blend Sky option of the
World properties was used to add the background colors.
(A color version of this figure is available in the online journal.)
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“MAD Community Cluster”, from FONDECYT grant
1141175, and Basal (PFB0609) grant. The Geryon clusters
housed at the Centro de Astro-Ingenieria UC were used for
the SPH calculations of this paper. The BASAL PFB-06
CATA, Anillo ACT-86, FONDEQUIP AIC-57, and QUIMAL
130008 provided funding for several improvements to the
Geryon clusters. The FARGO3D simulations used in this
work were performed in the Belka cluster, financed by
FONDEQUIP project EQM140101 and housed at MAD/
Cerro Calan.
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