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ABSTRACT

We present and analyze the performance of a new algorithm for performing accurate simulations of the solar
system when collisions between massive bodies and test particles are permitted. The orbital motion of all bodies at
all times is integrated using a high-order variable-timestep explicit Runge–Kutta Nyström (ERKN) method. The
variation in the timestep ensures that the orbital motion of test particles on eccentric orbits or close to the Sun is
calculated accurately. The test particles are divided into groups and each group is integrated using a different
sequence of timesteps, giving a multirate algorithm. The ERKN method uses a high-order continuous
approximation to the position and velocity when checking for collisions across a step. We give a summary of the
extensive testing of our algorithm. In our largest simulation—that of the Sun, the planets Earth to Neptune and
100,000 test particles over 100 million years—the relative error in the energy after 100 million years was of the
order of 10−11.

Key words: celestial mechanics – methods: numerical – minor planets, asteroids: individual (MSC 2010: 65L06,
85-08, 70F10)

1. INTRODUCTION

State-of-the-art algorithms for simulations of the solar
system when collisions between test particles and massive
bodies are permitted either use fixed timesteps or a combination
of fixed and varying timesteps. The algorithm in Grazier et al.
(2005) uses a small fixed timestep during close encounters and
a larger fixed timestep otherwise. The algorithms in the
integrators Mercury (Chambers 1999), Swifter (Kauf-
mann 2005), SyMBA (Duncan et al. 1998; Levison &
Duncan 2000; Levison et al. 2011), QYMSYM (Moore &
Quillen 2011), and GENGA (Grimm & Stadel 2014) use a
varying timestep or an equivalent during close encounters and a
fixed timestep otherwise.

We present and test an algorithm that uses a high-order
variable-timestep explicit Runge–Kutta Nyström (ERKN) pair
for the integration of all bodies at all times. Our algorithm is
intended for accurate simulations near limiting precision.

Using the same integration formula for all bodies at all times
means that the implementation of the algorithm is noticeably
simpler than existing algorithms. No heuristic is needed for
switching to and from the scheme for handling close
encounters. There are fewer fine tuning constants in the
algorithm with a value that must be fixed, and fewer input
values to the algorithm the user must specify. These features
make it easier to perform a thorough investigation of the
algorithm’s performance.

Of greater importance is the use of a variable timestep. When
the timestep is fixed, the accumulated error in the position and
velocity of a test particle can increase rapidly with time if the
eccentricity is above some specified threshold. In addition, a
fixed-timestep method cannot accurately integrate the orbit of a
test particle close to the Sun unless the timestep is very small.

To illustrate the difficulty with eccentric orbits, we
performed 200,000 simulations, each of the Sun, the Jovian
planets, and a different test particle. One half of the test
particles had an initial eccentricity of 0.5, the other half 0.8.

Each simulation was performed three times, once each with the
variable-timestep order 12 ERKN pair of Dormand et al.
(1987), the order 12 formulae from the pair used as a fixed-
timestep method, and the fixed-timestep order 13 Störmer
method of Grazier et al. (2005). The fixed-timestep ERKN
method used a timestep that was the average of the timesteps
when the same particle was integrated using the ERKN pair. As
recommended in Grazier et al. (2005), we used a timestep of
four days for the Störmer method.
Figure 1 contains smoothed graphs of the L2 norm  E 2 of

the error in the position of the test particles after 30,000 days as
a function of the initial a. The L2 norm of the n-vector w is
defined as
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The graphs were smoothed using the MATLAB function
filter. The error for each particle was calculated as the
difference between the numerical solution and an accurate
reference solution obtained from an integration in quadruple
precision. All particles within an activity sphere of a planet at
the end of one or more integration steps were excluded from
the graphs.
We observe from Figure 1 that E 2 for the variable-timestep

ERKN pair E12VS varies little with a, and has similar values
for e=0.5 and e=0.8. The error also varies little with a for
the fixed-timestep Störmer method S13FS when e=0.5. For
e=0.8, the graph of  E 2 has a distinct elbow at »a 8. For
larger a,  E 2 varies little with a; for smaller a,  E 2 increases
rapidly as a decreases. E12FS fares worse than S13FS and has
an elbow for e=0.5 and 0.8.
We begin in Section 2 with the definition of the equations of

motion, ERKN pairs, and their continuous approximations. We
also give a summary of the scheme for the selection of the
timestep for ERKN pairs. In Section 3, we present our multirate
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algorithm and follow this in Section 4 with a discussion of
suitable input values to the algorithm. We give a summary of
extensive numerical testing of our algorithm in Section 5 and
end in Section 6 with a discussion of our results.

2. BACKGROUND

Let R t ,i ( ) = ¼i N1, , p and r tj ( ), = ¼j N1, , t, be the
position of the ith massive body and jth test particle,
respectively, at time t, where Np is the number of massive
bodies and Nt is the number of test particles. The equations of
motion for all +N Np t bodies can be written as
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where the dot operator denotes differentiation with respect to t
and m

l
is G times the mass of the lth massive body.

Equations (2) and (3) combined with initial conditions form
the initial value problem
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An explicit ERKN pair to integrate Equation (4) calculates
the approximations yi, yi̇, yi , and yi̇ on each integration step.
The values yi and yi̇ are order p approximations to y ti( ), and
y ti˙ ( ), respectively, and yi and yi̇ are order <q p approxima-
tions to y ti( ) and y ti˙ ( ), respectively. The four approximations
are calculated from the updated formulae
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where = - -h t tl l 1 is the timestep, = - -f f t y,l l1 1 1( ) and
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The integers s, p, q and the coefficients a, b, ¢b , b , ¢b , c are
chosen so the formulae in the pair have the required order and
the pair has desirable properties. We refer to p as the order of
the pair.
On each step with an ERKN pair, the timestep h is chosen

so that the norm of the estimated local error satisfies the local
error test. The local error in y tl( ) and y tl˙ ( ) is estimated
as -y yl l and -y yl l

˙ ˙ respectively. A step is accepted if
the local error test le TOL is satisfied where

= - -¥ ¥    y y y yle max ,l l l l{ ˙ ˙ }, and >TOL 0 is the local
error tolerance supplied by the user. The norm ¥ · is the ¥L
norm and is defined for the n-vector w as
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Other norms such as the L2 defined in Equation (1) can be
employed. We use the ¥L norm because it is less sensitive to
decreases in the number of components of y and ẏ when test
particles are removed from a simulation.
During an integration, the timestep hnew for a new step is

calculated from the timestep h for the step just taken using the
formula
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where b< <0 1. The constant β acts as a safety factor that
ensures most steps are accepted. We had b = 0.9 in all of our
testing, other values could have been used. Formula Equa-
tion (8) is employed on all attempted steps except the first for

Figure 1. L2 norm of the error in the position of the test particles after 30,000 days as a function of the initial a for initial eccentricities of e=0.5 (left) and e=0.8
(right). E12VS—the order 12 variable-timestep ERKN pair, E12FS—the order 12 fixed-timestep ERKN method, S13FS—the order 13 fixed-timestep Störmer
method.
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which the user supplies the timestep since the local error
estimate is not available. On the last step of an interval, hnew is
adjusted so that the integrator does not step past the right end
point of the interval.

Our algorithm requires the continuous approximations y tl ( )
and y tl̇ ( ) to y t( ) and y t˙ ( ), respectively, for Î -t t t,l l1[ ]. These
approximations, commonly called interpolants, are of order
 p p and defined as
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where t = - -t t hl 1( ) ,  s s, and g tj ( ) are not the
derivatives of b tj ( ). As the notation implies, fj, j=1,K,s,
are the same as the corresponding fj in Equations (5) and (6). If
 >s s, the values fj,

= + ¼j s s1, , , must be calculated.
Since the fj are independent of τ, these extra values of fj must
be found just once per step. The interpolant can then be
evaluated for any number of τ without calculating more f
values.

Many ERKN pairs have been published. Dormand et al.
(1987) presented a new order 12 pair (p= 12). They tested the
pair and other high-order pairs on Kepler’s two-body problem
with orbital eccentricities in the range of 0.1–0.9. Dormand
et al. (1987) concluded that their new pair, which we denote by
DEP12, was the most efficient pair near limiting precision.
Sharp et al. (2013) presented new order 10 (p= 10) and 12
pairs. They tested the new pairs and DEP12 on four N-body
models from solar system dynamics, as well as Kepler’s two-
body problem with orbital eccentricities of 0.1, 0.5, and 0.9,
and the PLEI N-body problem of Hairer et al. (1987). Sharp
et al. (2013) concluded that their order 12 pair was on average
10% more efficient than DEP12 and that their order 10 pair
could be more efficient than their order 12 pair on problems
with rapid changes in the solution. Despite the greater
efficiency of these new pairs, we used DEP12 because
interpolants are not available for the new pairs.

The pair DEP12 has over 250 coefficients. Some of these
coefficients require more than 100 digits to represent, and the
complete set of coefficients spreads over at least five pages.
The coefficients are available online as part of the integrator
rknint (Brankin et al. 1989), see algorithm 670 at http://
netlib.org/toms/.

3. ALGORITHM

In this section, we first give an overview of our algorithm
and then discuss the details.

3.1. Overview

We begin a simulation by dividing the Nt test particles into
Ng groups of equal size. If Ng does not divide Nt exactly, the
first -N 1g groups are made as large as possible and of equal
size; the Ngth group contains the remaining test particles. The
selection of Ng is discussed later.

Next we attempt to integrate the massive bodies and the test
particles in the first group from t=0 to = Dt t where Dt is
specified by the user and is far greater than the typical timestep.

The timestep h on each step of the integration is chosen so the
local error test is satisfied. The timestep for the final step on the
interval is further constrained to ensure = Dt t at the end of the
final step for the interval. After each step is completed, we
remove those test particles in the group that have been ejected
from the solar system or have collided with a massive body.
The attempt to integrate the group to = Dt t is stopped if all of
the test particles in the group have been removed or an error
condition has been raised in the integrator.
Once the first group has been processed, we attempt to

integrate the second group from t=0 to = Dt t. This includes
a re-integration of the massive bodies since the orbits of the test
particles depend on the position of the massive bodies. As with
the first group, after each integration step, we remove test
particles in the group that have been ejected from the solar
system or have collided with a massive body. The remaining
groups are treated in a similar way. After the last group has
been integrated to = Dt t, we integrate all groups with at least
one test particle one group at a time from = Dt t to = Dt t2 .
The simulation continues until either all test particles have been
removed, the final value tf of t is reached, or an error has
occurred.
Each of the Ng groups of test particles is integrated

independently of the other groups. This means each group
will have its own sequence of timesteps, making our algorithm
multirate. The different sequences of timesteps will lead to a
divergence of the position of the same massive body in
different groups. During a simulation we calculate the
difference between the position of the massive bodies for the
ith group, >i 1, and the first group, and use linear least squares
to fit the power law a bt to the norm of the difference. If the
power law indicates that the difference is large enough to
eliminate all resident information, we stop the simulation.
Even though different timestep sequences are used for

different groups, the timestep for all steps and all groups is
chosen so that the norm of the local error estimate is bounded
above by the same fixed value (the local error tolerance).
Hence, the divergence of the position for non-chaotic motion is
slow. For the simulations in Section 5 below, a representative
power law for the norm of the difference in a planet’s position
is - t10 18.4 1.67, where t is in days and the difference is in au. This
norm after 10 million and 100 million years is 0.0037 au and
0.17 au, respectively, small compared to the typical semimajor
axis of test particles.

3.2. Details

We use up to three conditions that a test particle must satisfy
before it is regarded as ejected from the solar system. These
conditions include that the heliocentric distance of the test
particle is at least Rej, the test particle is unbound from the solar
system, and it is on an outward bound trajectory.
After establishing that a test particle has not been ejected, we

check if the test particle collided with the ith massive body,
= ¼i N1, , p, using the steps described below. In the descrip-

tion, d tij
2 ( ) is the square of the distance between the ith massive

body and the jth particle at time t, and Rc i,
2 is square of the

collision sphere radius for the ith massive body. We use d2ij and
not dij to reduce the number of square roots. There are at least
two choices for the collision radius: the physical radius or the
radius of the gravitational cross-section of Safronov &
Zvjagina (1969).

3
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We first check if the test particle is inside the collision sphere
for the ith massive body at the end of the step i.e., if

d t Rij l c i
2

,
2( ) . If it is, we remove the particle and go to the next

particle. If the inequality is not satisfied, we check if the
particle would have hit the ith massive body during the step. To
do this, we first check if the inequalities
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are both satisfied. If they are not, the distance between the test
particle and the massive body did not have a local minimum on
the integration step, and we move on to the next massive body
or test particle.

If the inequalities, Equations (10) and (11), are satisfied, we
check the inequality

+-
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The left side of Equation (12) is a lower bound on the square of
the distance between the particle and the ith massive body
when the distance has a local minimum on the step.

If Equation (12) is not satisfied, the simulation moves on to
the next massive body or test particle. If Equation (12) is
satisfied, we find the minimum distance between the massive
body and the test particle on the step by solving

=
d d t

dt
0, 13

ij
2[ ( )]

( )

using an iterative method. The test particle is removed if the
square of the minimum distance is no larger than Rc i,

2 . To

evaluate d d t dtij
2[ ( )] , we use the interpolants Equation (9) to

approximate the components of the position and velocity of the
massive body and then form d d t dtij

2[ ( )] . If  >s s, which it is
for our algorithm, we calculate fj,

= + ¼j s s1, , , at the start
of the iterations for the current test particle.

We considered many possible iterative schemes and chose
Krogh’s zero. This method starts with a bracket on the root
sought, and then uses linear interpolation for the first iteration
and quadratic interpolation for subsequent iterations. The
method employs heuristics that reduce the number of function
evaluations. Fortran and C implementations of zero are
available at http://netlib.org/math/index.html as part of the
math77 library. A user guide for zero is available at http://
netlib.org/math/docpdf/ch08-01.pdf. Page three of the user
guide lists the total number of function evaluations used by
zero and 12 other methods on the 15 test problems of Alefeld
et al. (1995). The best of the 12 other methods uses 26%–28%
more function evaluations than zero for convergence
tolerances of 10−7, 10−10, 10−15, and 0 (“find as accurate a
solution as possible”). We used zero with a convergence
tolerance of zero in our algorithm.

If zero converges, we remove the test particle if it collided
with the massive body and move on to the next test particle.
We also move on to the next test particle if there was no
collision. The routine zero has never failed to converge in our
test runs. Nevertheless, failure is possible and if it occurs, we

print an error message along with the position of the test
particle and massive body, and go to the next test particle.
In addition to performing the integrations and checks for

ejection and collisions, our algorithm does bookkeeping. This
includes maintaining a count on the number of test particles left
in the simulation and each group at time t, and updating arrays
that hold information about the test particles. We also record
information about the state of the integration for each group.

4. INPUT VALUES

The user-specified inputs to our algorithm are p , DT , h0,
TOL, and Ng. We now discuss suitable values for the the first
four inputs. The selection of a suitable value for Ng is discussed
in the next section.
An interpolant of order p introduces an error of

+O hp 1( ),
which we call the interpolation error. We want this error to be
insignificant compared to the error already present in the
numerical solution at the end of the step. The standard values
for p when solving general initial value ordinary differential
equations is -p 1 or p, see, for example, Baker et al. (1996).
For either value of p , the accumulated error in yl and yl̇ after
many timesteps will be significantly larger than the interpola-
tion error. Near the start of the integration, the accumulated
error would not have had time to grow significantly with t. If
 = -p p 1, the interpolant error would then be significant.

We therefore use  =p p. This choice means more CPU time is
required to form and evaluate the interpolant than for
 = -p p 1. This extra work is a small fraction of the total

work for a simulation because as we demonstrate in the next
section that the interpolant is needed on a small percentage of
the timesteps. The coefficients of the interpolant with  =p p
are available online in the file http://www.math.auckland.ac.
nz/~sharp/rkncoeff.dat. This file is that referred to by Baker
et al. (1996).
There are a wide range of acceptable values for DT . The

only restriction is that it must be sufficiently large so that
forcing the integrator to step exactly to DT , DT2 , DT3 , K,
has little effect on the integration. In our simulations, we
typically use 1000 or 10,000 years for DT .
The scheme for selecting the timestep is very effective in

adjusting the timestep to its optimal value in just a few steps.
Hence the CPU time required to complete a long simulation is
insensitive to the initial timestep h0 and the same value can be
used for all long simulations.
For the simulations we are interested in, there is a limited

range of values for the local error tolerance TOL. The tolerance
must be chosen so that the integrations are being done at or
near limiting precision. Too large a value would mean the
truncation error dominated the round-off error and we were not
getting as much accuracy as we could. Too small a value would
mean that the round-off error was dominating the truncation
error. We experimented with = -TOL 10 i, =i 12, 13, 14, 15
and found that = -TOL 10 13 was a good compromise.
The main source of round-off error in the propagated

solution at limiting precision is the addition in the update
formula, Equations (5) and (6), that adds the h terms to -yi 1 and

-yi 1˙ to get the values at the end of a step. We used the standard
technique of compensated summation, see, for example,
Section 4.3 in Higham (2002), to reduce the round-off error
and found no noticeable reduction in the total error on long
simulations.
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5. NUMERICAL TESTS

In this section, we present a summary of our extensive
testing of our multirate algorithm. In all tests, the massive
bodies were the Sun and the planets, Earth through to Neptune.
The test particles were randomly distributed in the Jupiter–
Saturn zone at the start of a simulation. The units of time and
distance were days and astronomical units respectively.

The aim of our first two simulations was to assess the
performance of the scheme for varying the timestep. Both
simulations had 250 test particles. The first simulation was over
100,000 years and the second over 100 million years.

During the simulation of 100,000 years, the timestep varied
by four orders of magnitude from ´ -3.13 10 3 days (approxi-
mately five minutes) to 35.4 days and the average was
23.9 days. Five test particles collided with Jupiter and one
with Saturn. The timestep had a local minimum at each
collision and the global minimum was one of these minima.
The results for the simulation of 100 million years agreed well
with those for the simulation of 100,000 years. In particular, the
timestep varied from ´ -1.96 10 3 to 36.1 days and the average
was 26.1 days.

Our next set of simulations assessed the dependence of the
CPU time on the number of groups Ng. For a given tf, the value
of Ng that minimizes the CPU time is a compromise between
the following two competing factors. Since the same timestep
is used for all test particles in a group, increasing Ng will reduce
the number of test particles integrated with a small timestep
when a test particle undergoes a close encounter with a massive
body. This reduces the CPU time for a simulation. This is
countered, partly or wholly, by the increase in the number of
times the massive bodies are integrated (they are integrated
once for each group). To gain insight about the optimal value
for Ng, we performed simulations of 1000 test particles over
=t 10f

i years, = ¼i 3, 4, ,8, for =N 1, 2, 5, 10, 20, 50g .
For each tf , we recorded the CPU time for each Ng and found
the minimum tCPU,min of these times. We then normalized the
CPU times for the given Ng by dividing by tCPU,min. For
example, when =t 10f

3 years, the CPU times were 41.3 s
=N 1g( ), 34.4 s (2), 30.3 s (5), 29.5 s (10), 30.3 s (20), and

34.2 s (50). We have =t 29.5 sCPU,min and the normalized
times 1.40, 1.17, 1.03, 1.00, 1.03, and 1.16 (2dp).

The normalized CPU times are listed in Table 1. An entry of
“−” means we stopped the simulation before it reached tf
because it was clear that the ratio would be too large to change
our conclusions. We observe from Table 1 that for small tf ,

=N 10g is optimal, although =N 5g or 20 are almost as good.
As tf increases, the optimal Ng decreases and is 1 when
=t 10f

8 years. The optimal Ng decreased because many of the
test particles had been ejected or removed and the integration of
the massive bodies required a larger fraction of the CPU time.
Decreasing Ng decreases this fraction. For simulations of a large
number of test particles, the optimal Ng can be estimated from
an initial integration of a small number of test particles, such as
1000 as we used.
Another aspect of using groups is deciding how to divide test

particles into groups. One possibility is to use the initial orbits
of the test particles to group those that are likely to have similar
evolutionary histories. For example, test particles could be
grouped according to their initial eccentricity and semima-
jor axis.
The last simulation we report on is of 100,000 test particles

over 100 million years. We used 100 cores on the high-
performance computer Pan at the University of Auckland’s
Centre for eResearch. Each core had 1000 test particles and a
copy of the massive bodies. On each core, we used =N 10g .
We know from Table 1 that =N 10g is not optimal for =t 10f

8

years. We used =N 10g because it provided a more thorough
test of our algorithm than =N 1g did. For the same reason, we
used the physical cross-section of the massive bodies and not
their gravitational cross-section, and required the three
conditions with =R 50 auej stated in Section 3.2 to be satisfied
before ejecting a test particle.
Across the 100 cores, the CPU time required to complete an

integration varied from 2.58 to 3.42 days and had a mean of
3.05 days. The variation in CPU time was caused mostly by the
differences in the orbital evolution and not by the timing
uncertainty.
Figure 2 is a histogram of the signed relative error in the

energy across the cores at the end of the simulation. We
observe that the histogram is close to being symmetric. The
mean of the signed relative error is - ´ -5.8 10 12. We used
linear least squares to fit the power law a bt to the error for each
core. The mean of β across the 100 cores was 0.68. Hence our
method does not satisfy the optimal power law t1 2 derived by
Brouwer (1937). Despite this, the mean of the end point energy

Table 1
Normalized CPU Times for the Simulations of the Sun, the Planets Earth

through Neptune, and 1000 Test Particles Initially in the Jupiter–Saturn Zone

t f (years) Ng

1 2 5 10 20 50

103 1.40 1.17 1.03 1.00 1.03 1.16
104 1.38 1.10 1.02 1.00 1.03 1.17
105 1.51 1.15 1.03 1.00 1.01 1.12
106 1.44 1.11 1.00 1.03 1.04 1.24
107 1.00 1.03 1.00 1.08 − −
108 1.00 1.13 1.34 1.82 − −

Note.An entry of “−” means we stopped the simulation before completion
because it was clear that the normalized time would be too large to change our
conclusions.

Figure 2. Histogram of the signed relative error in the energy at =t 108 years
for 100 simulations each of 1000 test particles. Each data point is the signed
relative error for one core.
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error in our simulation is comparable to that of the Störmer
method of Grazier et al. (2005), which does achieve the t1 2

growth. We believe our method achieves comparable accuracy
because the error on a single step is significantly smaller than
that of the Störmer method.

By the end of the simulation, 94,093 test particles had been
ejected from the solar system and 3591 had collided with a
massive body. Of these collisions, 99.3% were detected at the
end of a step. This percentage, being close to 100%, suggests
the detection of collisions across a step could be omitted. Doing
so would save little CPU time because the mean number of
iterations performed by zero on each core was just 811.

6. DISCUSSION

We presented a variable-timestep algorithm for long,
accurate simulations of the solar system when collisions
between test particles and massive bodies are permitted.
Varying the timestep meant the orbits of test particles close
to the Sun or on eccentric orbits were calculated accurately,
thus avoiding two potential difficulties with fixed-timestep
algorithms. This gives more assurance about the validity of
conclusions drawn from the results of a simulation. Our test
results showed that the error in the energy was very small.

Our algorithm has many applications. One such application,
as we illustrated in the previous section, is an investigation of
the collisions between the terrestrial planets and small bodies.
Horner & Jones (2008, 2009) investigated how effective Jupiter
is at preventing asteroids and centaurs from hitting Earth. To
enhance the impact rate on Earth, Horner and Jones set Earth’s
radius at one million kilometers. In our simulations of the
previous section, we used the realistic value of 6370 kilometers
(the Safronov & Zvjagina 1969 radius is often significantly
larger than this value) and found that just one test particle hit
Earth over 100 million years. This is too small a number to
make any sensible conclusion and far more test particles,
perhaps10 ,6 would be needed. This number is feasible with our
algorithm.

Our algorithm can also be used to perform statistical tests on
simulation results. For example, Grazier et al. (2014)
performed simulations with 2000 test particles to investigate
the delivery of volatiles to the outer asteroid belt. The
simulations differed in the mass used for Jupiter and the zone
in which the test particles started. Our algorithm is fast enough
that multiple sets of 2000 test particles for each mass and zone
could be simulated and the information from these simulations
used to assess the conclusions could be drawn from the original
sample.

Although not needed for the simulations of Section 5, our
method will accurately integrate close encounters between
massive bodies. This is so because the scheme to select the
timestep in an integration does not distinguish between massive
bodies and test particles. Our method does not permit collisions
between massive bodies. We believe our method can be
extended using the interpolants and the solver zero to permit
these collision.
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