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ABSTRACT

We have examined the effect of slow growth of a central black hole on spherical galaxies that obey Sérsic or R m1

surface-brightness profiles. During such growth the actions of each stellar orbit are conserved, which allows us to
compute the final distribution function (DF) if we assume that the initial DF is isotropic. We find that black hole
growth leads to a central cusp or “excess light,” in which the surface brightness varies with radius as -R 1.3 (with a
weak dependence on Sérsic index m), the line-of-sight velocity dispersion varies as -R 1 2, and the velocity
anisotropy is b - 0.24 to −0.28 depending on m. The excess stellar mass in the cusp scales approximately
linearly with the black hole mass, and is typically 0.5–0.85 times the black hole mass. This process may strongly
influence the structure of nuclear star clusters in spheroidal galaxies if they contain black holes.
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1. INTRODUCTION

The surface-brightness profiles of most elliptical galaxies are
remarkably well-fit by the empirical Sérsic formula given by
Equation (1)—see Sérsic (1968), Caon et al. (1993), D’Onofrio
et al. (1994), and the references in Kormendy et al. (2009). This
is a fitting formula containing three parameters, usually taken to
be the brightness I0, the effective radius Re—the projected
radius containing half of the total luminosity—and the shape
parameter or Sérsic index m, which controls the overall
curvature of the profile and quantifies the central concentration
of the galaxy (Graham et al. 2001; Trujillo et al. 2001).

The robustness of the Sérsic fit has prompted many
astronomers to attribute deviations from it to the presence of
additional components or physical processes occurring late in
the lifetime of the galaxy (Graham 2013; Kormendy & Ho
2013 and references therein), rather than to shortcomings in the
empirical fitting formula. To illustrate this, we have reproduced
two surface-brightness profiles from Kormendy et al. (2009) in
Figure 1. The figure shows a deviation at the center. These
deviations are of two kinds: either “excess light” or “missing
light” near the centers compared to the inward extrapolation of
the Sérsic profile. Excess-light or “power-law” ellipticals
generally have lower luminosities (  -M 21.5V ) than miss-
ing-light or “core” ellipticals (  -M 21.7V ). The excess-light
ellipticals are also found to have disky isophotes and Sérsic
indices <m 4, while core ellipticals have boxy isophotes and
indices >m 4.

The division of ellipticals into these two classes, and the
explanations given above for this dichotomy, date back at least
to Faber et al. (1997). The formation of a core is generally
attributed to the dynamical excitation of stellar orbits due to a
binary black hole (hereafter BH) (Faber et al. 1997; Milosavl-
jević & Merritt 2001; Boylan-Kolchin et al. 2004; Mer-
ritt 2006), although there is little or no direct evidence for this
hypothesis. Excess light is generally attributed to late star
formation from gas that has become concentrated near the
galaxy center during mergers (Mihos & Hernquist 1994;
Hopkins et al. 2009a).

Excess light in elliptical galaxies is usually distinguished
from nuclear star clusters in spheroidal galaxies. Spheroidal
galaxies occupy an elongated locus perpendicular to the main

elliptical locus in the me–re (surface brightness versus effective
radius) diagram (Wirth & Gallagher 1984; Bender et al. 1992;
Kormendy et al. 2009). It is likely that different formation
mechanisms are responsible for the central density profiles in
ellipticals and spheroidals, a conclusion supported by the
success of merger simulations in producing elliptical—but not
spheroidal—scaling relations (Boylan-Kolchin et al. 2006;
Robertson et al. 2006; Hopkins et al. 2009b), indicating that
spheroidals are not produced by mergers.
In this work we assume that the central BHs in elliptical and

spheroidal galaxies form slowly by the accretion of gas from
larger radii. In this case the surrounding stellar system will
contract as the central mass grows, because the stellar orbits
conserve their adiabatic invariants or actions. If the galaxy
began with a Sérsic surface-brightness profile, this process will
naturally produce excess light relative to the Sérsic profile near
the center of the galaxy, and the corresponding excess stellar
mass will be simply related to the mass of the BH and the
properties of the initial Sérsic profile. The main goal of the
paper is to work out these relations and to compare the
predictions of this simple model to the observations.
Pioneering studies of this process were carried out by

Peebles (1972) and Young (1980). These studies assumed that
the galaxies were spherical, as do we, but in contrast they
assumed that the stellar distribution function (DF) near the
center of the galaxy was Maxwellian before the formation of
the BH. They found that as the BH grew the stellar DF
developed a cusp in which the density varied as r ~ -r 3 2,
corresponding to a surface brightness ~ -I R R 1 2( ) . However,
a Sérsic profile does not have a Maxwellian DF, and the
properties of the cusp formed by the adiabatic growth of a
central BH depend strongly on the DF (Quinlan et al. 1995). In
general we expect (and shall find) the cusp formed in an initial
Sérsic model to be steeper than the one found by Peebles and
Young.
In Section 2 we review the properties of Sérsic models and

derive the dynamical quantities of interest (density, potential,
DF, velocity moments) assuming spherical symmetry, constant
mass-to-light ratio ϒ, and isotropic velocity dispersion. We
then slowly add a central point mass representing the BH and
evolve the system under the assumption of adiabatic invariance
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of the stellar orbits. The numerical methods are described in
Section 3. The surface-brightness distribution, anisotropy
parameter, excess mass, and line-of-sight velocity-dispersion
distribution of the adiabatic models are described in Section 4
and 5, and the observations in Section 6. The conclusions are in
Section 7.

2. INITIAL SET UP

2.1. Density

The surface-brightness distribution of a spherical galaxy is
modeled well by the Sérsic law (Sérsic 1963, 1968; Ciotti 1991)

h h h= - =I I b R Rexp where 1m
e0

1( ) ( ) ( )

and m is the Sérsic index. Here Re is the effective radius, the
radius on the sky that contains half the total light. This
definition of Re requires that the parameter b is given by

g = Gm b m2 2 , 2 2( ) ( ) ( )

where γ is the incomplete gamma function. The function b(m)
is well fitted by the linear interpolation = -b m m2 0.324( ) ,
with relative error less than 0.001 for < <m0.5 10
(Ciotti 1991; Prugniel & Simien 1997). The exact values of b
(m) for several values of m are given in Table 1. As  ¥m ,

b m 2 and ~ -I R R 2( ) (Kormendy & Djorgovski 1989)
over a wide range of radii around Re.
The luminosity density for given surface brightness I (R) can

be obtained by the Abel integral
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If we assume that the galaxy has constant mass-to-light ratio
ϒ, then its mass density r = ¡r j r( ) ( ). Substituting Equa-
tion (1) in (3) and introducing the dimensionless radius
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Figure 1. Surface brightness profile of the dwarf galaxy NGC 4459, an excess light elliptical with best-fitting Sérsic profile with index m=3.17 (left) and the giant
galaxy NGC 4472, a missing light elliptical with best-fitting Sérsic index m=5.99 (right; Kormendy et al. 2009). Reproduced by permission of the AAS.

Table 1
The Dimensionless Parameters b, F 0m∣ ( )∣ and ~Mm for Different Values

of the Sérsic Index m

m b F 0m∣ ( )∣
~
Mm

2 3.67 ´ -4.17 10 2 ´ -2.91 10 2

3 5.67 ´ -1.04 10 2 ´ -5.41 10 3

4 7.66 ´ -2.21 10 3 ´ -8.42 10 4

5 9.66 ´ -4.52 10 4 ´ -1.27 10 4

7 13.66 ´ -1.80 10 5 ´ -2.74 10 5

9 17.66 ´ -6.88 10 7 ´ -5.68 10 8

11 21.66 ´ -2.57 10 8 ´ -1.17 10 9

Figure 2. Dimensionless density r sm ( ) (Equation (4)) for  m2 11. Here
=s r Re, the ratio of the radius to the effective radius (the same as Figure 1

from Ciotti 1991).
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where h=x s . For >m 1 the dimensionless density r sm ( )
diverges at the origin as

⎡⎣ ⎤⎦r
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~ -
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where B is the beta function. The dimensionless density r sm ( )
is plotted in Figure 2 for several values of m.

2.2. Potential

The potential is obtained by solving the Poisson equation
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is the mass of the system measured in units of p S R4 e0
2. One

cannot solve the integral in general for the density given by
Equation (4) but we can obtain the central potential
(Ciotti 1991), which is useful in what follows:

ò òp rF = - ¡ = -
¥ ¥
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0 0

( ) ( ) ( ) ( )

from which the dimensionless central potential is found to be:

p
F = -
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b
0

1
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Thus the central potential is finite even though the density
diverges at the center for >m 1. The values of the
dimensionless central potential and dimensionless mass for
several values of the Sérsic index m are given in Table 1.

Poisson’s equation (7) has to be solved numerically with the
initial condition (10), taking F =d ds 0m at s=0. Plots of the
potential for different values of m are shown in Figure 3.

2.3. Distribution Function

We shall assume for simplicity that the initial phase-space
DF of the stars in the galaxy is ergodic3, that is, the DF depends
only on the energy E and therefore the velocity distribution is
isotropic at every point in space. In such a case, the DF can be
calculated from the known density and potential of the galaxy
as follows:
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Using the dimensionless potential and density, we can write the
DF in dimensionless form as
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The DF is plotted for various values of m in Figure 4. One can
see that for all values of m the DF is positive, and that it
diverges as  FE 0 ;( ) it is straightforward to show that

a~ - F =
+
+

~ ~ a- f E E
m

m
0 ,

5 1

2 1
. 13m m( ) [ ( )]

( )
( )

2.4. Velocity Moments

For the remainder of this paper we will drop the tildes on E,
Φ, ρ, etc., and it should be understood that these quantities are

Figure 4. DF
~f Em ( ) as a function of normalized energy F

~ E 0m ( ) for
 m2 11. A similar plot is given by Ciotti (1991), Figure 3.

Figure 3. Normalized potential F F s 0m m( ) ∣ ( )∣ (Equations (8) and (10)) for
 m2 11. Here =s r Re, the ratio of the radius to the effective radius. A

similar plot is given by Ciotti (1991), Figure 2.

3 Ergodic systems in statistical mechanics are those that uniformly explore the
constant energy surface in phase space, that is, the time spent by the system in a
region of phase space with fixed energy is proportional to the volume of that
region. In stellar dynamics, the motion of individual stars in a spherical
potential is not ergodic but the DF is said to be ergodic if it is uniform on an
energy surface. The usage follows Binney & Tremaine (2008).
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dimensionless. According to Jeans’s theorem, a stationary
spherical DF can only depend on the energy
= + + FE v v sr t

1

2
2 1

2
2 ( ) and the angular momentum =L s vt,

where vr and vt are the radial and tangential velocities. We can
obtain the density, and the radial and tangential velocity
dispersions for this DF as
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Lmax is the maximum angular momentum for an orbit of energy
E that passes through radius s. Note that the velocity
dispersions in the θ and f directions are = =f qv v vt

2 2 1

2
2 . For

numerical work, the inner integral over y can be evaluated
using Gauss–Chebyshev quadrature and the outer integral over
E by Gauss–Legendre quadrature.

We then project the density and velocity moments on the
plane of sky to obtain the surface density
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The anisotropy parameter is
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which is 0 for an isotropic velocity distribution, -¥ for
circular orbits and +1 for radial orbits.

The initial Sérsic models are ergodic, so the velocity
distribution is isotropic, b = 0, and the DF depends only on
energy, not angular momentum. The velocity dispersion

=v s v sr t
2 1

2
2( ) ( ) is shown in Figure 5.

2.5. Actions

The radial and azimuthal actions are

ò p= - F - =
-

+
I E s L s ds I L2 2 2 , 21r

s

s

t
2 2[ ( )] ( )

where -s and +s are the pericenter and apocenter distances of
the orbit, given implicitly by

- F - = s E s L2 0. 222 2[ ( )] ( )

Since actions are conserved during the adiabatic growth of the
central BH, the DF is also conserved at each point in action
space. In terms of energy and angular momentum, a star that is
initially at (E, L) in phase space when the potential is F s( ) will
move to a new phase point *E L,( ) when the potential changes
to *F s( ). By equating the initial and final actions, we find the
relation *=E E E L,( ). Then the new DF * *f E L,( ) is related
to the original DF f E L,( ) by * * *=f E L f E E L L, , ,( ) [ ( ) ].

3. NUMERICAL METHODS

The density, DF, potential and other galaxy properties are
evaluated on a grid: r r= si i( ), F = F si i( ), =f f E L,jk j k( ),
and so on. The radial grid is equally spaced in slog( ) with
roughly 200 points between = -s 10min

6 and = ´s 2 10max
2.

The energy grid points Ej are chosen to match the potentialFi at
the radial grid points; since F r( ) varies as the BH grows, the
locations of the energy grid points Ej also vary. The grid points
for angular momentum are spaced uniformly between x=0
and x=1 where =x L L Ec ( ) and Lc(E) is the angular
momentum of a circular orbit at the given energy. Typically we
use 200 grid points in energy and 20 in angular momentum.
Following Young (1980), the program executes the follow-

ing steps for a given Sérsic index m:

1. The density r r= si i( ) is obtained from Equation (4) at all
points on the radial grid (recall that we have dropped the
tildes on all dimensionless quantities).

2. The gravitational potential F = F si i( ) is obtained from
Poisson’s Equation (8) at all points on the grid.

3. The initial DF =f f Ejk j( ) is obtained from ri and Fi

using Equation (12). The initial values fjk are independent
of the angular momentum x L Ek c j( ) since the initial DF is
ergodic.

4. The radial action =I I E x,jk r j k( ) is calculated for the
potential F s( ) at each point on the energy-angular
momentum grid E x L E,j k c j[ ( )], using Equation (21).

Figure 5. Initial isotropic velocity dispersion of the galaxy for varying Sérsic
index m. A similar plot is given by Ciotti (1991), Figure 2.
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5. A BH of mass M• is added at the center of the galaxy,
thereby modifying the potential to *F = F -s s M s•( ) ( ) .

6. In this new potential we compute the angular momentum
of circular orbits as a function of energy, * *L Ec ( ).

7. A new energy-angular momentum grid * * *E x L E,j k c j[ ( )] is
defined, in which the new energies *Ej match the new
potentials * *F = F sj j( ) at the radial grid points. The new
action * * *=I I E x,jk r j k( ) is computed on the new energy-
angular momentum grid * * *E x L E,j k c j[ ( )].

8. Since actions are conserved, a star at (E, x) evolves
during the growth of the BH to * *E x,( ) where
* * * =I E x I E x, ,r r( ) ( ), * * * =x L E x L Ec c( ) ( ). We solve
for the original (E,x) at each point on the new energy-
angular momentum grid * * *E x L E,j k c j[ ( )] and then compute
the new DF as * * * * * * *=f E x L f E E x L, ,c c( ) [ ( )].

9. Using the DF *f and potential *F we compute the
resulting density **r from Equation (14) and the
potential **F from Poisson’s Equation (8). We then
replace *r and *F by **r and **F and return to step 6.

After about 20 iterations this algorithm converges, yielding a
DF for the stellar system from which quantities of interest like
density, surface brightness profile, and velocity dispersion can
be computed.

4. EXCESS MASS

We wish to quantify the excess light or stellar mass
accumulated near the center of the galaxy as the result of the
adiabatic adjustment of the stellar orbits to the growth of the BH.
Since the excess has appeared at the center only because of the
rearrangement of the stars, the total luminosity of the galaxy is
unchanged: the density goes up substantially close to the center,
and decreases by a much smaller amount at large radii. The
definition of “excess mass” is therefore somewhat arbitrary, but
most reasonable definitions will give very similar values. We
define the “cross-over radius” as the value of the dimensionless
radius h = R Re at which the initial and final surface-density
profiles cross (see Figure 6). Let hS( ) and * hS ( ) be the
dimensionless initial and final surface-density profiles, then hc is

defined by the equality * h hS = S ;c c( ) ( ) we have verified that
this solution exists and is unique. The excess mass is defined as

*ò h h h h= S - S
h

M d . 23e
1

2 0

c
[ ( ) ( )] ( )

Note that this definition cannot strictly be applied to observed
galaxies, where we do not know the initial profile so different
procedures must be used to define the excess mass (cf. Faber
et al. 1997; Graham 2004; Merritt 2004).
The factor 1

2
appears in the above equation so that the

dimensional definition of the excess mass is =Me

*òp S - SR R R dR2
R

0

c [ ( ) ( )] (cf. Equation (8))—in other

words it arises because the volume element is ps ds4 2 but the
area element is ph hd2 .

5. RESULTS AND DISCUSSION

The surface-brightness profile I(R) and anisotropy parameter
b r( ) are plotted in Figure 7 for Sérsic index m=2.3, 3, 6 and
9 for dimensionless BH masses varying from 10−5 to
5×10−3. The BH masses are chosen such that they are
10−4 to few times 10−2 of the galaxy mass (MG).

5.1. Surface-density Cusp

The prominence of the surface-brightness or surface-density
cusps shown in Figure 7 varies with the Sérsic index m. For
smaller m the cusp is more prominent, partly because the initial
surface-brightness profile near the center is flatter. For large m,
even with the largest BH masses, the cusp caused by the BH is
hardly noticeable (see m= 9 case in Figure 7).
One can derive the approximate behavior of the surface-

density cusp analytically (Quinlan et al. 1995; Gondolo &
Silk 1999)

* *r
g

~ S ~ G = +
-

=
+
+

-G -Gr R
m

m
, , 2

1

4

7 2

3 1
.

24

1

( )

where g = -m m1( ) is the exponent of the initial cusp (see
Equation (5)). For the Sérsic index m=2.3, *r ~ -r 2.29 and

Figure 6. Typical potential and surface density of a galaxy with and without a BH. The Sérsic index m=4 and the black hole mass relative to the galaxy mass
is = ´ -M M 1.877 10G•

3.
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*S ~ -R 1.29 and for m=9, *r ~ -r 2.32 and *S ~ -R 1.32. We
see that the exponent of the central surface-density cusp does
not vary strongly with Sérsic index. Thus the cusp becomes
less prominent as m increases and the initial profile becomes
more cuspy.

5.2. Anisotropy and Velocity Cusp

The line-of-sight velocity dispersion (Equation (19)) is
shown in Figure 8. Both the radial and tangential dispersions
vr

2 and vt
2 scale as -r 1 near the BH and this scaling is evident in

Figure 8. An explicit formula giving the relation between the

Figure 7. Surface-brightness profile (left) and anisotropy parameter (right) after the adiabatic growth of a BH in a galaxy with Sérsic index m=2.3, m=3, m=6,
and m=9.
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line-of-sight velocity dispersion and BH mass as r 0 is
given in Appendix B. In contrast, the velocity dispersion goes
to zero at the center for all values of the Sérsic index m for a
galaxy without a central BH (see Figure 5).

The anisotropy parameter β is plotted for m=2.3 to m=9
in Figure 7. The plots show that as a result of the BH growth

the stellar DF develops a tangential anisotropy b-  0.24–
0.28 near the center. The anisotropy depends only weakly on
the Sérsic index, and is independent of the BH mass: as the BH
mass grows the anisotropy simply extends to larger distances.
Using an approximate expression for the radial action near

the center of a Sérsic model due to Gondolo & Silk (1999), we
compute in the appendix the ratio of the radial and tangential
velocity dispersions and thus the anisotropy parameter β
(Equation (20)). When sufficiently close to the center, the
anisotropy ratio is independent of the BH mass and the radius,
and is determined solely by the initial Sérsic index m. The
values of β for m=2.3 andm=9 obtained from Equation (31)
are −0.313 and −0.306, respectively, and the corresponding
values from Figure 7 are −0.285 and −0.247.
The constant tangential anisotropy near the center contrasts

with the situation for initial galaxies having analytical cores as
described in Goodman & Binney (1984) and Quinlan et al.
(1995): with analytic cores the initial DF is constant as r 0
so the ratio v vr t

2 2 tends to 1

2
and β tends to zero. However,

Quinlan et al. (1995) and Merritt (2004) also examine adiabatic
growth of a central black hole in galaxies with central power
laws and show that the tangential anisotropy is constant near
the center, consistent with our finding.

5.3. Excess Mass

In Figure 9, we plot the excess mass (as defined in Section 4)
with respect to the BH mass. We observe that the excess mass
scales approximately linearly with the BH mass, although with
some offset and curvature in the relation. To make these
features more apparent we plot in Figure 10 the ratio of excess
mass to BH mass as a function of the BH mass.
We see that the excess mass Me is always smaller than the

BH mass M• for all values of the BH mass and all values of the
Sérsic index m. There is a peak in the excess mass as a function
of BH mass for all values of the Sérsic index, which occurs
when the mass of the BH is between about 10−3 and -10 1.5

times the mass of the galaxy. The maximum of the ratio M Me •
increases as m decreases, consistent with the stronger visual
appearance of the cusp in Figure 7 at smaller Sérsic index, but
this maximum varies by less than a factor of two over a wide
range of Sérsic indices.
The dependence of the ratio of the excess mass to BH mass

shown in Figure 10 can be fitted to a cubic polynomial,

⎛
⎝⎜

⎞
⎠⎟

c c c

c

= = + + +

=

y
M

M
a b c d

M

M

;

where log 25

e

G

•

3 2

• ( )

where the coefficients a, b, c and d are functions of m alone.
Table 2 gives the fitted values of the coefficients of the cubic
polynomial; the ratio of black hole mass to the galaxy mass at
the maximum of M Me • (M MG•

max ); and the maximum
deviation of the fitting function yfit from the numerically
calculated values ynum, that is, max( -y yfit num∣ ∣).

6. COMPARISON TO OBSERVATIONS

We now ask whether our results are consistent with
observations of excess light in elliptical galaxies. Kormendy
et al. (2009) estimate that the excess light is 0.3%–13% of the
total light in the galaxy (median 2.3%); for comparison the

Figure 8. Line-of-sight velocity dispersion after the adiabatic growth of a BH
in a galaxy with Sérsic index m=2.3, m=4, m=6, m=9. The dashed line
is for the initial model without a BH.
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typical ratio of BH mass to galaxy mass (in stars) is
M M 0.5%G• (Kormendy & Ho 2013). Figure 10 then

implies M M 0.7e • so M M 0.3%e G –0.4%, at the lower
end of the observed range. This result is consistent with the top
panel of Figure 42 of Kormendy et al. (2009), which shows that
M Me • ranges between 1 and 50, with typical values around 10.
In other words the adiabatic model correctly predicts that the
excess mass should be roughly proportional to the galaxy or
BH mass, but the predicted magnitude is too small by a factor
5–10. We conclude that the excess light in ellipticals does not
arise from adiabatic growth of a central BH. This conclusion is
consistent with the observation (Kormendy et al. 2009) that the
excess light often has disky isophotes, suggesting that it formed
via dissipative processes rather than by adiabatic ones—most
likely late star formation due to gas that has collected in the
central region of the galaxy (e.g., Hopkins et al. 2009a).

Nuclei or nuclear star clusters are a different form of excess
light at the centers of galaxies. Kormendy et al. (Section 9.7)
make a distinction between the “excess light” in elliptical
galaxies and the “nuclei” in spheroidal galaxies. In Figure 11

the surface brightness profile for a galaxy with Sérsic index
m=2.3 is plotted using the same R Re

1 4( ) abscissa as in
Kormendy et al. Comparing this plot to Figures 25, 26, and 28
of that paper, we notice that the slope of the surface-brightness
profile associated with nuclei in spheroidal galaxies, which is
much steeper than the profile associated with excess light in
ellipticals, is similar to what we obtain in the adiabatic-growth
model. Moreover, the median light fraction of nuclei in
spheroidal galaxies is 0.3% (Kormendy et al. 2009), much
smaller than the fractional excess light in ellipticals and
consistent with our model if the nuclei contain typical BHs
with mass M M 0.5%G• (Kormendy & Ho 2013).
Spheroidal galaxies typically have Sérsic indices m 2

(Kormendy et al. 2009, Figure 33). Simulations suggest that the
Sérsic index could be a indicator of the number of mergers a
galaxy have gone through: the galaxies produced in a single
merger typically have m=3–4 (Naab & Trujillo 2006) and
with additional (minor) mergers the index grows (Bournaud
et al. 2007). Thus the properties of spheroidals are unlikely to
be determined mainly by mergers (Robertson et al. 2006;
Hopkins et al. 2009b). In this case internal processes such as
the adiabatic growth of the central BH may be more relevant
for shaping the central surface-brightness profile.
The observational relation between BHs and nuclear star

clusters remains unclear. Côté et al. (2006) and Wehner &
Harris (2006) have argued that nuclear star clusters and central
BHs define a single smooth relationship between mass (of the
cluster or BH) and galaxy luminosity, with clusters dominating
at low luminosities and BHs at high luminosities. Kormendy
et al. (2009) argue that this correlation is accidental, but our
understanding of the correlation between BH masses and their
host galaxy properties, particularly in low-luminosity and late-
type galaxies, is too limited for a definite conclusion.
One attractive alternative to the formation of nuclear star

clusters by the adiabatic growth of a BH is that the clusters
form through in-spiral of globular clusters (Tremaine
et al. 1975; Antonini 2013; Gnedin et al. 2014). In this case
the BH could form before or after the bulk of the cluster
formation.

Figure 11. Surface-brightness profile of the galaxy with Sérsic index m=2.3,
plotted with respect to R Re

1 4( ) . The dashed line is =M 0• .

Figure 10. Ratio of the excess mass to the BH mass, as a function of BH mass.
The abscissa is plotted on a log scale.

Figure 9. Excess mass vs. BH mass, both scaled to the mass of the galaxy. The
dashed line is =M Me• .
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7. CONCLUSIONS

We have studied the effect of the adiabatic growth of a
central black hole on the R m1 or Sérsic model of spherical
galaxies, following the methods described by Young (1980).
The black hole induces a surface-brightness cusp at the center
of the galaxy, which can be described as “excess light” or
“excess mass” above the inward extrapolation of the best-fit
Sérsic profile for the outer galaxy. At the smallest radii the
surface brightness is found to vary with radius as

~ -I R R 1.28( ) to ~ -I R R 1.32( ) for m varying from 2 to 9.
Increasing the BH mass increases the strength of the cusp
without changing the logarithmic slope near the center. The
line-of-sight velocity dispersion is found to scale as -R 1 2,
which is the expected behavior in a Keplerian potential; the
anisotropy parameter β near the center is between −0.24 and
−0.28 (tangential anisotropy).

We calculated the excess mass (defined as the mass interior
to the radius on the sky where the initial and final surface
densities were the same) for Sérsic models with varying indices
m. The excess mass is generally between 0.4 and 0.85 times the
black hole mass.

If the typical black hole mass is~0.5% of the stellar mass in
the galaxy, the excess mass produced by adiabatic contraction
is ∼5–10 times smaller than the excess mass determined from
Sérsic fits to the photometry of elliptical galaxies, but similar to
the masses of nuclear star clusters in low-luminosity galaxies of
all Hubble types. If black holes form by slow accretion of gas
then adiabatic contraction may play an important role in
determining the properties of nuclear star clusters.
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NNX14AM24G and NSF grant AST-1406166. Naveen Jingade
(NJ) thanks S. Sridhar of the Raman Research Institute for
guidance and for many fruitful discussions on this work. N.J.
also thanks the Raman Research Institute for hosting him while
this work was carried out, and acknowledges the financial
support of CSIR, India.

APPENDIX A
VELOCITY ANISOTROPY NEAR THE CENTER

OF THE GALAXY

The goal of this appendix is to determine the velocity
anisotropy near the center of the cusp formed by the adiabatic
growth of a central BH.

The density for a spherically symmetric Sérsic profile of
index m can be approximated near the center (see also Baes &

Gentile 2011) as (Equation (5)):

r r g= = -g-s s m mwhere 1 , 26m 0( ) ( ) ( )

and the corresponding potential is
r
g g

fF - F =
- -

=g g- -s s s0
3 2

. 27m m
0 2

0
2( ) ( )

( )( )
( )

The phase-space DF for the above density and potential pair is
given by Equation (13):

a
g
g

~ - F =
-
-

=
+
+

a-f E E
m

m
0 ,

6

2 2

5 1

2 1
.

28

m m( ) [ ( )]
( ) ( )

( )

An approximate expression for the radial action (Gondolo &
Silk 1999) accurate to 8% for all >m 1 is

⎪
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Once the black hole grows adiabatically, the galaxy potential at
the center is approximately Keplerian. The radial action is now
given by * * *p= - -I E L M E L, 2 2r •( ) ( ). The final DF
* *f E L,( ) is obtained by solving * *=I E L I E L, ,r r( ) ( ) for E as

a function of E* and L. Using the equation * = -E v M s1

2
2

•

and =L s vt to eliminate E* and L in favor of the total and
tangential speeds v and vt, we find that the dependence of the
final DF on velocity at a given radius can be written as

⎜ ⎟
⎡
⎣
⎢⎢

⎛
⎝

⎞
⎠

⎤
⎦
⎥⎥*

l
y~ - +
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f
d
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x x

1
1 sin

2
, 30m
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2

2 2
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where

d
g
g

y=
-
-

= = =x sv x M s v v
6

4
; ; 2 ; sin .m t•

The quantities x and xm are defined following Goodman &
Binney (1984).
Multiplying f* by vr

2 and vt
2 and integrating over all velocities

we obtain the ratio of velocity dispersions and the anisotropy
parameter β:

Table 2
The Fitted Values of the Coefficients a, b, c, d in Equation (25) and M MG•

max , the BH Mass at Which M Me • is Largest

m -a -b -c d M MG•
max max( -y yfit num∣ ∣)

2 ´ -1.21 10 2 ´ -1.84 10 1 0.77 −0.140 ´ -5.21 10 2 ´ -6.34 10 3

3 ´ -5.25 10 3 ´ -9.33 10 2 0.46 0.0598 ´ -3.03 10 2 ´ -5.183 10 3

4 ´ -3.23 10 3 ´ -6.36 10 2 0.356 0.0897 ´ -1.76 10 2 ´ -3.107 10 3

5 ´ -2.47 10 3 ´ -5.13 10 2 0.312 0.0784 ´ -1.09 10 2 ´ -1.115 10 3

6 ´ -1.88 10 3 ´ -4.14 10 2 0.272 0.0810 ´ -6.78 10 3 ´ -0.568 10 3

7 ´ -1.39 10 3 ´ -3.31 10 2 0.236 0.0934 ´ -4.21 10 3 ´ -0.761 10 3

8 ´ -1.03 10 3 ´ -2.64 10 2 0.205 0.1070 ´ -2.65 10 3 ´ -0.968 10 3

9 ´ -9.19 10 4 ´ -2.41 10 2 0.194 0.0970 ´ -1.83 10 3 ´ -0.574 10 3
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where =y x xm. The only approximation in deriving this
result is the approximate form for the radial action, Equa-
tion (29). The quadratures are straightforward to evaluate
numerically.

APPENDIX B
LINE-OF-SIGHT VELOCITY DISPERSION NEAR THE

CENTER OF THE GALAXY

We derive the velocity dispersion near the center of the cusp
formed by the adiabatic growth of a central BH. Near the center
we can neglect the self-gravity of the stellar system compared
to the gravitational field from the BH. Using the notation and
results from Appendix A, we first calculate the density r s( ) and
the radial and tangential dispersions v sr

2 ( ), v st
2 ( ) as
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⎜ ⎟
⎡
⎣
⎢⎢

⎛
⎝

⎞
⎠

⎤
⎦
⎥⎥y

l
y= - +

-

d-

g y
d

y
y

,
1

1 sin
1

2 1
,m 2

( )

and all of the above integrals have the same proportionality
constant.

The surface density and line-of-sight dispersion are then
given by Equations (18) and (19). After a few straightforward
integrals we find

s h
h
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+
+
+
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+
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where h = R Re and c m( ), Ur(m) and Ut(m) are the quantities
in braces in Equations (32), (33) and (34) respectively. We
have =f 2 0.21667( ) and =f 10 0.21665( ) . Note that the
value of f(m) is almost independent of m.
In dimensional variables the above result can be written as

s = R f m
GM

R
.2 •( ) ( )
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